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Abstract. A central and fundamental issue in the theory of complex systems is to understand how
local rules lead to collective behavior of the whole system. This paper will investigate a
typical collective behavior (synchronization) of a self-propelled particle system modeled by
the nearest neighbor rules. While connectivity of the dynamic neighbor graphs associated
with the underlying systems is crucial for synchronization, it is widely known that the
verification of such dynamical connectivity is at the core of theoretical analysis. Ideally,
conditions used for synchronization should be imposed on the model parameters and the
initial states of the particles. One crucial model parameter is the interaction radius, and we
are interested in the following natural and basic question: What is the smallest interaction
radius for synchronization? In this paper, we will show that, in a certain sense, the smallest
possible interaction radius approximately equals

√
logn/(πn), with n being the population

size, which coincides with the critical radius for connectivity of static random geometric
graphs known in the literature.

Key words. multiagent system, Vicsek’s model, consensus, random geometric graphs, the second
largest eigenvalue

AMS subject classifications. 92D50, 93C55, 60K35

DOI. 10.1137/140961249

1. Introduction. A complex system is composed of multiple interacting elements,
which produces some global behaviors at the macro level called collective behavior or
emergent behavior [1]. Complex systems exist almost everywhere in nature and in hu-
man social and economic systems, and so have generated great interest in researchers
from various fields. A central issue of complex system study is to understand how
local interactions among the elements lead to collective behavior of the whole group.

Self-propelled particle (SPP) systems are a typical kind of complex system. To
investigate clustering, transport, and phase transition in nonequilibrium systems, a
well-known SPP model was proposed by Vicsek et al. [2]. This model is constructed
by the following simple rule: at each time step each particle is driven by a constant
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500 GE CHEN, ZHIXIN LIU, AND LEI GUO

absolute velocity, where its heading is updated by the average value in its neighbor-
hood with some random perturbation added. In computer simulations, this model
exhibits a kinetic phase transition through spontaneous symmetry breaking of the
rotational symmetry [2]. Despite the simplicity of its rule, this SPP model captures
some common features of a number of physical, biological, and social systems. As
pointed out by the authors of [2], such a model is a nonequilibrium analogue of the
ferromagnetic type of model and may be applied to investigate the collective motion
of a wide range of biological systems such as schools of fish, herds of quadrupeds, and
flocks of birds. Moreover, because the model reveals that a simple local interacting
rule may result in interesting global behaviors, it can be considered as a starting point
for the theoretic research of complex systems. Due to such fundamental importance,
the model has attracted much attention from various fields such as biology, physics,
chemistry, engineering, and mathematics. For example, the phase transition of the
model was investigated in [3, 4, 5, 6]; a one-dimensional version [7] was used to study
the collective motion of desert locusts [8, 9]; an initial step toward mathematically
analyzing a simplified model was made by [10]; and more studies related to the model
were reviewed in [11, 12, 13].

A basic goal of the analysis of models with local interacting particles is to estab-
lish conditions under which the system reaches ordered states. Intuitively, the larger
the interacting range is, the easier the system becomes ordered; so, a natural and
basic question is: How small must the local interaction range be in order to guaran-
tee that the system is ordered? This paper will investigate this question on an SPP
model under a random framework. We will show that to guarantee all particles move
in the same direction, in a certain sense, the smallest possible interaction radius ap-
proximately equals

√
logn/(πn), with n the population size, which coincides with the

critical radius for connectivity of random geometric graphs given by Gupta and Ku-
mar [14]. This investigation should offer insights into the collective behaviors of more
general nonequilibrium dynamic systems with local interactions. Also, our analyzes
and results have possible applications in several other fields, as indicated below.

Biological systems: It has been demonstrated that if the population density is
large, a group of locusts will become ordered after a short time [8]. Similar phenomena
have been observed in some bacterial colonies [15] and fish keratocytes [16]. It is
interesting to note that for the SPP model studied in the current paper, all particles
will move in almost the same direction after a short time, provided that the velocity
and noise are small and that the population density is large enough; see Remark 3.3.

Random geometric graphs: This paper will estimate the isoperimetric constant
(Cheeger’s constant) and essential spectrum radius of random geometric graphs; see
Theorem 4.3 and its proof. These results and methods may be used to investigate
the properties of random walk on random geometric graphs, such as convergence rate,
cover time, and mixing time [17, 18].

Wireless sensor networks: A large-scale wireless sensor network can be modeled
by a random geometric graph [14], so our results about random geometric graphs have
potential applications in the investigation of wireless sensor networks. For example,
the essential spectrum radius may be used to further study consensus algorithms
[19, 20, 21, 22] and distributed optimization [23, 24, 25].

The rest of the paper is organized as follows. Section 2 introduces the model we
will study and some related works. In section 3, we present the main results whose
proofs are given in section 4. More detailed analysis of the auxiliary results is given in
section 5. A simulation example is given in section 6. Section 7 concludes the paper
with remarks.
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2. Model and Related Work. To be consistent with [26] we will use the term
agent rather than particle in the rest of this paper. The model in [2] consists of n
autonomous agents moving in the plane with the same speed vn(vn > 0), but with
different headings. Two agents are called neighbors if and only if the distance between
them is less than a predefined radius rn (rn > 0). Let us assume that the n agents
are labeled 1, 2, . . . , n. Two agents i and j are neighbors at time t if and only if
‖Xi(t) − Xj(t)‖2 ≤ rn, where ‖ · ‖2 denotes the Euclidean norm. For any agent
i (1 ≤ i ≤ n), the set of its neighbors at time t (t = 0, 1, . . .) is denoted by Ni(t). By
the definition of neighbors, we see that each agent is a neighbor of itself, i.e., i ∈ Ni(t)
for all t ≥ 0 and 1 ≤ i ≤ n. The position and heading of the agent i at time t are
denoted by Xi(t)(∈ R

2) and θi(t)(∈ (−π, π]), respectively, which are updated by

Xi(t+ 1) = Xi(t) + vn(cos θi(t+ 1), sin θi(t+ 1)),(2.1)

θi(t+ 1) = arctan

∑
j∈Ni(t)

sin θj(t)∑
j∈Ni(t)

cos θj(t)
+ δi(t),(2.2)

where δi(t) denotes a random noise [2].
As mentioned previously, this model has been of interest to researchers from many

fields. However, the theoretical analysis of system (2.1)–(2.2) is difficult because of
the nonlinearity and randomness of (2.2). An important step forward in analyzing
the above model was given by Jadbabaie, Lin, and Morse in [10], where they omitted
the noise effect and linearized the heading updating rule (2.2) as

θi(t+ 1) =
1

|Ni(t)|
∑

j∈Ni(t)

θj(t),(2.3)

where | · | denotes the cardinality of the corresponding set. They proved that if
the associated dynamical neighbor graphs are contiguously jointly connected, the
above model will reach synchronization (or consensus) in the sense that there exists
a common θ̄ such that for all i (1 ≤ i ≤ n),

lim
t→∞ θi(t) = θ̄.(2.4)

Subsequently, Savkin [27] investigated the model with discrete headings and showed
that if the limit of the neighbor graphs is connected, then synchronization can also
be achieved. In [28], Ren and Beard studied the case where the neighbor graphs
are directed and showed that synchronization can be achieved if the union of the
interaction graphs has a spanning tree frequently enough.

In fact, most existing studies resort to certain connectivity conditions on the
dynamical neighbor graphs, and these conditions are hard to verify. Therefore the
corresponding analysis is not theoretically complete. One notable exception in the
study of flocks is the interesting paper by Cucker and Smale [29], where global inter-
actions are considered with weights of interactions decaying with the distances among
agents. However, an unresolved central issue is how to guarantee the connectivity of
the dynamical neighbor graphs resulting from local interactions using conditions im-
posed on only the initial states, the moving speed vn, and the interaction radius rn.

