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Abstract To control continuous-time uncertain dynamical systems with sampled data-feedback is

prevalent today, but the sampling rate is usually not allowed to be arbitrarily fast due to various physical

and/or computational constrains. In this paper, the authors examine the limitations of sampled-data

feedback control for a class of uncertain systems in continuous-time, with sampling rate not necessary

fast enough and with the unknown system structure confined to a set of functions with both linear and

nonlinear growth. The limitations of the sampled-data feedback control for the uncertain systems are

established quantitatively, which extends the existing related results in the literature.

Key words Sampled-data feedback, stabilization, uncertain nonlinear systems.

1 Introduction

Feedback, a basic concept in automatic control, is used primarily for reducing the effects of
various uncertainties on the desired performance of dynamical control systems, see [1–4] and
references therein. The following fundamental questions arise naturally: How much uncertainty
can be dealt with by feedback? and what are the limitations of feedback?

There are at least two areas in control theory which address similar problems, namely
adaptive control and robust control. However, in spite of the extensive study over the past
several decades, there are very few results on what the feedback mechanism cannot do (i.e.,
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the limitations of the whole class of feedback laws, not only of a special class of feedbacks) for
uncertain nonlinear dynamical systems. The study on the problem was originated in 1997 by
Guo[5] who showed that for a typical first order discrete-time stochastic nonlinear control system
with a scalar unknown parameter, the maximum nonlinear growth rate which can be dealt with
by the feedback mechanism is b = 4, where b denotes the growth rate of the nonlinear function
of the system. Afterwards, Xie and Guo[6] studied a basic class of nonparametric discrete-time
uncertain nonlinear systems, and found that the maximum uncertainty that can be dealt with
by the feedback mechanism is described by a ball with radius 3/2 +

√
2 in a suitably defined

normed space. In 2011, Li and Guo[7] investigated the maximum capability and limitations
of the feedback mechanism in globally stabilizing a basic class of discrete-time nonlinearly
parameterized dynamical systems with multiple unknown parameters. Both “possibility” and
“impossibility” theorems together with a fairly complete characterization on the capability of
feedback would be presented. It would be seen that to characterize the feedback capability,
the growth rates of the sensitivity functions of the nonlinear dynamics with respect to the
uncertain parameters play a crucial role, and a suitable decomposition of the family of the
nonlinearly parameterized functions in question turns out to be necessary. Recently, Li and
Lam[8] concerned with the use of the least squares (LS) algorithm to design feedback control
law to stabilize a basic class of discrete-time nonlinear uncertain systems. The result shows that
if a certain polynomial criterion is satisfied, the system can be stabilized by feedback based on
LS algorithm for Gaussian distributed noise and unknown parameters. This result thus provides
an answer of the question of what are the fundamental limitations of the discrete-time adaptive
nonlinear control. Inspired by these results, there are some continuing works on the limitation
of feedback, see [9–12].

All the above mentioned results are obtained for discrete-time control systems. However, a
more prevalent and practical case seems to be sampled-data control systems where continuous-
time uncertain systems are controlled by feedback laws constructed based on measured sampled-
data with a prescribed sampling rate, due to various physical and/or communication constraints.
This will inevitably give rise to a hybrid dynamical systems where continuous- and discrete-
time signals are nonlinearly coupled, leading to some mathematical difficulties in theoretical
analyzes and investigations. In fact, up to now, there are only few related results available in
the literature.

To the best of our knowledge, the first paper in this direction seems to be Xue and Guo[13],
where the authors considered the limitation of sampled-data feedback control for the following
first order nonlinear system

ẋt = f(xt) + ut, t ≥ 0, x0 ∈ R1, (1)

the system signals are assumed to be sampled at a constant period h > 0, and the input is
assumed to be implemented via the familiar zero-order hold device (piecewise constant function):

ut = ukh, kh ≤ t < (k + 1)h, (2)

where ukh is a sampled-data feedback control, that is to say, at each step k, ukh is a causal
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function of the past and present sampled data {x0, xh, · · · , xkh}. The nonlinear function
f in (1) is assumed to be unknown but belongs to the following class of functions GL

c =
{f |f is locally Lipschitz and satifies |f(x)| ≤ L|x| + c, ∀ x ∈ R1}, where c > 0 and L > 0 are
constants. For the system, Xue and Guo[13] rigorously established an “impossibility theorem”
on the capability of sampled data feedback, by showing that the class of uncertain systems (1)
cannot be stabilized globally by any sampled-data feedback law whenever the sampling period h

exceeds the inverse of the “slope” of the uncertain nonlinear functions (say, 1/L) multiplied by
a constant (≈7.53). It was also shown by Xue and Guo[13] that for a class of dynamical systems
where the system function has a nonlinear growth rate with random disturbances described
by the Brownian motion, the corresponding dynamical system will not be globally stabilizable
by sampled-data feedback, even if the nonlinear function is known and the sampling rate is
sufficiently fast. Afterwards, Ren and Guo[14] improved the result for the linear growth case,
showing that actually once h is larger than L−1 multiplied by a constant (≈4.757), then there
is no sampled-data control which can globally stabilize the prescribed class of uncertain non-
linear systems. Recently, Jiang and Guo[15] studied a class of uncertain systems that contains
additional uncertain parameter in the input channel, and showed that the sufficient condition
to globally stabilize the system by the sampled-data feedback is Lh < log 4, giving the same
upper bound as in [13].

