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Some results on adaptive nonlinear stabilization
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Abstract: Feedback control of uncertain nonlinear dynamical systems has been a central issue in control theory, and
considerable progress has been made up to now. However, most of the existing works concern with either continuous-
time feedback laws, or sampled-data feedback laws with sufficiently fast sampling, or with discrete-time feedback laws for
parametric nonlinear systems with nonlinearities having a linear growth rate. Removing these constraints turns out to be
quite difficult in general, which motivates the study of the maximum capability and fundamental limitations of the feedback
mechanism. Although much effort has been made in this direction in recent years, many problems still remain open. For
example, the case where there is a pure time-delay in the feedback channel or the case where the system state is of high
dimension remains to be unexplored, which appears to be highly nontrivial. In this paper, we shall present some preliminary
results on global adaptive nonlinear stabilization, by investigating two special classes of discrete-time uncertain nonlinear

dynamical systems with delayed feedback and with two dimensional state signal, respectively.
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1 Introduction

It is well known that feedback is a most important
concept of control systems, which distinguishes the area
of control science with any other branches of science
and technology. The main purpose of using feedback in
control systems is to deal with the influences of various
internal and external uncertainties on the performance
of the systems to be controlled. Over the past 80 years,
significant progress has been made in control theory!!l,
and various control methods have been investigated and
proposed to deal with uncertainties in control systems,
which include, for example, PID control, adaptive con-
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trol, robust control, and fuzzy control, etc. Most of
the existing works concern with either continuous-time
feedback laws, or sampled-data feedback laws with suf-
ficiently fast sampling, or with discrete-time feedback
laws for parametric nonlinear systems with nonlineari-
ties having a linear growth rate. However, in practice,
most of the control laws are implemented with com-
puters and the processing or feedback rates are usually
not allowed to be arbitrarily high due to various con-
strains in e.g., communication, computation, and actu-
ation, etc. Removing or relaxing the above-mentioned
theoretical constraints turns out to be quite difficult in
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general, which motivates the study of the maximum
capability and fundamental limitations of the feedback
mechanism. Initiated by the work of Guo?! in under-
standing the maximum capability of feedback, substan-
tial progress has been made in recent years in various
aspects which includes, for example, parametric nonlin-

ear systems®®, nonparametric systems!"®, sampled-

9-10

data control systems!®~1%. These results have provided

a series of ‘critical values’ and/or ‘impossibility the-
orems’ on the maximum capability of feedback, and
reveal that the feedback capability depends on the na-
ture of uncertainty, the structure of nonlinearity, and the
timely use of feedback information.

Notwithstanding, there are still many important sit-
uations which have not been investigated up to now.
Here, we just mention two cases as follows. One is
the case where there is a time-delay in the feedback
channel. As is well known, the presence of time-
delay in feedback is very common in practical systems,
for example, hierarchy control systems, communica-
tion systems, network systems and mechanical systems,
etc!''=131_ Tt turns out that the investigation of feedback
control for time-delay uncertain systems is not only im-
portant, but also highly nontrivial theoretically. Another
is the case where the state variable is of high dimension
with nonlinearities having a nonlinear growth rate. It
appears that this case is more difficult to investigate in
theory, since the previously used method for the scalar
variable case cannot be applied directly in general.

In this paper, we shall investigate global adap-
tive stabilization problems for two special classes of
discrete-time uncertain nonlinear dynamical systems
with time-delayed feedback and high-dimensional state,
respectively. In the former case, we will provide a
sufficient condition for global feedback stabilization in
terms of the Lipschitz constant for the uncertain class
of Lipschitz functions, and reveal how the time-delay in
the feedback channel influences the feedback capabil-
ity. In the later case, we will establish global feedback
stabilizability of a class of two dimensional parametric
uncertain nonlinear dynamical systems, with nonlinear-
ities having nonlinear growth rate. Part of the results of
the paper has been reported in [14].