To give a complete analysis of the synchronization behavior of the system, Tang
and Guo [30] introduced a random framework, assuming that the initial positions and
headings of all agents are uniformly and independently distributed, as those in [2].
They showed that for any given positive model parameters, the system based on (2.1)
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502 GE CHEN, ZHIXIN LIU, AND LEI GUO

and (2.3) will synchronize with large probability, giving the first complete theoretical
result in this direction. Furthermore, in [32] they proved that if 6

√
logn/n = o(rn)

and vn = O
(
r5n/ logn

)
, then the model will synchronize.1,2 Based on their results, Liu

and Guo [31] investigated the system (2.1)–(2.2) without noise and provided a simi-
lar condition for synchronization. However, a theoretical analysis of the (linearized)
Vicsek model with the radius rn = O( 6

√
logn/n) is still lacking, and the question con-

cerning the smallest possible radius for synchronization has never been investigated
in this context.

We will carry out our analysis under the assumption that all agents are indepen-
dently and uniformly distributed in [0, 1]2 with arbitrary headings in (−π, π] at the
initial time. As pointed out by Jadbabaie, Lin, and Morse in [10], the connectivity
of the neighbor graphs is important for synchronization. Gupta and Kumar in [14]
proved that the initial neighbor graph with radius

√
(cn + logn)/πn is connected with

high probability (w.h.p.)3 if and only if c(n) → ∞. We refer to
√
(cn + logn)/πn with

c(n) → ∞ as the supercritical radius for connectivity. In this paper, we will show that
if the interaction radius is taken as the supercritical radius, then the system can reach
synchronization w.h.p. under some restriction on the speed; otherwise, if the radius
satisfies (3.4) given in the next section, then the system may not synchronize w.h.p.
for any nonnegative speed. From the analysis in [30], the spectral gap of the initial
neighbor graph plays an important role for the synchronization rate of the model.
However, the methods used in [30] are not suitable for the case of rn = O(

√
log n/n)

since the radius is too small to meet the prerequisite of the method. In this paper, we
will provide a novel approach to estimate the spectral gap of the random geometric
graph with radius O(

√
logn/n). Furthermore, by analyzing the system dynamics, we

will prove the synchronization condition without resorting to any assumption on the
dynamical behaviors of the self-propelled agents themselves.

3. Main Results. The objective of this paper is to study the synchronization
behavior of the dynamical system (2.1) and (2.3). From the description of the model,
we know that the initial states of all agents and the model parameters will determine
the trajectories of all agents. Throughout this paper, we assume that the initial
positions of all agents are independently and uniformly distributed in [0, 1]2 with
arbitrary initial headings in (−π, π]. All analysis proceeds under the above assumption
without further explanation.

Similar to [31], we use a graph sequence {G(t), t = 0, 1, . . .} to describe the rela-
tionship among neighbors. For t ≥ 0, define

G(t) = G({X1(t), . . . , Xn(t)}, E(t))

to be the position graph of the model at time t, where E(t) = {(i, j) : ‖Xi(t) −
Xj(t)‖ ≤ rn}. Obviously, the graphs formed in this way are undirected, and for all
1 ≤ i ≤ n and t ≥ 0, (i, i) ∈ E(t). Denote by P (t) the average matrix of the graph
G(t), i.e.,

∀ i, j = 1, 2, . . . , n, (P (t))ij =

{ 1
|Ni(t)| if (i, j) ∈ E,

0 otherwise.

1For two positive sequences {an, n ≥ 1} and {bn, n ≥ 1}, an = o(bn) means that
limn→∞(an/bn) = 0.

2For two positive sequences {an, n ≥ 1} and {bn, n ≥ 1}, an = O(bn) means that there exists a
positive constant c independent of n such that an ≤ cbn for large enough n.

3We say that a sequence of events En occurs w.h.p. if limn→∞ P [En] = 1.
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SMALLEST POSSIBLE INTERACTION RADIUS 503

Let θ(t) := (θ1(t), θ2(t), . . . , θn(t))
T ; then the iteration rule of the headings and posi-

tions of the model based on (2.1) and (2.3) can be rewritten as{
θ(t+ 1) = P (t)θ(t)
Xi(t+ 1) = Xi(t) + vn(cos θi(t+ 1), sin θi(t+ 1))

∀t ≥ 0, 1 ≤ i ≤ n.(3.1)

Note that under the assumption on the initial positions, the graph G(0) is a
random geometric graph that has been studied in detail in, e.g., [34]. One of the
classical results concerning the connectivity of the random geometric graph can be
stated as follows.

Lemma 3.1 (see [14]). The initial random geometric graph G(0) is connected
w.h.p. if and only if rn satisfies

lim
n→∞

(
πnr2n − logn

)
= ∞.(3.2)

Based on this lemma, Gupta and Kumar in [33] called
√
logn/(πn) the critical

radius for connectivity of G(0). In this paper, we will show that in a probability sense,
this critical radius can be regarded as the smallest possible radius for synchronization
of our SPP model. The main results are formulated as the following theorem.

Theorem 3.2. Suppose that the n agents are independently and uniformly dis-
tributed in [0, 1]2 at the initial time t = 0. If rn satisfies (3.2) and vn satisfies

vn = o
(
rn(logn)

−1n−2
)
,(3.3)

then the system (3.1) will synchronize w.h.p. for arbitrary initial headings. Moreover,
if rn satisfies

lim
n→∞

(
πnr2n + 3 log logn− logn

)
= −∞,(3.4)

then w.h.p. there exist some initial headings such that the system (3.1) cannot reach
synchronization for any speed vn ≥ 0.

The proof of this theorem is in section 4.
Remark 3.3. Consider the system (3.1) with noise added to (2.3). Suppose the

n agents are independently and uniformly distributed in a square with density ρ. For
arbitrary initial headings, by a similar method to Theorem 3.2 we find that if the noise
and vn are small, and rn satisfies πρr2n ≥ (1 + ε) logn with ε an arbitrary positive
constant, then all agents will move in almost the same direction with large probability
after a short time. However, this does not mean such ordered states will still hold
after a very long time.

Before closing this section, we propose a conjecture (which is intuitively correct)
on the system (3.1), in terms of the values of the speed and the radius for synchro-
nization.

Conjecture 3.4. Suppose n agents are distributed in a plane and the initial
positions are given. If the system (3.1) can synchronize with speed v and radius r,
then it will also uniformly synchronize with speed v1 ∈ (0, v) and radius r, or with
speed v and radius r1 > r.

4. Proof of Theorem 3.2. To prove Theorem 3.2, we need to estimate the max-
imum degree, the minimum degree, and the eigenvalues of the average matrix of the
random geometric graph G(0). For this purpose, we need to introduce some notation.

Define the large deviation rate function H : [0,∞) → R by H(0) = 1 and

H(a) = 1− a+ a log a, a > 0.
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Note that H(1) = 0 and that the unique turning point of H is the minimum at 1.
Also, H(a)/a is increasing on (1,∞). Let H−1

− : [0, 1] → [0, 1] be the unique inverse

of the restriction of H to [0, 1], and let H−1
+ : [0,∞) → [1,∞) be the inverse of the

restriction of H to [1,∞); see [34] for the properties of H . Denote by di the degree
of the vertex i in G(0), i.e., the number of neighbors of the agent i at the initial time
instant. Set

dmax := max
1≤i≤n

di and dmin := min
1≤i≤n

di.

The estimations of the maximum and minimum degrees of the initial random
geometric graph G(0) were given by Penrose [34], as is described by the following
lemma.