In this paper, we continue on examining the limitations of sampled-data control systems (1)
with sampled-data feedback control (2), and the nonlinear term f is assumed to be unknown
but belongs to the following class of functions

GLpc = {f |f is locally Lipschitz and satifies |f(x)| ≤ L|x|p + c, ∀x ∈ R1}, (3)

where c > 0 and L > 0 are constants, and p is an odd number. The limitations of sampled-
data feedback control for the uncertain systems are obtained, which depends on the parameters
(L, p, c) and subsumes the related results reported in [14].

Theorem 1 For any given positive constants h, b, c, p with b > 1, c ≥ 1, p ≥ 1 and p is
odd, there exists a constant L∗ > b such that whenever Lh > L∗, then the uncertain class of
systems described by GLpc is not stabilizable by sampled-data feedback control. To be specific,
for any sampled-data feedback {ukh, k ≥ 0}, if Lh > L∗, then there always exists a function
f∗ ∈ GLpc, such that the state signal of (1)–(2) corresponding to f∗ with initial point x0 = 0
satisfies (k ≥ 1)

|xkh| ≥ (ch)p · bk−1 −→
k→∞

∞. (4)

Remark 1 The value of L∗ can be any positive solution of the following equation

1
L − b

+
1
L

ln
b(L − b + 1)

(L − b)(b − 1)
+

1
(L − b)b + b

+
1
L

ln
(
2 +

b

L − b

)
+

b − 1
2L − b

= 1 (5)

if p = 1; and

1
(L − b)cp−1

+
1

(L − b)bpcp2 + bcp − L
+

1
(L − b)bpcp2−1 + bcp−1

+
1

L − b
+

b

2L − b
= 1 (6)
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if p > 1.
Furthermore, in the case p = 1, the minimum value of L∗ is L∗ ≈ 4.757 just for b ≈ 1.578

by (5), see Figure 1. In the case p > 1, we take c = 1 for (6) for the sake of convenience. Then
the equation (6) can be simplified by

1
(L − b)

+
1

(L − b)(bp − 1)
+

1
(L − b)bp + b

+
1

L − b
+

b

2L − b
= 1. (7)

From Figures 2 we know that the minimum of L∗ tends to 3.4 along with the increase of p. It
shows that in this case if h is larger than L−1 multiplied by a constant (≈ 3.4), then there exists
no sampled-data control which can globally stabilize the prescribed class of uncertain nonlinear
systems.
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Figure 1 p = 1

2 Some Lemmas

In order to prove our result, we give a definition and some lemmas which are similar to
those in [13].
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Figure 2 p = 3, p = 5, p = 7, p = 9, p = 999

Definition 2.1 Consider the following two sampled-data control systems:

Σf :

⎧
⎨
⎩

ẋ = f(x) + ut, t ≥ 0, x(t0) = a,

ut = ukh, kh ≤ t < (k + 1)h;
(8)

Σg :

⎧⎨
⎩

ż = g(z) + ut, t ≥ 0, z(t0) = a,

ut = ukh, kh ≤ t < (k + 1)h.
(9)

Under the same sampled-data control sequence {ut}, the above two systems Σf and Σg

are called N -step equivalent starting from the same initial point a ∈ R1 and denoted by
Σf

a⇐⇒
N

Σg, s.t. {ut}, if the sampled signals or observations of the two systems are equal,

i.e., xt0+kh = zt0+kh, k = 0, 1, · · ·N . If N = 1, we will simply use the notation Σf
a⇐⇒ Σg s.t.

u.
Lemma 2.1 (see [13]) Consider the one dimensional autonomous system:

⎧
⎨
⎩

ẋ = φ(x), t ≥ 0,

x(0) = x0,
(10)
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where φ(·) is local Lipschiz. Then
(i) the trajectory x(t) is a monotonous function of t;
(ii) for any T > 0, and xT 
= x0, the necessary and sufficient condition for x(T ) = xT is∫ xT

x0

dx
φ(x) = T together with φ(x) 
= 0 on [min(xT , x0), max(xT , x0)].

Lemma 2.2 Let the function g ∈ GLpc satisfy g(z) ≡ L|z0|p + c for z ≥ |z0| (or g(z) ≡
−L|z0|p − c for z ≤ −|z0|), such that the state signal of the system

Σg :

⎧⎨
⎩

ż = g(z) + u0, t ≥ 0,

z(0) = z0

(11)

satisfies z(1) = z1 > |z0| > 0 (or z(1) = z1 < −|z0| < 0). Then there exists a function
g1 ∈ GLpc satisfying g1(z1) = Lzp

1 + c, and g1[z0, |z0|] = g, g1[|z0|, z1] ≥ 0 (or g1(z1) = Lzp
1 − c

and g1[−z0, |z0|] = g, g1[z1,−|z0|] ≤ 0), such that the state signal of the following system:

Σg1 :

⎧
⎨
⎩

ẋ = g1(x) + u0, t ≥ 0,

x(0) = z0

(12)

satisfies x(1) = z1, where by definition f1[α, β] = f2 means f1(x) = f2(x), ∀x ∈ [min(α, β),
max(α, β)].

Proof For convenience of presentation, we denote α := L|z0|p + c + u0, β := z1 − |z0|, and
γ := zp

1 − |z0|p in the sequel. Obviously, we have β > 0, γ > 0. Also, it is easy to see α > 0 by
Lemma 2.1 and |z1| > z0.

