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Abstract This paper investigates a class of flocks with an M -nearest-neighbor rule, where each

agent’s neighbors are determined according to M nearest agents with M being a given integer, rather

than all the agents within a fixed metric distance as in the well-known Vicsek’s model. Such a neighbor

rule has been validated by biologists through experiments and the authors will prove that, similar

to the Vicsek’s model, such a new neighbor rule can also achieve consensus under some conditions

imposed only on the system’s speed and the number M , n, without resorting to any priori connectivity

assumptions on the trajectory of the system. In particular, the authors will prove that if the number

M is proportional to the population size n, then for any speed v, the system will achieve consensus

with large probability if the population size is large enough.

Keywords Consensus, multi-agent systems, M -nearest neighbor, random geometric graph, topolog-

ical distance.

1 Introduction

Recently, much research attention from the fields of biology, physics, computer science,
mathematics and systems science has been paid to the collective behavior of flocks or multi-
agent systems , as a starting point for the investigation of complex systems, and a vast litera-
ture has appeared including the practical observations, simulation experiments and theoretical
analysis. A central issue is to understand how local interactions between the agents lead to
global behavior of the system. For some classes of multi-agent systems, it has been found that
without centralized control, the system can spontaneously produce some kinds of interesting
“macro” phenomena, such as synchronization, whirlpool, etc., mainly based on local infor-
mation exchange among agents. Among the mathematic models to simulate these collective
behaviors[1–3], the Vicsek’s model[1] owning to a simple and intuitive local rule, can exhibit
some kind of phase transitions from random motion to synchronization.
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In Vicsek’s model, each agent’s neighbors are the ones within a prescribed geometric distance
from it. Actually, most of the existing flocking models assume that the agents interact with each
other according to a geometric distance, which is used to decide the interaction strengths among
agents[1, 2]. However, for a given practical flocks, whether the interactions are indeed determined
by the geometric distance is still a question. Not long ago, a group of European scientists had
given an alternative distance in [4], that is the “topological distance”, intuitively, the neighbors
are defined as the M nearest individuals away from a given agent. They reconstructed the
three-dimensional positions of individual birds in airborne flocks of a few thousand members,
and showed that the interaction does not depend on the geometric distance, but rather on
the topological distance. Simply speaking, each agent interacts with a fixed number of agents
nearest to it rather than the ones within a fixed distance from it. In fact, it was discovered that
each bird interacts on average with six to seven neighbors in the experiments of [4].

The same group of scientists[4] also tried to give some explanation to such an interaction
rule. Through experiments, they argue that the rule seems to be more suitable to keep cohesion
when the group encounters strong density fluctuations. And it has been observed that stragglers
and small groups are significantly more to be preyed compared with the animals belonging to
large and highly cohesive aggregations[4]. So, topological interaction is the only mechanism
granting such robust cohesion with higher biological fitness.

The point we are trying to make is, the M -nearest-neighbor rule has existed in the research
of wireless networks, in which links are formed by nodes choosing the power levels at which they
transmit. This raises the question: How many neighbors should each node be connected to, in
order that the overall network then becomes connected? To answer this question, the wireless
network can be modeled as nodes located randomly on the plane according to a Poisson point
process and each node is connected to a fixed number of nearest neighbors[5]. And it has been
proved that each node should be connected to Θ(log n) nearest neighbors in order to achieve
asymptotically connectivity[5, 6].

Following [7], this paper will consider the model which consists of n agents on the plane and
each agent moves with the same constant speed. At each time step, every agent’s neighbors
are the nearest M ones from it (including itself). We call this neighbor rule as the “M -nearest-
neighbor rule”. Each agent updates its heading by making an average of its neighbors’ current
headings. This model is different from the well-known Vicsek’s model with the geometric
distance based neighbor rule there changed to the M -nearest-neighbor rule to be studied in the
present paper.