2 Time-delay systems

In this section, we consider the following first-order
discrete time nonlinear dynamical systems with time-
delay in the input channel:

Yerr = f(Ye) + Up—g + wipr, £ >0, yo € RY, (1)

where {y; }, {u,} and {w,} are output, input and noise
signals of the system, respectively, and d > 0 is the
time-delay. The nonlinear function f(-) : R' — R'is

unknown a priori, but belongs to a class of generalized
Lipschitz functions denoted by

FL)2A{fC): |f(@) = fy) < Llz —y| + ¢,
L>0,¢>0, Yo,y € R'}, )

Assume further that {w;,} is a sequence of ‘unknown
but bounded noises’ with unknown bound w > 0, i.e.,

lw| < w, YVt = 0. 3)

To investigate the global adaptive stabilization
problem, we need the following definitions first.

Definition 1'®) A sequence {u,} is called a feed-
back control law if at each step ¢ > 0, u; is a causal
function of the observation {y;}, i.e.,

Ut :h‘t(y(b'" ayt)7 (4)

where h;(-) : R® — R can be an arbitrary (nonlinear
and time-varying) mapping at each step .

With the feedback mechanism defined as above, our
objective is to investigate how much uncertainty in f(-)
can be dealt with by the delayed feedback control u;_4
in Eq.(1). The general d > 1 case appears to be quite
complicated to investigate, which remains to be an open
problem. Though out the paper we only consider the
case where d = 1.

Let us denote

7 A
by = max y;,

0<i<t
U 5)
b, = foin, yi, t>0,
and
. A .
1;_1 = arg min 1 — Yl
t—1 gogigt—z Y1 — il
i.e.,
lyt—1 — i, | = min |y —yi|, £ = 2. (6)

0<i<t—2
At any time instant ¢ > 2, the estimate of f(y;_1) is
defined as

FeWe1) = Yo rp1 — Ui 1, (7
which can be written as

ft(yt—l) = flyi, ) +wi, 41, t =>2. (8)
We denote

It 2 arg min |yj — (ft(yt—l) + Ut72)‘7

0<j<t—2

i.e.,
Y, — (ft(yt—l) +uo)| =
min |y; — (fi(yi—1) +w—2)|, t = 2. (9)

0<j<t—2
Thus, y;, can be regarded as an estimate of y, =
flyi—1) + uws—o + wy. Consequently, respectively, an
estimate of f(y,) can be defined as

ft(yt) £ Y1 — U1, (10)
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which can be rewritten as

fe(ye) = f(y;,) + wj 41 (1)
Now, we define the feedback control law as
A
U_1 = 07
Ug £ 0, (12)

~ 1 _
w1 = —fi(y) + i(btq +biq), t > 2.

Theorem 1
vVi+4v2 -1
L, the feedback control (12) globally

stabilizes the corresponding system (1) with d = 1, i.e.,

For any f € F(L) with L <

tlim sup |y;| < oo, Vyo € R'. (13)
Remark 1

in Eq.(1), Xie and Guo®! has shown that the critical value for
global feedback stabilization is L = g + /2. The current The-
orem 1 shows how the unit time-delay will affect the capability

V5 +4v2

71N

As is known, for the case where d = 0

of feedback. Moreover, observe that L <
1.284, which shows that the class of uncertain systems F(L)
is not open-loop stable and Theorem 1 is indeed nontrivial. Of
course, whether or not the above value is critical remains un-
known, but we conjecture that there is not much room for non-
trivial generalization to the case where d > 2.

3 Proof of the Theorem 1
First we note that in the case where L < 1, the re-
sult is trivial, so now we just consider the case L > 1.
First, we need some notations ¥, Denote

B, = [b,,b], AB, £ B, — By, (14)
and
[Bi| £ b, — b, [AB| £ |B,| = |B, |, (15)
where AB, £ By, b, and b, are defined in (5). By the
definition (5) we have
b, <byy, by 2 by,
and -
(by = by_1) (b = br—1) = 0,
by — by 1|+ b = b 1| = |AB.  (16)
Clearly, the interval sequence {B;,t > 0} is nonde-
creasing and that A B, is also an interval (can be a null
set &) and

t
i=0
For any point ¢ € R! and any set B C R!, define a

distance function dis(-, -) as
dis(a, B) £ inf |a — b|, (18)
beB
and if B = {b}, we rewrite dis(a, B) as dis(a, b)
2 |a — b|. Then, it is easy to see that |AB;| =
dis(ys, Bi—1), t > 1.
Now, we divide the proof into five steps.