Denote
ĝ(z) = L|z0|p + c,

then by Lemma 2.1 we know

t|z0|→z1 =
∫ z1

|z0|

dz

ĝ(z) + u0
=
∫ z1

|z0|

dz

L|z0|p + c + u0
=

β

α
,

where and hereafter t|z0|→z1 denotes the time needed for z(t) to travel form |z0| to z1.
By the assumption and Lemma 2.1, we see that if we can construct a locally Lipschitz

function g∗ on [|z0|, z1] to satisfy
a) |g∗(x)| ≤ L|x|p + c, x ∈ [|z0|, z1];
b) g∗(|z0|) = ĝ(|z0|), g∗(z1) = Lzp

1 + c;
c) g∗[|z0|, z1] ≥ 0;
d)

∫ z1

|z0|
dz

ĝ(z)+u0
= β

α ,

then ĝ[z0, |z0|] ⊕ g∗[|z0|, z1] is just the desired function g1.

Let s and l be two small positive constants, and let η > 0 satisfy α−η > 0 and L|z0|p+c−η >

0. We define a function gs,l on the interval [|z0|, z1]:

gs,l(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L|z0|p + c − η

s
(x − |z0|), x ∈ [|zo|, |z0| + s];

L|z0|p + c − η

s
(x − |z0| − s), x ∈ [|z0| + s, |z0| + 2s];

L|z0|p + c, x ∈ [|z0| + 2s, z1 − l];
L(zp

1 − |z0|p)
l

(x − z1 + l) + L|z0|p + c, x ∈ [z1 − l, z1].
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It is easy to verify that gs,l is locally Lipschitz and satisfies a), b), and c) required above when
s and l are small enough.

Next, it is easy to calculate that

∫ z1

|z0|

dx

gs,l(x) + u0
=

(∫ |z0|+s

|z0|
+
∫ |z0|+2s

|z0|+s

+
∫ z1−l

|z0|+2s

+
∫ z1

z1−l

)
dx

gs,l(x) + u0

= 2
s

η
ln

α

α − η
+

β − 2s− l

α
+

l

Lγ
ln

Lγ + α

α
.

Now, to make gs,l satisfy d), let

2
s

η
ln

α

α − η
+

β − 2s− l

α
+

l

Lγ
ln

Lγ + α

α
=

β

α
.

We have
0 =

2s

η
ln

α

α − η
− 2s + l

α
+

l

Lγ
ln

Lγ + α

α
.

So,

−
[
1 +

α

η
ln
(
1 − η

α

)]
2s =

[
1 − α

Lγ
ln
(
1 +

Lγ

α

)]
l.

Since ln(1 − x) < −x, ∀ 0 < x < 1, and ln(1 + x) < x, ∀ x > 0, we know that both sides are
positive. So, we can select s > 0 and l > 0 small enough to make the requirement d) hold.
Finally, the gs,l is just the desired function g∗.

Lemma 2.3 (see [13]) If we explicitly denote the system (1)–(2) as Sys(f, x0, h, {ukh}), then
for any positive constant λ, there is a “linear time-transforming” relationship between the state
signal x(t) of the system (1)–(2) and the state signal z(t) of the system Sys(λf, x0,

1
λh, {λukh}),

i.e.,

z(t) = x(λt), ∀ t ≥ 0. (13)

Lemma 2.4 For any given constants b, c, p with b > 1, c ≥ 1 and p is odd, Equation (6)
(or (5), (7)) has a unique solution Lb such that Lb > b.

Proof Set

F (L) =
1

(L − b)cp−1
+

1
(L − b)bpcp2 + bcp − L

+
1

(L − b)bpcp2−1 + bcp−1
+

1
L − b

+
b

2L − b
.

For any fixed b, c, p with b > 1, c ≥ 1 and p is odd, it is obviously F (L) is strictly decreasing
and continuous as L > b. Moreover, we have F (L) → 0 as L → +∞ and F (L) → +∞ as
L → b+. So, by intermediate value theorem, F (L) has a unique solution L∗ > b such that
F (Lb) = 1.

3 Proofs of Theorem 1

In this section, we will prove Theorem 1.
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Proof We first consider the case where h = 1.
Since the left-hand-side of (5) decreases with respect to L for any given b > 1, c ≥ 1, we can

select a small constant δ ∈ (0, 1) such that

1
L − b

+
1
L

ln
b(L − b + 1)

(L − b)(b − 1)
+

1 + δ

(L − b + 1)b
+

1
L

ln
2L − b

L − b
+

b − 1
2L − b

≤ 1 (14)

and

1 + δ

L − b
+

1
L

ln
2L − b

L − b
+

b − 1
2L − b

≤ 1 (15)

for L > Lb > b, where Lb is the solution of (5).
Similarly, we can also select a small constant δ ∈ (0, 1) such that

1
(L − b)cp−1

+
1

(L − b)bpcp2 + bcp − L
+

1 + δ

(L − b)bpcp2−1 + bcp−1
+

1
L − b

+
b

2L − b
≤ 1 (16)

and

1 + δ

(L − b)cp−1
+

1
(L − b)

+
b

2L − b
≤ 1 (17)

for L > Lb > b, where Lb is the solution of (6).
Denote

f1[α1, β1] ⊕ f2[α2, β2] =

⎧⎨
⎩

f1(x), x ∈ [α1, β1],

f2(x), x ∈ [α2, β2];

where we assume [α1, β1]
⋂

[α2, β2] = φ.
We will construct the function f∗ step by step in a spanning manner to deal with the possible

control effects of any given feedback sequences {ukh}. It is divided into three steps.
Step 1 t = 0.
Given the initial input u0 and x0 = 0. We consider two cases separately.
Case (i) u0 ≥ 0.
Denote a+

1 = u0 + c ≥ c and define f∗ on [−a+
1 , 0] to be

f∗[−a+
1 , 0] =

⎧⎨
⎩

(L + 2δ−pc−p+1)xp + c, x ∈ [−δc, 0];

Lxp − c, x ∈ [−a+
1 ,−δc).