Lemma 4.1. Suppose that πnr2n/ logn → w ∈ (1,∞] and rn → 0 as n → ∞.
Then with probability 1,

lim
n→∞

(
dmax

nπr2n

)
= H−1

+

(
1

w

)
(4.1)

and

lim
n→∞

(
dmin

nπr2n

)
= min

(
H−1

−

(
1

w

)
,
1

4

)
.(4.2)

Proof. The assertions (4.1) and (4.2) are indicated by Theorems 6.14 and 7.14 of
[34].

Corollary 4.2. If rn satisfies (3.2), then dmax < 3dmin logn w.h.p.
Proof. For the case where πnr2n ≥ 3 logn/e, by Lemma 4.1 we see that dmax <

dmin logn holds almost surely (a.s.) for large n. Next, we will discuss the case where
πnr2n < 3 logn/e. Note that dmax increases with rn; by Lemma 4.1, the following
inequality holds a.s. for large n:

dmax ≤ 3 logn

e
H−1

+

(e
3

)
(1 + o(1)) <

3 logn

e
H−1

+ (1) = 3 logn.

Also, by Lemma 3.1, dmin ≥ 1 w.h.p., and thus our result is obtained.
Next, we will estimate the eigenvalues of G(0). Let D = (dij)n×n denote the

degree matrix of G(0), which is a diagonal matrix with diagonal entries dii = di.
Obviously, the matrix D1/2P (0)D−1/2 is symmetric, so all eigenvalues of P (0) are real
numbers. On the other hand, all entries of P (0) are nonnegative and

∑n
j=1(P (0))ij =

1, i = 1, 2, . . . , n, so the average matrix P (0) is stochastic. The i-largest eigenvalues
of P (0), denoted by λi, 1 ≤ i ≤ n, satisfy the inequalities

|λi| ≤ 1, 1 ≤ i ≤ n,

which means that

1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1.

Define the essential spectral radius λ̄ of G(0) as

λ̄ = λ̄(P (0)) := max{|λ2|, |λn|}.
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We remark that for the case where limn→∞(nr2n/ logn) = ∞, Tang and Guo [30]
proved that the essential spectral radius of G(0) satisfies the following inequality
w.h.p. for large n:

λ̄ ≤ 1− πr2n
512(rn +

√
6)4

(1 + o(1)).(4.3)

However, the methods used in [30] cannot be applied to estimate the spectral gap
of G(0) for the case of rn = O(

√
logn/n), since the interaction radius is too small

to satisfy the condition of Lemma 4 in [30], which plays a key role in the estimation
of λ̄. In this paper, we will use some methods from percolation theory to study the
essential spectral radius of G(0) for the case where rn satisfies (3.2).

Theorem 4.3. Assume that rn ≤ 1. Then there exists a constant c > 0 such
that the inequality λ̄ ≤ 1− cr2n holds w.h.p. if and only if rn satisfies (3.2).

The proof of Theorem 4.3 is given in section 5.
For η > 0, we write Po(η) for any Poisson random variable with parameter η.

Define a Poisson point process Pη by Pη := {Y1, Y2, . . . , YPo(η)}, where {Y1, Y2, . . .}
is the set of vertices independently and uniformly distributed in [0, 1]2 and Po(η)
is independent of {Y1, Y2, . . .}; see section 1.7 in [34]. For a Borel set A ⊆ [0, 1]2,
|Pη∩A|, the number of vertices lying in A, is a Poisson random variable with parameter
ηL(A), where L(·) denotes the Lebesgue measure in this paper. For any Borel set
A1, A2 ⊆ [0, 1]2, if L(A1 ∩A2) = 0, then the random variables |Pη ∩A1| and |Pη ∩A2|
are mutually independent. This property is called spatial independence of a Poisson
point process.

Proof of Theorem 3.2. We will first prove the sufficient part of Theorem 3.2.
For rn > 1, under the condition (3.3), we can directly deduce that the system

(3.1) can reach synchronization by Theorem 1 of [30]. Thus, we just need to consider
the case where rn ≤ 1. By Theorem 4.3 and (3.2), we see that there exists a constant
c > 0 such that

lim
n→∞P

(
λ̄ ≤ 1− cr2n

)
= 1.(4.4)

Let En denote the event λ̄ ≤ 1− cr2n, and let Ẽn denote the event dmax < 3dmin logn.
Define Fn to be the event⋂

1≤i,j≤n

{
‖Xi(0)−Xj(0)‖2 /∈

(
rn − o

( 1

n2rn

)
, rn + o

( 1

n2rn

))}
.

Using Boole’s inequality, we have

P (F c
n) ≤

∑
i�=j

P

(
‖Xi(0)−Xj(0)‖2 ∈

(
rn − o

( 1

n2rn

)
, rn + o

( 1

n2rn

)))

< n2

∫
x∈[0,1]2

P

(
‖x−Xj(0)‖2 ∈

(
rn − o

( 1

n2rn

)
, rn + o

( 1

n2rn

)))
dx

< n25πrn · o
( 1

n2rn

)
→ 0 as n → ∞,

where the property that the initial positions are independently and uniformly dis-
tributed in [0, 1]2 is used in the last inequality. Combining (4.5) with (4.4) and
Corollary 4.2, we can deduce that

P (En ∩ Ẽn ∩ Fn) → 1 as n → ∞.(4.5)
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We assert that if the speed vn satisfies (3.3), then for all t ≥ 0, the topology of G(t)

remains unchanged given En ∩ Ẽn ∩ Fn. We will prove this assertion by induction.
For t = 0, the assertion is obviously true. Assume that the assertion holds for all

s ≤ t, that is, P (s) = P (0) for all s ≤ t. Thus, by (3.1) we have

θ(s+ 1) = P s(0)θ(0) ∀ 0 ≤ s ≤ t.

Combining this with Proposition 3 in [35], for all integers s ∈ [0, t] and i, j ∈ [1, n] we
have

|θi(s+ 1)− θj(s+ 1)| =
∣∣∣∣∣

n∑
k=1

[
(P s(0))ik − (P s(0))jk

]
θk(0)

∣∣∣∣∣
≤ π

n∑
k=1

∣∣∣(P s(0))ik − (P s(0))jk

∣∣∣ ≤ π
√
n

(√
dmax

di
+

√
dmax

dj

)
λ̄s(4.6)

≤ 2π
√
3n logn · λ̄s,

where the assertion conditions En and Ẽn are used in the last inequality. Set

dij(t+ 1) := ‖Xi(t+ 1)−Xj(t+ 1)−Xi(0) +Xj(0)‖2.

Subsequently, using (3.1), the triangle inequality, and standard goniometric formulae,
we have

dij(t+ 1)=

∥∥∥∥∥vn
t+1∑
s=1

(cos θi(s), sin θi(s))− vn

t+1∑
s=1

(cos θj(s), sin θj(s))

∥∥∥∥∥
2

≤ vn

t+1∑
s=1

‖ (cos θi(s)− cos θj(s), sin θi(s)− sin θj(s)) ‖2(4.7)

= vn

t+1∑
s=1

√
2− 2 cos[θi(s)− θj(s)] ≤ vn

t+1∑
s=1

|θi(s)− θj(s)|,

where the inequality cosx ≥ 1−x2/2 is also used. Set t0 := min{t : 2π√3n logn · λ̄t ≤
2π}. Then

t0 =

⌈
log 1√

3n log n

log λ̄

⌉
≤ − log(3n logn)

2 log λ̄
+ 1,

where �x
 denotes the smallest integer not less than x. Hence, by (4.6) and the
inequality 1− x < − log x for x ∈ (0, 1), we have

max
i,j

t+1∑
s=1

|θi(s)− θj(s)| ≤ 2πt0 +

t+1∑
s=t0+1

2π
√
3n logn · λ̄s

< 2π

(− log(3n logn)

2 log λ̄
+ 1

)
+

(
2π

√
3n logn

1− λ̄

)
λ̄

− log(3n log n)

2 log λ̄

= O

(
logn

1− λ̄

)
= O

(
r−2
n logn

)
.
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Substituting this inequality and (3.3) into (4.7), we can obtain that

max
i,j

dij(t+ 1) ≤ vn max
i,j

t+1∑
s=1

|θi(s)− θj(s)|
(4.8)

= o

(
rn

n2 logn
· logn

r2n

)
= o

(
1

n2rn

)
,

which means that the position between any two agents changed at time t is bounded
by o( 1

n2rn
), in comparison with that at the initial time. Combining (4.8) with the

condition Fn, we know that, compared with G(0), the topology of the graph G(t+1)
is unchanged w.h.p.