Step 1 We analyze some properties of the nota-
tions (14)—(15).
First, it is obvious that

Boot| = | Byl . o Yi+1 € By,
‘yt+1_§(bt+bt>‘+§’3t’7 Yie1 & By
(19)
Since

vt — 5+ 80| > 1B <= v & B,
we have
Beal = max{lyess — 5 (b + B0l + 5Bl 1B}
(20)

Now, we proceed to prove that
|yt71 - yit_1| < grgllaé(t ‘ABA, Vt 2 27 (21)

where 7, is defined in Eq.(6). We consider two cases
separately.

Casel Ify, ; ¢ B, o, then by definitions (5)-
(6)(14)—(15), we have

[Ys—1 = Yir_s| = [Bi—1| — [Bi—a| = [AB, 4.

Case 2 If y;, € B;_,, then by (17), we know
y; € AB; for some 0 < ¢ < t — 2. Then by Eq.(6) we
have

|ys—1 — vi,_,| < |AB,|, for the same i.

Combining the two cases above, we can see that in-
equality (21) is true.

Step 2 We get an error bound concerning ;.

For simplicity of expression, we denote

T2 f(yiy) + s + wip 11, (22)

and note that

Yo = f(Y1) + w2 + wr.

Thus, by Eq.(2) and inequality (21), we have the fol-
lowing inequality about |y, — I'|:
lye = I'| = [[f (ye—1) + vz + wi] —

U (i) + w2 +wi, ]| <

|f(ye—1) = fyi )|+ |wr — wip_ 1] <

Llyi—y — Yi, | +c+ 2w <

L max |[AB;| + ¢ + 2w. (23)

0<i<t

Step 3 We consider the distance between I and
;- We will discuss it based on three different cases of
I

Case 1 If I' € B, ,, by the definition of y;, in
(9) and the same reason as Step 1, we have

—ul <
1" = ys| < max [AB] (24)

Case2 IfI' € B; — B;_», then by the definition
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of y;, in (9), we have
I —y;,| = dis(I', By—2) < |By| — | B2 <
2 max |AB;|. (25)

0<i<t
Case3 If I’ gé B;, we consider two cases sepa-
rately as below:
i) If y; € B;_5, by Eq.(23), then we have
[l —y;,| = dis(I', Bi—2) < |I' — | <
Lmax\AB|+c+2w (26)

ii) If y; ¢ B;_», by the triangle inequality of dis-
tance and Eq.(23), we have
|I" — y,;,| = dis(I', By_2)
dis(I, y;) + dis(y, Bi—2)
[ = | + [Be| = |Bi—z| =
I = yi| + |AB| + |[AB; 4| <
Lmax ]AB\+0+2w+2max |AB;| =

0<ist

(L+2) maX|AB|+c+2w (27)

o<kt

<
<

Combining the three cases above, we have

11" = y5l < (L +2) max [AB;| + ¢ + 2w. (28)

Step 4 We get a final bound between ¥, and y;,.
We consider two cases separately.

Casel y; € B;_ .

i) If I' € B,_,, by the triangle inequality, (23) and
(24), we have

|yt—yjt| ‘yt_F’+’F_th| =
LmaX]AB]—i—c—i—Qw—i—max\AB\—

o<t
(L+1) max |[AB;| + ¢+ 2w.
0<i<t
ii) If I" ¢ B;_», by the definitions of yj, in (9), we
have
1" = y;,| = dis(I', Bi—).