(18)

Define g+
0 [0, a+

1 ] ≡ c, then the system Σg+
0

: ẋ = g+
0 (x) + u0, t ≥ 0, x0 = 0 satisfies x(1) = a+

1 .
By Lemma 2.2 with z0 = 0 and z1 = a+

1 , we know that there exists a φ+
0 ∈ GL

c satisfying:
Σφ+

0

0⇐⇒ Σg+
0
, s.t. u0, φ+

0 (a+
1 ) = L(a+

1 )p + c and φ+
0 [0, a+

1 ] ≥ 0.
Let G+

0 be the set consisting of only two functions defined on [−a1, a1], i.e.,

G+
0 := {f∗[−a+

1 , 0] ⊕ g+
0 (0, a+

1 ], f∗[−a+
1 , 0] ⊕ φ+

0 (0, a+
1 ]} ⊆ GLpc,

where and hereafter G+
0 ⊆ GLpc simply signifies that any function f in G+

0 is locally Lipschitz
and satisfies |f(x)| ≤ L|x|p + c on its defined interval. Then the state x(t) of the uncertain
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system (1)–(2) may be produced by a system corresponding to any function in G+
0 . But it is

easily seen that for whichever function in G+
0 , we will always get x1 = a+

1 under u0.
Case (ii) u0 < 0.
Denote a−

1 = −u0 + c ≥ c and define f∗ on [0, a−
1 ] to be

f∗[0, a−
1 ] =

⎧
⎨
⎩

(L + 2δ−pc−p+1)xp − c, x ∈ [0, δc];

Lxp + c, x ∈ [δc, a−
1 ).

(19)

Define g−0 [−a−
1 , 0) ≡ −c, then the system Σg−

0
: ẋ = g−0 (x) + u0, t ≥ 0, x0 = 0 satisfies

x(1) = −a−
1 . By Lemma 2.2 with z0 = 0 and z1 = −a−

1 , there exists a φ−
0 ∈ GL

c satisfying:
Σφ−

0

0⇐⇒ Σg−
0

, s.t. u0, φ−
0 (−a−

1 ) = −L(a−
1 )p − c, and φ−

0 [−a−
1 , 0] ≤ 0.

Similar to the previous case, let us denote

G−
0 := {g−0 [−a−

1 , 0) ⊕ f∗[0, a−
1 ], φ−

0 [−a−
1 , 0) ⊕ f∗[0, a−

1 ]} ⊆ GLpc.

Then the state x(t) of the uncertain system (1)–(2) has the possibility to evolve as the state of
a system corresponding to any function in G−

0 . But we can see that for whichever function in
G−

0 , we are bound to have x1 = −a−
1 under u0.

Step 2 t = 1
We are now given the control u1 and obverse x1. The following discussion is divided into

four cases according to the values of (x1, u1).
Case (i)

x1 > 0, u1 ≥ −(Lxp
1 + c) + b(|x1|p − |x0|p). (20)

In the case, define f∗[0, x1] = φ+
0 , where φ+

0 is defined in Case (i) of Step 1. And consequently,
we have f∗(x1) = Lxp

1 + c.
Next, denote

a++
2 := x1 + (u1 + Lxp

1 + c), (21)

and extend the function f∗ already defined on [−x1, x1] to [−a++
2 ,−x1) as

f∗[−a++
2 ,−x1) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

L(x1 + δc)p + f∗(−x1) + c
(δc)p (x + x1)p + f∗(−x1),

x ∈ [−x1 − δc,−x1);

Lxp − c, x ∈ [−a++
2 ,−x1 − δc).

(22)

On the interval [x1, a
++
2 ], we define a function g++

1 [x1, a
++
2 ] ≡ Lxp

1 +c. Then it is easy to verify
that the system Σg++

1
: ẋ = g++

1 (x) + u1, t ≥ 1 travels from x(1) = x1 to x(2) = a++
2 .

By Lemma 2.2 with z0 = x1 and z1 = a++
2 , there exists a φ++

1 ∈ GLpc satisfying Σφ++
1

x1⇐⇒
Σg++

1
, s.t. u1, φ++

1 (a++
2 ) = L(a++

2 )p + c and φ++
1 [x1, a

++
2 ] ≥ 0.

Now, denote

G++
1 := { f∗[−a++

2 , x1] ⊕ g++
1 (x1, a

++
2 ], f∗[−a++

2 , x1] ⊕ φ++
1 (x1, a

++
2 ]} ⊆ GLpc.
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It is clear that the state x(t) of the uncertain system (1)–(2) may be produced by a system
corresponding to any function in G++

1 . Obviously, for f1, f2 ∈ G++
1 , we have f1

0⇐⇒
2

f2, s.t.

{u0, u1}. In particular, for whichever function in G++
1 , we will always have from (20)–(21) that

x2 = a++
2 ≥ b|x1|p under u1.

Case (ii)

x1 > 0, u1 < −(Lxp
1 + c) + b(|x1|p − |x0|p). (23)

In the case, define f∗[0, x1] = g+
0 , hence we have f∗[0, x1] ≡ c ≡ Lxp

0 + c.
Let g+−

1 (−∞,−x1) ≡ f∗(−x1) and f+
1 (−∞, x1] := g+−

1 (−∞,−x1) ⊕ f∗[−x1, x1]. By the
construction of f+

1 (−∞, x1], it follows that

f+
1 (x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c, x ∈ [0, x1];

(L + 2δ−pc1−p)xp + c, x ∈ [−δc, 0];

Lxp − c, x ∈ [−x1,−δc];

−Lxp
1 − c, x ≤ −x1.