To the best of the authors’ knowledge, there is few complete theoretical research on flocks
with M -nearest-neighbor rule, but there is indeed a vast literature on the theoretical investi-
gation of the Vicsek’s model, see, e.g., [8–16]. These have not only promoted the development
of the research on flocking model, but also offered much inspiration to our study in the current
paper. Here, we only mention two representative works. Firstly, Jadbabaie, et al.[8] initiated a
theoretical study for the consensus of a partially linearized Vicsek’s model. What Jadbabaie,
et al. showed was that the system will achieve consensus if the associated dynamical neighbor
graphs are jointly connected within some contiguous and bounded time intervals. However, how
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to sidestep or verify the troublesome connectivity condition imposed on the dynamic graphs
turns out to be a difficult and challenging issue in theory, because the underlying dynamical
equation is strongly coupled and highly nonlinear. Subsequently, a major advance towards
resolving this bottleneck issue was made by Tang and Guo[7], where a random framework as
originally considered by Vicsek, et al.[1] is introduced in their analysis. By carrying out a
detailed analysis of both the system’s nonlinear dynamical properties and the spectral gap of
random geometric graphs, Tang and Guo[7] proved that the overall multi-agent system will
achieve consensus with large probability as long as the size of the population is large enough.

Concerning the flocking model with the M -nearest-neighbor rule, we should mention that
Wang[17] appears to be the first one to study it, where a sufficient condition on consensus
is introduced, without resorting to any dynamical connectivity assumptions on the system
trajectories. However, the condition imposed on the parameters of the initial graph there
are hard to verify, especially for a random geometric graph. We should also remark that,
the method used in [7] is no longer valid under the new M -nearest-neighbor rule, because
the neighbor graphs with topological distance are directed , and it appears to be an essential
difficulty when estimating the spectrum gap of a graph.

In this paper, we will work with a random framework, and give an easily verifiable condition
on the consensus of the model with the M -nearest-neighbor rule. Some new techniques will be
introduced to sidestep the trouble of estimating the spectrum of a directed graph.

The rest of this paper is organized as follows: In Section 2, we will present the formulation of
the problem and the main results. The proof of the results will be put in Section 3. Then, some
simulations of the results will be presented in Section 4. In Section 5, we give some concluding
remarks.

2 Main Results

Let us assume that n autonomous agents move in the plane with the same speed vn(vn > 0)
but with different headings. At any time t, the position and heading of the agent i are denoted by
Xi(t)(∈ R

2) and θi(t)(∈ (−π, π)) respectively. The distance between agents i and j is denoted
by dij(t) and dij(t) = ‖Xi(t) − Xj(t)‖2, where ‖·‖2 denotes the Euclidean norm. These are the
same as the models in [7], [15], and [16]. The difference lies in: For any agent i(1 ≤ i ≤ n),
the neighbors of i means the nearest Mn individuals from its recent position, where Mn is a
pre-defined value depending on n, so j is i’s neighbor if j is one of the nearest Mn agents from
i. If at time t there is more than one agent which can be treated as the Mn-th nearest neighbor
of agent i, then agent i chooses the one who is the nearest at time t − 1. The neighbor set of
i at time t is denoted by Ni(t). Particularly, we define that each agent is a neighbor of itself,
i.e., i ∈ Ni(t), ∀t > 0, 1 ≤ i ≤ n. For t = 1, 2, · · · , the updating rules of the agents’ positions
are as follows:

Xi(t) = Xi(t − 1) + vn(cos θi(t), sin θi(t)), (1)
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the updating rules of the agents’ headings are as follows:

θi(t) =
1

|Ni(t − 1)|
∑

j∈Ni(t−1)

θj(t − 1), (2)

where |S| denotes the cardinality of the set S. Because the number of any agent’s neighbors is
the fixed number Mn, we can rewrite (2) as follows:

θi(t) =
1

Mn

∑

j∈Ni(t−1)

θj(t − 1). (3)

This paper will mainly investigate the consensus property of the models (1)–(3). Following
Tang and Guo[7], we give the definition of “consensus”:

Definition 2.1 If there exists a constant θ ∈ (−π, π] such that limt→∞ θi(t) = θ, ∀1 ≤
i ≤ n, then we say the models (1)–(3) can achieve consensus.