So y;, must be just between /" and y,, then by Eq.(23)
we have

9 =yl <lye =Tl <
L max |AB;| + ¢+ 2w.
0<i<t

Case2 y; ¢ By ».
i) If I' € B;_», by the triangle inequality and (23),
(24), we have

|yt—yjt| ‘yt_F’+’F_th| =
Lmax|AB]+c+2w+maX\AB|—

0<ist

(L + 1) max |AB;| + ¢+ 2w.
o<i<t

ii) If I' ¢ B, ,, meanwhile, I" and y; are at the
same side of B;_,, then by the definition of y;, in (9),

we can know that y;, is the bound of B,_5 which is
nearer to I, therefore it is nearer to y; too. Then we
have

|yt - yjt| = dis(ytaBt 2) <
|B;| — |Bi—2| < 2 max |AB |.

iii) If I ¢ B;_, and I" and y, are at different sides
of B;_,, then y;, will be somewhere just between y;
and I, so by (23) we have

ye = Y5l < lye = Il <
Lmax |AB;| + ¢+ 2w.

0<ist
Combining the two cases above, we have

[y = 5| < (L+1) max [ABy| + ¢ + 2w, (29)

Step 5 Now, we proceed to find a recursive in-
equality on {|AB|,t > 0}.
By Eqgs.(10)—(12), we have

1 _
Up 1 = —Yj41 T Uj—1 + 5(@4 +bi1) =
1 _
—f(y;,) + 5@#1 +bi1) = Wi 41,
1
Yerr = f(ye) — [(y;,) + i(bt—l +

be—1) — Wi 41+ Wiy1-

Then by inequalities (2)(16) and (29), we have
1 _
|Ye+1 — Q(Qt +be)| =
1 _
\f(ye) = fly;,) — 5((@ +b;) —
(by_y +be—1)) + wj, 41
|f(ye) = fFy)] + 2w+ 5
b, — b, _1]) <
Lly:
L((L + 1) max |AB;| + ¢ + 2w)
0<ikt

- wt+1|

(\b — bl +

1
— . — <
Y| + ¢+ 2w + 2({2?5]AB2| <

1
+c+ 2w+ - max |AB;| =
2 0<i<t

1
(L*+ L+ )Snax |AB;| + (L + 1)(c + 2w).
(30)

By the property of f(-) € F(L), (2) and (20), we

have
|Bt| < |Bt+1| =

1 - 1
masc{[yiss = 5 (b + B0l + 5Bl 1B} <

1
2 —_— .
max{(L* + L + 2) max |AB;| +

1
(L+1)(c+20) + 5|Bl, | Bil}
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Hence, by (15) and the definition of | B;|, we have
0 < |ABi| =

1 _ 1
max{[y 41 — i(bt +by)| - §|Bt|70} <

1
2 —_— .
max{(L*+ L+ 2)31<1a<xt|ABZ| +

X

(L+1)(c+2w)—%]Bt\,O}:

1
((L*+ L+ 5) max |AB;| +

27 0<i<

(L+1)(e+2w) — |Bl)* =

1

0<i<

(L+1)(c+ 2w) — ;_io IAB|)

VE+4v2 -1

If L < - we have

1 3
L+ L+g5<5+V2
and thus it follows by Lemma 3.3 of [13] that

i=0
ie., tlim |B;| < o0. (32)

Thus, we have
lim sup |y,;| < oo.
t—o0

This complete the proof of Theorem 1.

4 High-dimensional systems

We now consider the following high-dimensional
discrete time nonlinear dynamical systems

X1 =F(0,X,) + Uy + Wi, (33)

where U; € R", X; € R™ and W; € R" are the system
input, output and noise, respectively, © € R™ is an un-
known parameter, and F'(-) : R™*" — R" is a known
nonlinear function. The dimension n is assumed to be
n 2= 2, since the scalar case n = 1 has been investi-
gated previously in [15].