By induction, our assertion holds for all t ≥ 0, which means that the inequality
(4.6) holds for all t ≥ 0. Thus, system (3.1) can reach synchronization.

It remains to prove the necessary part of the theorem. Set

Mn :=
⌊√

πn/(4 logn)
⌋
− 1,

where �x� denotes the largest integer no bigger than x. Define the point

xk :=
(
(2k + 1)

√
logn/(πn), 0

)
∈ [0, 1]2, k = 0, . . . ,Kn.

Let bn := logn− 3 log logn− πnr2n; then by (3.4)

bn < log n− 3 log logn and lim
n→∞ bn = ∞.

Take εn =
√
1/(πn logn). Let

Xn := {X1(0), X2(0), . . . , Xn(0)}(4.9)

denote the n vertices independently and uniformly distributed in [0, 1]2. For any
integer k ∈ [0,Mn], define the event

Ak := {Xn ∩B (xk, εn) �= ∅,Xn ∩ [B (xk, rn + εn) \B (xk, εn)] = ∅} ,
where B(x, r) := {y ∈ R

2 : ‖x − y‖2 ≤ r} denotes the ball centered at x with radius
r. If the event Ak(k ∈ [0,Mn]) occurs, then the agents lying in B (xk, εn) do not have
any neighbor at the initial time. For such a case, the system (3.1) will not synchronize
by setting the initial headings of the agents lying in B (xk, εn) to be −π/2 and the
others to be π/2; see Figure 1. Thus, to prove the necessary part we just need to
verify the following equation:

lim
n→∞P

⎛⎝ ⋃
0≤k≤Mn

Ak

⎞⎠ = 1.(4.10)

Set η(n) := n+ n3/4 and λ(n) := n− n3/4. Let Pη(n) and Pλ(n) denote a Poisson
point process in [0, 1]2 with parameters η(n) and λ(n), respectively. Using Lemma 1.4
in [34], for large n we find

P
(Xn ⊆ Pη(n)

)
= P (Po(η(n)) ≥ n) > 1− e−n1/4

(4.11)

and P
(Pλ(n) ⊆ Xn

)
= P (Po(λ(n)) ≤ n) > 1− e−n1/4

.(4.12)
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−π/2
Ac

2

(1,0)

(0,1)(0,0) Ac
1

Ak

π/2

Fig. 1 If Ak occurs, then the system will not synchronize by setting the initial headings of the agents
lying in B (xk, εn) to be −π/2 and the others to be π/2.

Define the event

Ãk :=
{Pλ(n) ∩B (xk, εn) �= ∅,Pη(n) ∩ [B (xk, rn + εn) \B (xk, εn)] = ∅} ;

then by (4.11) and (4.12),

P

⎛⎝ ⋃
0≤k≤Mn

Ak

⎞⎠ ≥ P

⎛⎝ ⋃
0≤k≤Mn

Ãk,Pλ(n) ⊆ Xn,Xn ⊆ Pη(n)

⎞⎠
≥ P

⎛⎝ ⋃
0≤k≤Mn

Ãk

⎞⎠+ P
(Pλ(n) ⊆ Xn

)
+ P

(Xn ⊆ Pη(n)

)− 2(4.13)

> P

⎛⎝ ⋃
0≤k≤Mn

Ãk

⎞⎠− 2e−n1/4

.

Also, using the spatial independence of the Poisson point process and Taylor’s expan-
sion,

P

⎛⎝ ⋃
0≤k≤Mn

Ãk

⎞⎠ = 1− P

⎛⎝ ⋂
0≤k≤Mn

Ãc
k

⎞⎠ = 1−
∏

0≤k≤Mn

[
1− P

(
Ãk

)]
= 1−

[
1−
(
1− e−λ(n)πε2n/2

)
e−η(n)π(r2n+2rnεn)/2

]Mn+1

= 1−
[
1− 1

2 logn
· n− 1

2 (logn)
3
2 e

bn
2 −

√
1−bn/ logn(1 + o(1))

]Mn+1

= 1− exp

(
−1

2
(Mn + 1)n− 1

2 (log n)
1
2 e

bn
2 −

√
1− bn

log n

)
(1 + o(1))

→ 1 as n → ∞.

Combining this with (4.13) yields (4.10).
Remark 4.4. From the proof of Theorem 3.2, we see that the speed vn is so small

that the topology of the neighbor graph remains unchanged during the evolution of
the system. However, the relaxation of the restriction on the speed is very hard, since
the estimation of the essential spectral radius of P (t)P (t− 1) · · ·P (0) is still an open
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question in inhomogeneous Markov chain theory, even if only one edge is changed in
the neighbor graph; see Problem 1.1 in [36]. The restriction on the speed could be
relaxed if the above open problem was resolved.

5. Proof of Theorem 4.3. First, we will provide the proof of the sufficient part
of Theorem 4.3. For the case where πnr2n ≥ (log n)2, the inequality λ̄ ≤ 1− cr2n holds
w.h.p. by Theorem 3 in [30]. Therefore, we just need to consider the case where

πnr2n ≤ (logn)2 and lim
n→∞

(
πnr2n − logn

)
= ∞.(5.1)

In this section we use G(Xn; rn) to denote the initial random geometric graph
G(0). Divide the unit square [0, 1]2 into K2

n small squares with the length of each
side equal to 1/Kn, where Kn := �√5/rn
. Denote these small squares by S1, S2,
. . . , SK2

n
. Set

αn := E [|Xn ∩ S1|] = n

�
√
5

rn

2

,

where Xn is defined by (4.9). Define

Δn := max
1≤i≤K2

n

|Xn ∩ Si|.

We will consider the upper bound of Δn first.
Lemma 5.1. Assume that rn satisfies (5.1). Then, with probability 1, Δn < 21αn

for large enough n.
Proof. Since the initial positions Xj(0), j = 1, 2, . . . , n, are independently and

uniformly distributed in [0, 1]2, P (Xj(0) ∈ Si) = 1/K2
n, 1 ≤ j ≤ n, i ∈ [1,K2

n], and
|Xn ∩ Si| is a binomial random variable. By (1.7) in [34], for large enough n,

P (|Xn ∩ Si| ≥ 21αn) ≤ exp

(−21αn

2
log

(
21αn

E [|Xn ∩ Si|]
))

≤ exp

(
−21n

2(
√
5

rn
+ 1)2

log (21)

)
< exp(−2.03 · logn) = n−2.03.

Thus, by the definition of Δn, for large enough n we have

P (Δn ≥ 21αn) = P

⎛⎝K2
n⋃

i=1

{|Xn ∩ Si| ≥ 21αn}
⎞⎠

≤
K2

n∑
i=1

P (|Xn ∩ Si| ≥ 21αn)

< n · n−2.03 = n−1.03.