(24)

We claim that the system: ż = f+
1 (z) + u1, t ≥ 1, z(1) = x1 satisfies

z(2) ≤ −bxp
1. (25)

In fact, from (23) it is easy to see u1 ≤ −[(L− b)xp
1 + c] and f+

1 (x) + u1 < 0, ∀x ≤ x1, so we
can apply Lemma 2.1 here. By Lemma 2.1, it is clear that to verify the desired result (25) we
need only to show that

t :=
∫ −bxp

1

x1

dx

f+
1 (x) + u1

≤ 1.

For simplicity, we will continually use tα→β to denote the time that the trajectory needs to
travel from α to β in the sequel.

By (24), we know that f+
1 (x) ≤ c on [−δc, x1]. Recalling that x1 ≥ c, if p = 1, we have

tx1→−δc ≤
∫ −δc

x1

dx

c − [(L − b)x1 + c]
≤ 1 + δ

(L − b)
.

Also, we have

t−δc→−x1 ≤
∫ −x1

−δc

dx

Lx − (L − b)x1 − 2c

≤ 1
L

ln
(2L − b)x1 + 2c

(L − b)x1 + (Lδ + 2)c
≤ 1

L
ln

2L − b

L − b
,

and
t−x1→−bx1 ≤ bx1 − x1

(2L − b)x1 + 2c
≤ b − 1

2L − b
.

In view of (15), we have tx1→−bx1 ≤ 1+δ
L−b + 1

L ln 2L−b
L−b + b−1

2L−b ≤ 1 and then (25) holds.
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If p > 1,

tx1→−δc ≤
∫ −δc

x1

dx

c − [(L − b)xp
1 + c]

≤ 1 + δ

(L − b)cp−1
.

Also, we have

t−δc→−x1 ≤
∫ −x1

−δc

dx

Lxp − (L − b)xp
1 − 2c

≤
∫ −x1

−δc

dx

−(L − b)xp
1

≤ 1
(L − b)

and

t−x1→−bxp
1
≤ bxp

1 − x1

(2L − b)xp
1 + 2c

≤ b

2L − b
.

In view of (17), we have

tx1→−bxp
1
≤ 1 + δ

(L − b)cp−1
+

1
L − b

+
b

2L − b
≤ 1

and then (25) holds.
Next, denote a+−

2 := −z(2) > x1. By Lemma 2.2 with z0 = x1 and z1 = −a+−
2 , there

exists a φ+−
1 ∈ GLpc satisfying: Σφ+−

1

x1⇐⇒ Σf̂+
1 (−∞,x1]

, s.t. u1; φ+−
1 [−x1, x1] = f∗[−x1, x1],

φ+−
1 (−a+−

2 ) = −L(a+−
2 )p − c, and φ+−

1 [−a+−
2 ,−x1] ≤ 0.

Let

f∗(x1, a
+−
2 ] =

⎧
⎪⎨
⎪⎩

L(x1 + δc)p − f∗(x1) + c

(δc)p
(x − x1)p + f∗(x1), x ∈ (x1, x1 + δc];

Lxp + c, x ∈ (x1 + δc, a+−
2 ],

(26)

and denote

G+−
1 := { g+−

1 [−a+−
2 ,−x1) ⊕ f∗[−x1, a

+−
2 ], φ+−

1 [−a+−
2 ,−x1) ⊕ f∗[−x1, a

+−
2 ]} ⊆ GLpc.

Then the state x(t) of the uncertain system (1)–(2) may be produced by a system corre-
sponding to any function in G+−

1 . But it can be easily seen that, for whichever function in G+−
1 ,

we will bound to get x2 = −a+−
2 under u1. Obviously, we get from (25) that |x2| ≥ b|x1|p.

Case (iii)

x1 < 0, u1 ≥ −(Lxp
1 − c) − b(|x1|p − |x0|p). (27)

The conditions in this case are “symmetric” to those in Case (ii), so the proof ideas are similar.
Define f∗[x1, 0] = g−0 . Let

g−+
1 (−x1,∞) ≡ f∗(−x1), f−

1 [x1, ,∞) := f∗[x1,−x1] ⊕ g−+
1 (−x1,∞).

Similarly, we can show that ż = f−
1 (z) + u1, t ≥ 1, z(1) = x1 satisfies

z(2) ≥ −bxp
1. (28)
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Now denote a−+
2 := z(2) > 0. By Lemma 2.2, there exists a φ−+

1 ∈ GLpc satisfying:
Σφ−+

1

x1⇐⇒ Σf̂−
1 [x1,∞), s.t. u1; φ−+

1 [x1,−x1] = f∗[x1,−x1], φ−+
1 (a−+

2 ) = L(a−+
2 )p + c, and

φ−+
1 [−x1, a

−+
2 ] ≥ 0.

Let

f∗[−a−+
2 , x1) =

⎧
⎪⎨
⎪⎩

−L(x1 − δc)p + f∗(x1) + c

(δc)p
(x − x1)p + f∗(x1), x ∈ [x1 − δc, x1);

Lxp − c, x ∈ [−a−+
2 , x1 − δc),

(29)

and denote

G−+
1 := {f∗[−a−+

2 ,−x1] ⊕ g−+
1 (−x1, a

−+
2 ], f∗[−a−+

2 ,−x1] ⊕ φ−+
1 (−x1, a

−+
2 ]} ⊆ GLpc.

Then the state x(t) of the uncertain system (1)–(2) may be produced by a system corre-
sponding to any function in G−+

1 . But it can be easily seen that, for whichever function in
G−+

1 , we will get x(2) = a−+
2 under u1. Obviously, it follows from (28) that |x2| ≥ b|x1|p.