To understand the feedback capability of the system
(33) in the currently fairly general form is quite compli-
cated even in the case of n = 2. Here, we only consider
the following two dimensional discrete time nonlinear
dynamical systems:

T = 0N (2 +y7) +up +wiig, 34)
Yrr1 = 07 (2] +y)) +uf + Wiy,
where x4, y; are the outputs of the system, utl uf are
the inputs of the system, 6,6 are two unknown pa-
rameters, a, b are integers, w; and w? are unknown but

bounded noise signals with unknown bound w > 0, i.e.
lw}| < w, |w| < w, Vt = 0. (35)

Assume further that at the time ¢ = 0, we have the
following a priori knowledge about the unknown pa-
rameters 0, 62

0 € [0',0'] C R, 0% € [6°,0*] CRL. (36)
We are interested in designing a feedback control
law which robustly stabilizes the system (34) with re-
spect to all possible 6%, % and w}, w?.
To establish some concrete theoretical results, we
need the following definitions first.

Definition 2 A sequence {u;,u?} is called a
feedback control law if at any time ¢ > 0, u;,u? are
(causal) functions of all the observations {z;, y;,7 < t}
up to the time Z, i.e.:

{utl = h%(x(JayOaxbyla"' 7xtayt)7 (37)

Uf = h?(l’o;yo?l’lyyl, ST Yt)s

where h} : R2HD — R A2 R2HD — R can be
any Lebesgue measurable (nonlinear) mappings.

Definition 3  The system (34) is said to be robust
feedback stabilizable, if there exists a feedback control
law {u},u?} such that for any {zo, yo} € R? and any
{6',60%}, {w},w?}, the outputs of the closed-hoop sys-
tem are bounded as follows:

supl|z:| + [y:]] < oc. (38)
>0
Theorem 2  The uncertain system (34) is robust
feedback stabilizable if a < 4, b < 4.
Remark 2

where, for example, we only have the first state x;, we already

We remark that in the scalar state case

know that the condition a < 4 is also necessary for global feed-
back stabilization (see [2] and [15]).

5 Proof of the Theorem 2

We need to design an adaptive control law, which
robustly stabilizes the system (34) for any a < 4,b <
4. We remark that to implement this control law, the

bounds [8", 0], [97, H?] and w need not to be known.

Without loss of generality, suppose that there is
to = 0 such that 2 + gy # 0. In fact, if 2§ + y) =
0, Vt > 0.we can define the control sequence as the fol-
lowing:

u;y =0, uf =0, Vt > 0. (39)
Then according to (34) and (35), we have
2| < w, [y <w, VE = 0. (40)

Thus the proof is finished. For simplicity, we take
to - 0
Forany t > 1, let
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i, = arg Oglgt}il 28 + 47|, (41) First, we prove that if
that is igg[\xt! + |y} = o0, (50)
xy + bl = max |z%+°|. (42) z
i, + v 0<ist—1 i + il then we will have
i i >1
The parameters estimates at time tl > 1 are chosen to be sup |zf + yf | = oc. (D
g1 & Titl T U, 20
Exe 4yl Suppose on the contrary, we have
[ yit’g (43) pPp Y,
A it — U a
Qfé%, sup |z¢ + y°| < M, (52)
T;, T Y t>0
It is easy to check by Eq.(34) that the estimation errors ~ for some 0 < M < co. Now we take:
are ) ul =0, u? =0, Vt > 0. (53)
7] 5 —Wit1 . .
0; 2 0 —0; = m ) Then by inequality (35) we have
i %y i (44) .
G2 202 _p2 — —wi e | <I0Y|2f + |+ [ug| + Wil <
t — Yt t — a .
xf, + i, M|0') 4+ w < oo,
Now, we deﬁni the contArol sequence as the following: Yo | <‘92Hx? i Z/?’ n |uf\ n \wf+1| < (54)
uézO,Au?): , M|0?| + w < oo.
ul £ 01 (28 + o), fort > 1, CRN
24 _p2(na b ’
u: = —607(x¢ +y7), fort > 1.
! () o sup[|z,| + |y¢|] < oc. (55)
Then for ¢ > 1, the closed-loop dynamics is t>0
Tppy = étl (28 4+ yP) +w}! = This contradicts with inequality (38), so we have
w) sup |z¢ + 3P| = 00 (56)
7 +,+1b (zf +yf) +wt1+1> 0 =i 0]
' t (46) Next, from the sequence {|z¢ +y?|,t > 0}, we can