Hence, using the Borel–Cantelli lemma yields our result.
Remark 5.2. Using a method similar to that of Theorem 6.14 in [34], we find

that, with probability 1, the inequality

αnH
−1
+

(
logn

αn

)
(1− o(1)) ≤ Δn ≤ αnH

−1
+

(
log n

αn

)
(1 + o(1))

holds for large n. However, the proof of this result is complicated, so we do not include
it in this paper.

D
ow

nl
oa

de
d 

09
/1

0/
14

 to
 1

24
.1

6.
14

8.
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

510 GE CHEN, ZHIXIN LIU, AND LEI GUO

For what follows we need to introduce some definitions. Let ‖ · ‖1 denote the
l1-norm, and let ‖ · ‖∞ denote the infinity norm. For any x, y ∈ Z

2, if ‖x − y‖1 = 1,
then we say that x and y are adjacent and we write x ∼ y. Also, given A ⊆ Z

2,
if, for any x, y ∈ A, there exists a vertex sequence x1, x2, . . . , xn in A such that
x ∼ x1, x1 ∼ x2, x2 ∼ x3, . . . , xn ∼ y, then we say A is connected. Similarly, if
‖x − y‖∞ ≤ k, k ≥ 1, we say that x and y are k-adjacent and we write x ∼k y.
Given A ⊆ Z

2, if, for any x, y ∈ A, there exists a vertex sequence x1, x2, . . . , xn in A
such that x ∼k x1, x1 ∼k x2, x2 ∼k x3, . . . , xn ∼k y, then we say A is k-connected.
It can be seen that if A is connected, then A must be k-connected for all k ≥ 1. In
particular, a single vertex set {x} ⊂ Z

2 is both connected and k-connected.

We define the lattice box BZ(Kn) by BZ(Kn) :=
∏2

i=1([1,Kn] ∩ Z). If A ⊂
BZ(Kn), set A

c := BZ(Kn)\A and let ∂A denote the internal vertex-boundary of A,
that is, the set of vertices z ∈ A such that {y ∈ Ac : ‖z − y‖1 = 1} is nonempty. To
prove Theorem 4.3, several lemmas are needed.

Lemma 5.3. Let β ∈ (0, 1). If A is a subset of BZ(Kn) (not necessarily con-
nected), with |A| ≤ βK2

n, then

|∂A| ≥ 1

4
(1−

√
β)
√
|A|.

Proof. Replacing 2/3 with β in the proof of Lemma 9.9 of [34], the result can be
deduced.

Lemma 5.4 (Lemma 9.6 in [34]). Suppose A ⊂ BZ(Kn) is such that both A and
Ac are connected. Then ∂A is 1-connected.

Remark 5.5. If both A and Ac are connected, by Lemma 5.4 both ∂A and ∂(Ac)
are 1-connected since (Ac)c = A.

Lemma 5.6. Suppose A ⊂ BZ(Kn). If A is 3-connected and Ac is connected,
then ∂A is 3-connected and ∂(Ac) is 2-connected.

Proof. Let A1, A2, . . . , Am denote the connected components of A, which indicates
that A1, . . . , Am are connected, but Ai ∪Aj , 1 ≤ i �= j ≤ m, is not connected. By the
fact that BZ(Kn) is connected, Ai, i ∈ [1,m], are all connected with Ac. Note that
Ac is connected, so for any i ∈ [1,m], Ac

i = Ac ∪ A1 ∪ · · · ∪ Ai−1 ∪ Ai+1 ∪ Am is also
connected. By Lemma 5.4, we know that both ∂Ai and ∂(Ac

i ) are 1-connected.
Moreover, if Ai ∪ Aj(i �= j) is 3-connected, then there exists a pair (zi, zj) ∈

(∂Ai, ∂Aj) such that zi and zj are 3-connected, and there exists another pair (z̃i, z̃j) ∈
(∂(Ac

i ), ∂(A
c
j)) such that z̃i and z̃j are 2-connected; see Figure 2. Thus, ∂Ai ∪ ∂Aj is

3-connected, and ∂(Ac
i ) ∪ ∂(Ac

j) is 2-connected since ∂Ai, ∂Aj , ∂(A
c
i ), and ∂(Ac

j) are
1-connected. Combining this with the fact that A = ∪m

i=1Ai is 3-connected, we have
that ∂A = ∪m

i=1∂Ai is 3-connected and ∂(Ac) = ∪m
i=1∂(A

c
i ) is 2-connected.

Lemma 5.7 (Corollary 9.4 in [34]). Given integer k ≥ 1, the number of k-
connected subsets of the lattice box BZ(Kn) of cardinality m is at most K2

n2
4k(k+1)m.

For each small square Si, 1 ≤ i ≤ K2
n, let xi denote its center point. Set zi :=

Knxi +
1
2 ∈ Z

2; see Figure 3. By the definition of BZ(Kn), we find that the set
{zi : 1 ≤ i ≤ K2

n} is equal to BZ(Kn).
Recall that λ(n) = n− n3/4 and Pλ(n) denotes a Poisson point process in [0, 1]2

with parameter λ(n). Define the function

f1(A) :=
∑

zi∈A,zj∈Ac,zi∼zj

|Pλ(n) ∩ Si| · |Pλ(n) ∩ Sj|.

We then find the following lemmas.
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Fig. 2 Ai and Aj are the connected components surrounded by the solid lines. If Ai ∪ Aj is 3-
connected, then there exist zi ∈ ∂Ai and zj ∈ ∂Aj such that zi ∼3 zj , and there exist
z̃i ∈ ∂(Ac

i ) and z̃j ∈ ∂(Ac
j) such that z̃i ∼2 z̃j.

Fig. 3 The relationships among Si, xi, and zi are shown. If zi ∼ zj, then any two vertices x, y in
Si ∪ Sj will satisfy ‖x− y‖2 ≤ rn.

Lemma 5.8. Assume that rn satisfies (5.1). Suppose A ⊂ BZ(Kn) and integer
k ≥ 1. Then, for any constant β ∈ (0, 1), there exists a constant η = η(k, β) > 0 such
that, for large enough n,

P

⎡⎣ inf
βα

−2
n Kn≤|A|≤(1−β)K2

n

∂A is k-connected

f1(A)

|A| ≤ ηα2
n

Kn

⎤⎦ < e−n1/5

.

Proof. This proof partly uses the ideas appearing in [37]. Let

c1 :=
1−√

1− β

4
√
1− β

and c2 :=
1

4
(1−

√
1− β)

√
β.

If βα−2
n Kn ≤ |A| ≤ (1 − β)K2

n, then by Lemma 5.3,

|∂A| ≥ 1

4
(1 −

√
1− β)

√
|A| ≥ c1|A|

Kn
,(5.2)
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and also

|∂A| ≥ 1

4
(1−

√
1− β)

√
|A| ≥ c2

√
Kn

αn
.(5.3)

For any ε > 0, by the definition of f1 we find

f1(A) ≥ (εαn)
2

∑
zi∈∂A,zj∈∂(Ac),zi∼zj

I{|Pλ(n)∩Si|≥εαn,|Pλ(n)∩Sj|≥εαn}.(5.4)

For any set Λ,Γ ⊂ BZ(Kn), let

ξ(Λ,Γ) :=
∑

zi∈Λ,zj∈Γ,zi∼zj

I{|Pλ(n)∩Si|≥εαn,|Pλ(n)∩Sj|≥εαn}.

Therefore, by (5.2) and (5.4) we have

f1(A)

|A| ≥ c1(εαn)
2ξ(∂A, ∂(Ac))

Kn|∂A| .

Combining the above inequality with (5.3) yields

inf
βα

−2
n Kn≤|A|≤(1−β)K2

n

∂A is k-connected

f1(A)

|A|
(5.5)

≥ c1(εαn)
2

Kn
inf

|∂A|≥c2α
−1
n

√
Kn

∂A is k-connected

ξ(∂A, ∂(Ac))

|∂A| .