Case (iv)

x1 < 0, u1 < −(Lxp
1 − c) − b(|x1|p − |x0|p). (30)

This time we define f∗[x1, 0] = φ−
0 , and get f∗(x1) = Lxp

1 − c.
Denote

a−−
2 := −(x1 + (u1 + Lxp

1 − c)) > −x1, (31)

and extend the definition of f∗ to (−x1, a
−−
2 ] as

f∗(−x1, a
−−
2 ] =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

L(−x1 + δc)p − f∗(−x1) + c

(δc)p
(x + x1)p + f∗(−x1),

x ∈ (−x1,−x1 + δc];

Lxp + c, x ∈ (−x1 + δc, a−−
2 ].

(32)

Define g−−
1 [−a−−

2 , x1] ≡ Lxp
1 − c, then Σg−−

1
: ẋ = g−−

1 (x) + u1, t ≥ 1 travels from x(1) = x1 to
x(2) = −a−−

2 .
By Lemma 2.2, there exists a φ−−

1 ∈ GLpc satisfying: Σφ−−
1

x1⇐⇒ Σg−−
1

, s.t. u1, φ−−
1 (−a−−

2 ) =
−L(a−−

2 )p − c, and φ−−
1 [−a−−

2 , x1] ≤ 0.
Now, denote

G−−
1 := { g−−

1 [−a−−
2 , x1) ⊕ f∗[x1, a

−−
2 ], φ−−

1 [−a−−
2 , x1) ⊕ f∗[x1, a

−−
2 ]} ⊆ GLpc.

Then the state x(t) of the uncertain system (1)–(2) may be produced by a system corre-
sponding to any function in G−−

1 and for whichever function in G−−
1 , we will get x2 = −a−−

2

under u1. Moreover, we get from (30)–(31) that |x2| ≥ b|x1|p.
To proceed further, we denote

g+
1 :=

⎧
⎨
⎩

g++
1 , in Case (i);

g−+
1 , in Case (iii).

g−1 :=

⎧
⎨
⎩

g+−
1 , in Case (ii);

g−−
1 , in Case (iv).
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φ+
1 :=

⎧
⎨
⎩

φ++
1 , in Case (i);

φ−+
1 , in Case (iii).

φ−
1 :=

⎧
⎨
⎩

φ+−
1 , in Case (ii);

φ−−
1 , in Case (iv).

Step 3 t = k.
We now use the induction argument. Suppose that at some time k, for the given feed-

back sequence {u0, u1, · · · , uk} we have found a trajectory {x1, x1, · · · , xk+1} together with the
corresponding nonlinear system or function f∗, which have the following properties:

a) |xk+1| ≥ b|xk|p, |x1| ≥ c.
b) If xk+1 > 0, then f∗ is defined on the interval [−|xk+1|, |xk|], together with g+

k and φ+
k

defined on (|xk|, xk+1], such that

Σf∗[xk,|xk|]⊕g+
k (|xk|,xk+1]

0⇐⇒
k+1

Σf∗[xk,|xk|]⊕φ+
k (|xk|,xk+1]

s.t. {ut, t = 0, 1, · · · , k}.
c) If xk+1 < 0, then f∗ is defined on the interval [−|xk|, |xk+1|], together with g−k and φ−

k

defined on [xk+1,−|xk|), such that

Σg+
k [xk+1,−|xk|)⊕f∗[−|xk|,xk]

0⇐⇒
k+1

Σφ+
k [xk+1,−|xk|)⊕f∗[−|xk|,xk]

s.t. {ut, t = 0, 1, · · · , k}.
Given the control uk+1 and the observation xk+1, we need to show that a)–c) still hold with

k replaced by k + 1. Similar to Step 2, we consider four cases separately.
Case (i)

xk+1 > 0, uk+1 ≥ −(Lxp
k+1 + c) + b(|xk+1|p − |xk|p). (33)

In the case define f∗[|xk|, xk+1] = φ+
k , and consequently we have f∗(xk+1) = Lxp

k+1 + c.
Next, denote

a++
k+2 := xk+1 + (uk+1 + Lxp

k+1 + c) > xk+1, (34)

and extend the definition of f∗ already defined on [−xk+1, xk+1] to [−a++
k+2,−xk+1) by

f∗[−a++
k+2,−xk+1) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

L(xk+1 + δc)p + f∗(−xk+1) + c

(δc)p
(x + xk+1)p + f∗(−xk+1),

x ∈ [−xk+1 − δc,−xk+1);

Lxp − c, x ∈ [−a++
k+2,−xk+1 − δc).

(35)

Define g++
k+1[xk+1, a

++
k+2] ≡ Lxp

k+1 + c, so the system Σg++
k+1

: ẋ = g++
k+1(x) + uk+1, t ≥ k + 1,

travels from x(k + 1) = xk+1 to x(k + 2) = a++
k+2.

By Lemma 2.2 there exists a φ++
k+1 satisfying: Σφ++

k+1

xk+1⇐⇒ Σg++
k+1

, s.t. uk+1 and φ++
k+1(a

++
k+2) =

L(a++
k+2)

p + c, φ++
k+1[xk+1, a

++
k+2] ≥ 0.
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Now, denote

G++
k+1 := {f∗[−a++

k+2, xk+1] ⊕ g++
k+1(xk+1, a

++
k+2], f

∗[−a++
k+2, xk+1] ⊕ φ++

k+1(xk+1, a
++
k+2]}

⊆ GLpc.