Yo = 07 (] +y7) + Wiy, =

_Wiﬂ
\ i+l
Therefore, noting that the noise are uniformly bounded
as in (35), we have

(] + ;) + Wiy

W a b
W\xt + il +w,

it it

|$t+1| <
forany t > 1.
w
Yo+ < WW? +ypl +w,

47

Then by inequality (42), we have

w a b
lzf + y;| + w,

,
|33t+1| < a b
05’1231 lzg + 7|

w

< a b
|yt+1| X max |x,11 I yﬂ |xt + yt‘ + W,
0<i<i—1

foranyt > 1.
(48)

Now, we use a contradiction argument to prove that
the outputs are uniformly bounded as inequality (38).
Suppose on the contrary, there exist some g, yy € R,
some 6!, 6% and a sequence of {w;,w?} such that for
the feedback control law proposed above,

sup |xt| + ‘yt| = O0. (49)
>0

pick out a subsequence {|z{ -+ yy |,k > 1} which
monotonously increasing to infinity, and satisfies for
any k=1,2,---,
a b a b a b
|lzf +y/] < ‘xtk +3/tk‘ < ‘xtkﬂ +yt,€+1‘7
forany ¢, <t < tpy1. (57)
Forany k = 2,3, - - -, by inequality (48), we have
‘xtk+1| < g‘x?kJrl—l + yfk+1—1| + W,
‘ytk+1’ < £|$?k+1—1 + y?k+1—1| + W, (58)

foranyt > 1,
w
¢ + vl

where £ = By inequality (57), it
O<ithegy—2

is easy to check that
a b a b
‘xtk+1—l + ytk+1—1| < ‘xtk + ytk ‘7 (59)
and

¢4yt > |al b
Ogig%ii*Q ‘xl + yl‘ = ‘xtkfl + ytk71‘ (60)
Hence, by inequality (58), we have

|xtk+1’ < |$? +y115) | ’x?k—i_yfk‘ +w,
k—1 k—1 (61)
|ytk+1| < |x? _}_y? ||$tak+yfk| + w.
k—1 k—1

Now, take logarithm on both sides of inequality (61),
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we have

log |J"tk+1| g log( |l‘?k +y115]k | +w)7

’xgk—l +y?k—l’
10g [ys,.,., | < log(mfxa"‘yfk‘ + w).
tp—1 tp—1

(62)
Noticing that
|t Fyp | <lef +yh ) (63)
so we have
loglzf  +uyp,, | <
log(|=f, | + vt ) <
log(2max{|z{, |, ]yy,.,[}) <
max{log(2]zy, . [),log(2ly;, )} <
max{alog|z, .|, blog |y, |} +log2 <
w
max{a, b} log(——————zf, + yl |+
‘xtk‘—l + yilf)kq‘ ' "
w) +log2 <
¢, + vy,
max{a, b} log(2w———"———) +log2 <
|xtk,1 + yfk,1|
max{a, b} (log |zf, + v7,| —
log |x;’k71 + yfkil |) + (a + b)log 4w. (64)

Then it follows by Lemma 3.5!®! that for max{a, b} <
4, {log|z¢ + y? |} cannot be monotonously increas-
ing to infinity, which contradicts to the definition of
{|z¢ 4 vy |}. This concludes both the contradiction
argument and the proof of the theorem.

6 Concluding remarks

In this paper, we have provided some further results
on global adaptive stabilization for two special classes
of uncertain nonlinear dynamical systems. One is con-
cerned with the case of time-delay, and another is con-
cerned with states in the plane. We remark that the re-
sults are just preliminary ones, and much effort need to
be made towards a comprehensive theory on feedback
capability. This paper also rises some concrete open
problems for further investigation.
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