Note that, for any z ∈ ∂(Ac), there exists at least one vertex z̃ ∈ ∂A such
that z ∼ z̃, so if ∂A is k-connected, then ∂A ∪ ∂(Ac) is also k-connected. Let

(ΛM,m
1 ,ΓM,m

1 ), (ΛM,m
2 ,ΓM,m

2 ), . . . , (ΛM,m
iM,m

,ΓM,m
iM,m

) denote all possible pairs of (∂A,

∂(Ac)) satisfying (i) ∂A is k-connected, (ii) |∂A ∪ ∂(Ac)| = M , and (iii) |∂A| = m.
Then, by Lemma 5.7,

M∑
m=1

iM,m ≤ K2
n2

4k(k+1)M
M∑

m=1

(
M

m

)
(5.6)

= K2
n2

4k(k+1)M · 2M = K2
n2

(2k+1)2M .

Thus, for any constant c3 > 0, using Boole’s inequality we find

P

⎛⎝ inf
|∂A|≥c2α

−1
n

√
Kn

∂A is k-connected

ξ(∂A, ∂(Ac))

|∂A| ≤ c3

⎞⎠
= P

⎛⎝ ⋃
m≥c2α

−1
n

√
Kn

⋃
M≥m

iM,m⋃
l=1

{
ξ(ΛM,m

l ,ΓM,m
l )

m
≤ c3

}⎞⎠
(5.7)

≤ P

⎛⎝ ⋃
M≥c2α

−1
n

√
Kn

M⋃
m=1

iM,m⋃
l=1

{
ξ(ΛM,m

l ,ΓM,m
l )

M
≤ c3

}⎞⎠
≤

∑
M≥c2α

−1
n

√
Kn

M∑
m=1

iM,m∑
l=1

P
(
ξ(ΛM,m

l ,ΓM,m
l ) ≤ c3M

)
.
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For any z ∈ ΛM,m
l (or ΓM,m

l ), 1 ≤ l ≤ iM,m, there exist at least one and at most

four vertices in ΓM,m
l (or ΛM,m

l ) which are connected with z, and thus we can choose

the vertex pairs (zi1 , zĩ1), (zi2 , zĩ2), . . . , (zij(l) , zĩj(l)) ∈ (ΛM,m
l ,ΓM,m

l ), j(l) ≥ M/8,

such that zi1 ∼ zĩ1 , zi2 ∼ zĩ2 , . . . , zij(l) ∼ zĩj(l) and zi1 , zĩ1 , zi2 , zĩ2 , . . . , zij(l) , zĩj(l) are

mutually different. Thus, by the spatial independence of the Poisson point process, for
any 1 ≤ k1 �= k2 ≤ j(l), the corresponding events I{|Pλ(n)∩Sik1

|≥εαn,|Pλ(n)∩S
ĩk1

|≥εαn}
and I{|Pλ(n)∩Sik2

|≥εαn,|Pλ(n)∩S
ĩk2

|≥εαn} are mutually independent. Let Ek =

I{|Pλ(n)∩Sik
|≥εαn,|Pλ(n)∩S

ĩk
|≥εαn}; then

P
(
ξ(ΛM,m

l ,ΓM,m
l ) ≤ c3M

)
≤ P

⎛⎝ j(l)∑
k=1

Ek ≤ c3M

⎞⎠ ,(5.8)

where j(l) ≥ M/8 and the events Ek, 1 ≤ k ≤ j(l), are mutually independent.
Choose ε = 1/2; then for all large n and 1 ≤ k ≤ j(l),

P (Ek) = P
(
|Pλ(n) ∩ Sik | ≥

αn

2

)
P
(
|Pλ(n) ∩ Sĩk

| ≥ αn

2

)
= P 2

(
Po

(
n− n3/4

�
√
5

rn

2

)
≥ αn

2

)

≥
(
1− exp

{
−n− n3/4

�
√
5

rn

2

H

(
αn�

√
5

rn

2

2(n− n3/4)

)})2

≥
(
1− exp

{
− logn

5
H

(
2

3

)})2

=
(
1− n−H( 2

3 )/5
)2

,

where the last inequality follows from Lemma 1.2 in [34]. Therefore, for any ρ > 0
and large enough n, by Markov’s inequality we have

P

⎛⎝ j(l)∑
k=1

Ek ≤ c3M

⎞⎠ = P

⎛⎝exp

⎛⎝−ρ

j(l)∑
k=1

Ek

⎞⎠ ≥ e−ρc3M

⎞⎠
≤ eρc3M

j(l)∏
k=1

E
[
e−ρEk

]
(5.9)

≤ eρc3M
((

1− n−H( 2
3 )/5
)2

e−ρ + 1−
(
1− n−H( 2

3 )/5
)2)M/8

.

Choose c3 > 0 small enough; then there exist constants ρ > 0 and c4 > 0 such that,
for large enough n,

(2k + 1)2 log 2 + ρc3
(5.10)

+
1

8
log

((
1− n−H( 2

3 )/5
)2

e−ρ + 1−
(
1− n−H( 2

3 )/5
)2)

≤ −c4.
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Combining (5.6)–(5.9) with (5.10), for large enough n we have

P

⎛⎝ inf
|∂A|≥c2α

−1
n

√
Kn

∂A is k-connected

ξ(∂A, ∂(Ac))

|∂A| ≤ c3

⎞⎠
≤

∑
M≥c2α

−1
n

√
Kn

M∑
m=1

iM,m∑
l=1

P

⎛⎝ j(l)∑
k=1

Ek ≤ c3M

⎞⎠
≤

∑
M≥c2α

−1
n

√
Kn

K2
n2

(2k+1)2Meρc3M

·
((

1− n−H( 2
3 )/5
)2

e−ρ + 1−
(
1− n−H( 2

3 )/5
)2)M/8

≤
∑

M≥c2α
−1
n

√
Kn

K2
ne

−c4M ≤ exp

(−c4c2α
−1
n

√
Kn

2

)
< e−n1/5

.

The above inequality and (5.5) yield our result.
For any zi ∈ BZ(Kn), we call zi open if Si∩Pλ(n) �= ∅ and call zi closed otherwise.

Let On denote the set of open vertices in BZ(Kn), and let Cn denote the largest open
clusters of On.

Lemma 5.9. Assume that rn satisfies (5.1). Then, with probability 1, |Cn| =
(1− o(1))K2

n for all large enough n.
Proof. For any z ∈ BZ(Kn),

P ({z is closed}) = exp

(
−λ(n)

K2
n

)
→ 0 as n → ∞.

By Theorem 8.65 in [38] and Theorem 1 in [39] our result can be deduced.
Lemma 5.10. Assume that rn satisfies (5.1). Suppose A ⊂ BZ(Kn). Then, for

any constant β ∈ (0, 1), there exists a constant η = η(β) > 0 such that, for large
enough n,

inf
βα

−2
n Kn≤|A|≤(1−β)K2

n

A is 3-connected

f1(A)

|A| ≥ ηα2
n

Kn
a.s.