Then the state x(t) of the uncertain system (1)–(2) may be produced by a system corre-
sponding to any function in G++

k+1 (obviously ∀f1, f2 ∈ G++
k+1,we have Σf1

0⇐⇒
k+2

Σf2 , s.t. {ut, t =

0, 1, · · · , k + 1}). But it is easily seen that, for whichever function in G++
k+1, we will get

xk+2 = a++
k+2 under uk+1.

In view of (33), (34), and above induction, we have

|xk+2| = a++
k+2 ≥ xk+1 + b|xk+1|p − b|xk|p ≥ b|xk+1|p.

Case (ii)

xk+1 > 0, uk+1 < −(Lxp
k+1 + c) + b(|xk+1|p − |xk|p). (36)

In the case, we define f∗[|xk|, xk+1] = g+
k , i.e., f∗[|xk|, xk+1] ≡ L|xk|p + c.

Let g+−
k+1(−∞,−xk+1) ≡ f∗(−xk+1)(=−Lxp

k+1 − c), and let

f+
k+1(−∞, xk+1] := g+−

k+1(−∞,−xk+1) ⊕ f∗[−xk+1, xk+1].

Now we prove that the system: ż = f+
k+1(z) + uk+1, t ≥ k + 1, z(k + 1) = xk+1 satisfies

z(k + 2) ≤ −bxp
k+1. (37)

By the construction of f+
k+1, we see that

f+
k+1(z) ≤ M(z), ∀z ≤ xk+1,

where M(·) is defined by

M(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L|xk|p + c, z ∈ [|xk|, xk+1];

Lzp + c, z ∈ [0, |xk|];
c, z ∈ [−δc, 0];

0, z ∈ [−δc − |xk|,−δc];

Lzp − c, z ∈ [−xk+1,−δc − |xk|];
−(Lxp

k+1 + c), z ≤ −xk+1.

Also, by induction we have

|xk| ≥ c, xk+1 ≥ b|xk|p > 0, (38)

and by (36)

uk+1 < −[(L − b)xp
k+1 + b|xk|p + c]. (39)
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Now, we define y(t) to satisfy
⎧
⎨
⎩

ẏ = M(y) − [(L − b)xp
k+1 + b|xk|p + c];

y(k + 1) = xk+1.
(40)

Since M(y(k + 1)) − [(L − b)xp
k+1 + b|xk|p + c] < 0, by Lemma 2.1, we know that y(t)

is monotonically decreasing. By the comparison principle for differential equations, we have
z(t) ≤ y(t), t ≥ k + 1. So, to prove the desired result we need only to show that y(k + 2) ≤
−bxp

k+1.
Now, by the definition of M(z) and Lemma 2.1, and with the help of (38) and (39), it is

clear that the time needed for the system (40) to travel from xk+1 to −bxp
k+1 via |xk|, 0, −δc,

−|xk| − δc, and −xk+1 can be calculated as follows.
If p = 1, we have

txk+1→|xk| ≤
∫ |xk|

xk+1

dz

(L − b)(|xk| − xk+1)
=

1
L − b

,

t|xk|→0 ≤
∫ 0

|xk|

dz

Lz + c − [(L − b)xk+1 + b|xk| + c]
≤ 1

L
ln

b(L − b + 1)
(L − b)(b − 1)

,

t0→−δc ≤
∫ −δc

0

dz

−[(L − b)xk+1 + b|xk|] ≤
δc

(L − b)bp|xk| + b|xk| ≤
δ

(L − b)b + b
,

t−δc→−δc−|xk| ≤
∫ −δc−|xk|

−δc

dz

−[(L − b)xk+1 + b|xk + c]
≤ |xk|

(L − b)b|xk| + b|xk| + c

≤ 1
(L − b)b + b

,

t−|xk|−δc→−xk+1 ≤
∫ −xk+1

−|xk|−δc

dz

Lz − c − [(L − b)xk+1 + b|xk| + c]

=
1
L

ln
(2L − b)xk+1 + b|xk| + 2c

(L − b)xk+1 + (L + b)|xk| + (Lδ + 2)c

≤ 1
L

ln
2L − b

L − b
,

t−xk+1→−bxp
k+1

≤
∫ −bxk+1

−xk+1

dz

−(Lxk+1 + c) − [(L − b)xk+1 + b|xk| + c]

=
bxk+1 − xk+1

(2L − b)xk+1 + b|xk| + 2c

≤ b − 1
2L − b

.

Therefore, by (14), we know txk+1→−bxk+1 ≤ 1 and y(k + 2) ≤ −bxk+1.
If p > 1,

txk+1→|xk| ≤
∫ |xk|

xk+1

dz

(L − b)(|xk|p − xp
k+1)

,

t|xk|→0 =
∫ 0

|xk|

dz

Lzp + c − [(L − b)xp
k+1 + b|xk|p + c]
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≤
∫ 1

|xk|

dz

Lzp − [(L − b)xp
k+1 + b|xk|p] +

∫ 0

1

dz

Lzp − [(L − b)xp
k+1 + b|xk|p] .

Let

t|xk|→1 =
∫ 1

|xk|

dz

Lzp − [(L − b)xp
k+1 + b|xk|p] ;

t1→0 =
∫ 0

1

dz

Lzp − [(L − b)xp
k+1 + b|xk|p] .