Proof. For any A ⊂ BZ(Kn) with βα−2
n Kn ≤ |A| ≤ (1 − β)K2

n, let Λ1, . . . ,ΛmA

denote the connected components of Ac, taken in decreasing order. In other words,
Λ1, . . . ,ΛmA are connected, but Λi ∪ Λj, 1 ≤ i �= j ≤ mA, is not connected and
|Λ1| ≥ |Λ2| ≥ · · · ≥ |ΛmA |. Since Λ1, . . . ,ΛmA are all connected with A and A is
3-connected, Λc

i , 1 ≤ i ≤ mA, are all 3-connected. By Lemma 5.6, for 1 ≤ i ≤ mA,
∂(Λc

i) is 3-connected and ∂Λi is 2-connected. By the definition of f1 we find

f1(A) =

mA∑
i=1

f1(Λi) =

mA∑
i=1

f1(Λ
c
i).(5.11)
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If |Λ1| > K2
n/2, then |Λc

1| ≤ K2
n/2. Note that A ⊆ Λc

1, and by (5.11) and
Lemma 5.8 we have

inf
|A|≥βα

−2
n Kn,|Λ1|> 1

2
K2

n

A is 3-connected

f1(A)

|A| ≥ inf
βα

−2
n Kn≤|Λc

1
|≤ 1

2
K2

n

∂(Λc
1
) is 3-connected

f1(Λ
c
1)

|Λc
1|

(5.12)

>
ηα2

n

Kn
a.s.

Next we consider the case of |Λ1| ≤ K2
n/2. Without loss of generality, we assume

that |Λi| ≥ 1
2α

−2
n Kn for 1 ≤ i ≤ iA, and |Λi| < 1

2α
−2
n Kn for iA + 1 ≤ i ≤ mA, where

iA ∈ [1,mA]. Since ∂Λi is 2-connected, by Lemma 5.8 and the Borel–Cantelli lemma,
with probability 1,

f1(Λi)

|Λi| >
ηα2

n

Kn
∀1 ≤ i ≤ iA

for all large n. Thus,

inf
A is 3-connected,|Λ1|≤ 1

2K
2
n

∑iA
i=1 f1(Λi)∑iA
i=1 |Λi|

(5.13)

≥ min
1≤i≤iA

⎧⎪⎨⎪⎩ inf
1
2
α
−2
n Kn≤|Λi|≤ 1

2
K2

n,

∂Λi is 2-connected

f1(Λi)

|Λi|

⎫⎪⎬⎪⎭ >
ηα2

n

Kn
a.s.

holds for large enough n.
For Λi, iA + 1 ≤ i ≤ mA, if Λi ∩ Cn �= ∅, then f1(Λi) ≥ 1, which indicates that

f1(Λi)

|Λi| >
1

1
2α

−2
n Kn

=
2α2

n

Kn
.(5.14)

Let η′ := min{η, 2}. By (5.13) and (5.14) we find, with probability 1,

inf
A is 3-connected,|Λ1|≤ 1

2K
2
n

∑iA
i=1 f1(Λi) +

∑
iA+1≤i≤mA,Λi∩Cn �=∅ f1(Λi)(∑iA

i=1 +
∑

iA+1≤i≤mA,Λi∩Cn �=∅
)
|Λi|

(5.15)

≥ η′α2
n

Kn
.

For the case of Λi ∩ Cn = ∅, by Lemma 5.9, for large enough n,∑
iA+1≤i≤mA,Λi∩Cn=∅

|Λi| ≤ K2
n − |Cn| = o(K2

n) a.s.

Moreover, note that
∑mA

i=1 |Λi| = |Ac| ≥ βK2
n, so we have⎛⎝ iA∑

i=1

+
∑

iA+1≤i≤mA,Λi∩Cn �=∅

⎞⎠ |Λi|

= |Ac| −
∑

iA+1≤i≤mA,Λi∩Cn=∅
|Λi| ≥ β

2
K2

n a.s.
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Combining the above inequality with (5.11) and (5.15), for large enough n, we have

inf
|A|≤(1−β)K2

n,|Λ1|≤ 1
2
K2

n

A is 3-connected

f1(A) ≥ η′α2
n

Kn
· βK

2
n

2
=

η′βα2
nKn

2
a.s.

By the above inequality, we can deduce that, with probability 1,

inf
|A|≤(1−β)K2

n,|Λ1|≤ 1
2
K2

n

A is 3-connected

f1(A)

|A| ≥ η′βα2
nKn

2
· 1

(1− β)K2
n

=
η′βα2

n

2(1− β)Kn

for large n. Combining this with (5.12) yields our result.
Recall that di denotes the degree of vertex i in G(0), and set d∗ :=

∑n
i=1 di. We

obtain the following lemma.
Lemma 5.11. Assume that rn satisfies (5.1). Then, for any constant s > 1/π,

with probability 1, d∗ > n2r2n/s for large enough n.
Proof. Given a constant s′ ∈ (1/π, s), let Zn(s

′) denote the number of vertices
of G(0) of degree at least nr2n/s

′. By Theorem 4.2 in [34], n−1Zn(s
′) converges

completely to 1 as n → ∞. Since d∗ ≥ Zn(s
′)nr2n/s

′, this yields our result.
Proof of Theorem 4.3. If G(0) is not connected, then P (0) is reducible and there-

fore λ2 = 1, so our necessary condition can be deduced directly using Lemma 3.1.
Also, for the case of πnr2n ≥ (logn)2, our sufficient condition has been indicated by
(4.3). Thus, we just need to consider the sufficient condition for the case that rn
satisfies (5.1).

Given λ ∈ R, if λ < 1
dmax

− 1, then P (0)− λIn is a strictly diagonally dominant
matrix and det(P (0) − λIn) �= 0. Therefore, λ is not an eigenvalue of P (0). By
Lemma 4.1 we find that for all large enough n, with probability 1,

λn ≥ 1

eπnr2n(1 + o(1))
− 1.

Note that 1 ≥ λ2 ≥ λn ≥ −1, so we just need to estimate λ2 to get our result.
Let F ⊆ {1, 2, . . . , n} denote a subset of agents and define F̃ := {Xi(0) : i ∈ F} ⊆

Xn to be the initial positions of agents in F . Let F c = {1, 2, . . . , n}\F . For any area
D1, D2 ⊂ [0, 1]2, set

fD1,D2(F ) :=
∑

x∈D1∩F̃ ,y∈D2∩F̃ c

I{‖x−y‖2≤rn}

and take f(F ) = f[0,1]2,[0,1]2(F ). Define Cheeger’s constant Φ of P (0) by

Φ = inf∑
i∈F di≤ 1

2d
∗

f(F )∑
i∈F di

.

We assert that there exists a constant η > 0 such that w.h.p., Φ ≥ ηrn for large
enough n. Next we will prove this assertion.

For any F ⊆ {1, 2, . . . , n}, set

AF :=

{
zi : |Si ∩ F̃ | > 1

2
|Si ∩ Xn|

}
⊆ BZ(Kn)

and define

ÃF :=
⋃

zi∈AF

Si ∩ Xn.
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By the condition
∑

i∈F di ≤ 1
2d

∗, we have

|F c|dmax ≥
∑
i∈F c

di ≥ 1

2
d∗;

then by Corollary 4.2 and Lemma 5.11, for all large enough n,

|F c| ≥ d∗

2dmax
>

2eπn2r2n
6

· 1

2eπnr2n
=

n

6
a.s.