So, we have

txk+1→1 = txk+1→|xk| + t|xk|→1

≤
∫ |xk|

xk+1

dz

(L − b)(|xk|p − xp
k+1)

+
∫ 1

|xk|

dz

Lzp − [(L − b)xp
k+1 + b|xk|p]

≤
∫ |xk|

xk+1

dz

(L − b)(|xk|p − xp
k+1)

+
∫ 1

|xk|

dz

L|xk|p − [(L − b)xp
k+1 + b|xk|p]

=
∫ 1

xk+1

dz

(L − b)(|xk|p − xp
k+1)

=
xk+1 − 1

(L − b)(xp
k+1 − |xk|p)

≤ xk+1 − 1
(L − b)(xp

k+1 − xk+1)

≤ 1
(L − b)cp−1

;

t1→0 =
∫ 0

1

dz

Lzp − [(L − b)xp
k+1 + b|xk|p]

≤ 1
(L − b)xp

k+1 + b|xk|p − L

≤ 1
(L − b)bpcp2 + bcp − L

;

t0→−δc ≤
∫ −δc

0

dz

−[(L − b)xp
k+1 + b|xk|p]

≤ δc

(L − b)bp|xk|p2 + b|xk|p

≤ δ

(L − b)bpcp2−1 + bcp−1
,

t−δc→−δc−|xk| ≤
∫ −δc−|xk|

−δc

dz

−[(L − b)xp
k+1 + b|xk|p + c]

≤ |xk|
(L − b)bp|xk|p2 + b|xk|p + c

≤ 1
(L − b)bpcp2−1 + bcp−1

,
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t−|xk|−δc→−xk+1 ≤
∫ −xk+1

−|xk|−δc

dz

Lzp − c − [(L − b)xp
k+1 + b|xk|p + c]

≤
∫ −xk+1

−|xk|−δc

dz

−(L − b)xp
k+1

≤ xk+1 − (|xk| + δc)
(L − b)xp

k+1

≤ 1
L − b

,

t−xk+1→−bxp
k+1

≤
∫ −bxp

k+1

−xk+1

dz

−(Lxp
k+1 + c) − [(L − b)xp

k+1 + b|xk|p + c]

=
bxp

k+1 − xk+1

(2L − b)xp
k+1 + b|xk|p + 2c

≤ bxp
k+1

(2L − b)xp
k+1

=
b

2L − b
.

Therefore, by (15), we know txk+1→−bxp
k+1

≤ 1 and y(k + 2) ≤ −bxp
k+1.

Next, denote a+−
k+2 := −z(k + 2) > 0, and there exists a φ+−

k+1 ∈ GLpc satisfying: Σφ+−
k+1

xk+1⇐⇒
Σf̂+

k+1(−∞,xk+1]
, s.t. uk+1; φ+−

k+1[−xk+1, xk+1] = f∗[−xk+1, xk+1], φ+−
k+1(−a+−

k+2) = −L(a+−
k+2)

p−c

and φ+−
k+1[−a+−

k+2,−xk+1] ≤ 0.
Now, let

f∗(xk+1, a
+−
k+2] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L(xk+1 + δc)p − f∗(xk+1) + c

(δc)p
(x − xk+1)p + f∗(xk+1),

x ∈ (xk+1, xk+1 + δc];

Lxp + c, x ∈ (xk+1 + δc, a+−
k+2],

(41)

and denote
G+−

k+1 := {g+−
k+1[−a+−

k+2,−xk+1) ⊕ f∗[−xk+1, a
+−
k+2],

φ+−
k+1[−a+−

k+2,−xk+1) ⊕ f∗[−xk+1, a
+−
k+2]} ⊆ GLpc.

Then the state x(t) of the uncertain system (1)–(2) may be produced by a system corresponding
to any function in G+−

k+1 and for whichever function in G+−
k+2, we have xk+2 = −a+−

k+2 ≥ b|xk+1|p.
Case (iii)

xk+1 < 0, uk+1 > −(Lxp
k+1 − c) − b(|xk+1|p − |xk|p). (42)

Case (iv)

xk+1 < 0, uk+1 ≤ −(Lxp
k+1 − c) − b(|xk+1|p − |xk|p). (43)

The case (iii) and (iv) are “symmetric” to the Case (ii) and (i), respectively, so similarly we
can also get that a)–c) still hold in the cases with k replaced by k + 1.
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Therefore, according to the induction principle, for any given feedback sequence {ui, i ≥ 0}
we can define a nonlinear function f∗ ∈ GL

c such that the corresponding closed-loop system
with initial point x0 = 0 is unstable in the sense that |xk| ≥ cp · bk−1.

Moreover, by Lemma 2.3, the stabilization of Sys(f, x0 = 0, h, {ûkh}) is equivalent to
that of Sys(hf, x0 = 0, 1, {hûkh}). If hL > l where l is defined by (10), then according to
the results established above, there exists a function hf∗ in GhL

hc which makes the state of
Sys(hf∗, 0, 1, {hûkh}) to satisfy

|z(k)| ≥ (ch)p · bk−1, k = 1, 2, · · · .

Thus by Lemma 2.3, f∗ is the desired function such that the state of Sys(f, x0 = 0, h, {ûkh})
satisfies

|x(kh)| ≥ (ch)p · bk−1, k = 1, 2, · · · ,

and hence the proof is completed.

4 Concluding Remarks

We have in this paper investigated the limitations of sampled-data feedback in globally
stabilizing a class of (unstable) dynamical systems with structural uncertainty described by a set
of functions with both linear and nonlinear growth. Some impossibility results are established
which show that as long as the sampling period is larger than a certain value, the corresponding
uncertain class of systems cannot be globally stabilized by any sampled-data feedback. Of
course, due to the hybrid and nonlinear nature of the closed-loop control systems, where both
continuous-time and discrete-time signals are mixed, it is quite challenging to obtain a critical
value for the sampling period. This belongs to further investigation.
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