Set β := 1
252 . If |AF | > (1− β)K2

n, then |Ac
F | ≤ βK2

n. By Lemma 5.1,∑
zi∈Ac

F

|Si| ≤ |Ac
F |Δn ≤ K2

n

252
· 21αn =

n

12

holds a.s. for large enough n. Note that |F̃ c| = |F c| > n
6 ; then there exist at least n

12

vertices of F̃ c contained in ÃF . For x ∈ F̃ c∩ÃF , without loss of generality we assume
that x ∈ Si with zi ∈ AF ; then by the definition of AF we find |F̃ ∩Si| ≥ |F̃ c∩Si| ≥ 1,

which indicates that there exists at least one vertex y ∈ F̃ ∩Si such that ‖x−y‖2 ≤ rn.
Thus, by Lemma 4.1,

inf∑
i∈F di≤ 1

2d
∗,|AF |>(1−β)K2

n

f(F )∑
i∈F di

≥
n
12

1
2ndmax

(5.16)

≥ 1

6eπnr2n(1 + o(1))
> rn

holds a.s. for large enough n.
Now we consider the case of |AF | ≤ (1 − β)K2

n. Let A1, A2, . . . , AmF be the
3-connected components of AF , taken in decreasing order of size. In other words,
A1, . . . , AmF are all 3-connected, but Ai∪Aj , 1 ≤ i �= j ≤ mF , is not 3-connected, and
|A1| ≥ |A2| ≥ · · · ≥ AmF . Without loss of generality, we assume that |Ai| ≥ βα−2

n Kn

for 1 ≤ i ≤ iF , and |Ai| < βα−2
n Kn for iF + 1 ≤ i ≤ mF , where iF ∈ [1,mF ]. Then,

by Lemma 5.10, there exists a constant η′ > 0 such that

inf
|AF |≤(1−β)K2

n,1≤i≤iF

f1(Ai)

|Ai| ≥ η′α2
n

Kn
a.s.(5.17)

For i ∈ [1, iF ], it is easy to see that if zk ∈ Ai and zj ∈ Ac
i with zk ∼ zj , then zj ∈ Ac

F

and all pairs of vertices in Sk ∪Sj are neighbors. So, by the definition of AF , we have

fSk,Sj (F ) =
∑

x∈Sk∩F̃ ,y∈Sj∩F̃ c

I{‖x−y‖2≤rn} ≥ 1

4
|Xn ∩ Sk| · |Xn ∩ Sj |.

Therefore, if Pλ(n) ⊆ Xn, then∑
zk∈Ai,zj∈Ac

F ,zk∼zj

fSk,Sj (F ) =
∑

zk∈Ai,zj∈Ac
i ,zk∼zj

fSk,Sj (F ) ≥ 1

4
f1(Ai).(5.18)

Moreover, by (4.12) and the Borel–Cantelli lemma, we know that Pλ(n) ⊆ Xn holds
a.s. for large enough n. Set

S1
F :=

iF⋃
i=1

⋃
zk∈Ai

Sk.
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By (5.18), for large enough n, we have

fS1
F ,[0,1]2\S1

F
(F ) ≥

iF∑
i=1

∑
zk∈Ai,zj∈Ac

F ,zk∼zj

fSk,Sj (F )

(5.19)

≥
iF∑
i=1

1

4
f1(Ai) a.s.

For i ∈ [iF + 1,mF ], if
⋃

zj∈Ai
Sj ∩ F̃ c �= ∅, let Di =

⋃
zj∈Ai

Sj . Then we

have fDi,Di(F ) ≥ 1; otherwise, by Lemma 3.1, w.h.p. there exists at least one vertex
x∗ ∈ (

⋃
zj∈Ai

Sj)
c ∩ Xn such that the set

{
y : y ∈

⋃
zj∈Ai

Sj ∩ F̃ , ‖x∗ − y‖ ≤ rn

}

is not empty. Assume that x∗ ∈ Sk(1 ≤ k ≤ K2
n) and zk is the corresponding

integer point of Sk. Then zk must be 3-connected with Ai, and zk ∈ Ac
F . Set

Di =
⋃

zj∈Ai
Sj ∪ Sk. If x

∗ ∈ F̃ c, then fDi,Di(F ) ≥ 1; otherwise, by the definition of

AF we have Sk ∩ F̃ c �= ∅, so

fDi,Di(F ) ≥ fSk,Sk
(F ) ≥ 1.

Let S2
F =

⋃mF

i=iF+1 Di. For z ∈ Z
2, it is easy to see that the number of 3-connected

components with which z is 3-connected is not more than 8. By the above argument
we have w.h.p.

fS2
F ,S2

F
(F ) ≥ 1

8
(mF − iF ).(5.20)

Let S3
F = [0, 1]2\(S1

F ∪ S2
F ). For x ∈ S3

F ∩ F̃ , assume that x ∈ Sk(1 ≤ k ≤ K2
n)

and zk ∈ BZ(Kn) is the corresponding integer point of Sk. Obviously zk ∈ Ac
F , so the

set Sk ∩ F̃ c is not empty. Thus,

fS3
F ,S3

F
(F ) ≥

∑
x∈S3

F∩F̃

1 ≥ |S3
F ∩ F̃ |.(5.21)

Recall that L(·) denotes the Lebesgue measure. By the definitions of S1
F and S2

F

we have L(S1
F ∩ S2

F ) = 0. So by (5.19), (5.20), and (5.21), we have

f(F ) ≥ fS1
F ,[0,1]2\S1

F
(F ) + fS2

F ,S2
F
(F ) + fS3

F ,S3
F
(F )

≥
iF∑
i=1

1

4
f1(Ai) +

1

8
(mF − iF ) + |S3

F ∩ F̃ | w.h.p.
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Thus, w.h.p.,

inf
|AF |≤(1−β)K2

n

f(F )∑
i∈F di

≥
∑iF

i=1
1
4f1(Ai) +

1
8 (mF − iF ) + |S3

F ∩ F̃ |
dmax(|S1

F ∩ F̃ |+ |S2
F ∩ F̃ |+ |S3

F ∩ F̃ |)

≥
∑iF

i=1
1
4f1(Ai) +

1
8 (mF − iF ) + |S3

F ∩ F̃ |
dmax(Δn

∑iF
i=1 |Ai|+ (mF − iF )Δnβα

−2
n Kn + |S3

F ∩ F̃ |)(5.22)

≥ min

{
1
4

∑iF
i=1 f1(Ai)

dmaxΔn

∑iF
i=1 |Ai|

,
1
8 (mF − iF )

dmax(mF − iF )Δnβα
−2
n Kn

,
|S3

F ∩ F̃ |
dmax|S3

F ∩ F̃ |

}

≥ min

{
η′α2

n

4dmaxΔnKn
,

α2
n

8dmaxΔnβKn
,

1

dmax

}
,

where the last inequality can be deduced by (5.17).
Combining (5.1), (5.16), (5.22) with Lemmas 4.1 and 5.1, our assertion holds.
By Cheeger’s inequality (Proposition 6 in [35]), we have λ2 ≤ 1−Φ2. Hence, with

probability 1, λ2 ≤ 1 − η2r2n holds for large enough n. This completes the proof of
our result.

6. Simulation Example. In this section, we provide a simulation example. Here,
the number of agents is taken as n = 1000, and the interaction radius is rn =√
1.1 logn/(πn). The initial positions and headings of the n agents are independent,

with positions uniformly and independently distributed in [0, 1]2 and with headings
uniformly and independently distributed in (−π, π]. Figure 4 shows how the proba-
bility of synchronization changes with moving speed. From this simulation, we see
that if the speed is small, the system can synchronize w.h.p., and the probability of
synchronization will tend to zero as the speed increases.
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Fig. 4 Simulation results for the system with n = 1000, rn =
√

1.1 logn/(πn), and the random
initial states.
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7. Concluding Remarks. For the SPP system studied in this paper, it is in-
tuitively obvious that the smaller the interaction radius is, the harder it is for the
synchronization to happen. Thus, an important and interesting problem is how small
the interaction radius must be in order to guarantee synchronization. This paper
shows that, in a certain sense, the smallest possible interaction radius for synchro-
nization can be considered to be the same as the critical radius for connectivity of
the initial random geometric graph. We remark that an important step of this paper
is to provide an estimation of the spectral gap of the average matrix of the random
geometric graph. Our results have possible applications to other problems such as
collective motion of biological systems, random walk on random geometric graphs,
and consensus algorithms of wireless sensor networks.
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