In this paper, we will consider the models (1)–(3) in the following probabilistic framework:
Let (Ω ,F ,P) be the underlying probability space, and assume that the initial positions {Xi(0),
1 ≤ i ≤ n} are i.i.d. random vectors uniformly distributed in [0, 1]2, that the initial headings
{θi(0), 1 ≤ i ≤ n} are i.i.d. random variables uniformly distributed on the interval (−π, π], and
that the initial positions and initial headings are mutually independent.

Before listing the main results, some new variables will be introduced:
For Mn � log n†, denote {gn, n ∈ N} as positive sequences satisfying

1 � gn � Mn

log n
. (4)

Set {εn, n ∈ N} satisfying

εn =

√
3 logn(gn + 1)

Mn
. (5)

Obviously, when Mn � log n, εn = o(1).
The main results of this paper are listed as follows:

Theorem 2.2 Suppose that the n agents are independently and uniformly distributed in
[0, 1]2 at the initial time t = 0, and Mn � log n. Then under any initial headings’ configuration,
for any ηn ∈ (0, 1), the flocks models (1)–(3) will achieve consensus with probability 1−O(n−gn)
if the speed satisfies

†Throughout this paper, we will use some standard mathematical notations as follows:

• For positive sequences {g1(n)} and {g2(n)}, g1(n) = O(g2(n)) if there exists a constant c > 0 and a value

n0 > 0 such that g1(n) ≤ c(g2(n)) for any n ≥ n0.

• For positive sequences {g1(n)} and {g2(n)}, g1(n) = Θ(g2(n)) if there exists constants c1 > 0 and c2 > 0

and a value n0 > 0 such that c1g2(n) ≤ g1(n) ≤ c2g2(n) for any n ≥ n0.

• For positive sequences {g1(n)} and {g2(n)}, g1(n) = o(g2(n)) or g1(n) � (g2(n)) or g2(n) � (g1(n)) if

limn→∞ g1(n)
g2(n)

= 0.

• For matrixes A = [aij ], B = [bij ], A ≥ B if aij ≥ bij .

• �x� denotes the smallest integer not less than x.
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vn ≤ ( n
Mn

)Kna
2(Kn−1)
n ηnrn

Δ1Kn
, (6)

where rn satisfies
nπ[(1 + ηn)rn]2(1 + εn) = Mn, (7)

and an = 1√
5
(1 − ηn)rn, Kn = 2

( ⌈
1

an

⌉
+ 1

)
, Δ1 = maxi,j {θi(1) − θj(1)}.

Remark 2.3 From [5], Θ(log n) is the least neighbors number to guarantee the connec-
tivity of the initial graph, so the condition Mn ≥ Θ(log n) is natural. Here we only provide the
consensus results under Mn � log n because the analysis under Mn = Θ(log n) is much more
complicated. We should search for other methods to deal with the latter case.

Remark 2.4 From the proof below, (6) still holds if we substitute Δ0 for Δ1, where
Δ0 = maxi,j {θi(0) − θj(0)}. For convenience we denote the new condition as (6*). So we
obtain the speed condition for consensus only using the initial headings and system parameters
n, Mn. It means that for arbitrary initial headings configuration, the system will achieve
consensus provided that the speed is small enough.

Corollary 2.5 Assume that Mn � log n, and suppose that at the initial time t = 0, the n

agents are independently and uniformly distributed in [0, 1]2, with headings independently and
uniformly distributed in (−π, π]. Then the flocks models (1)–(3) will achieve consensus almost
surely, provided that

vn = o
(
(5π)−2

√
5πn/MnMn/ logn

)
. (8)

With the preparations of the above results, we obtain an interesting corollary:

Corollary 2.6 Consider the probabilistic framework and suppose that Mn = αn(1+o(1)),
where α is a fixed constant. Then for any v > 0, the flock model (1)–(3) will achieve consensus
almost surely, as the population size n is large enough.

3 Proofs of the Main Result

To analyze the consensus behavior, some concepts need to be introduced first. Similar
to [12], we will use a graph sequence {G(t), t = 0, 1, · · · } to describe the relationship among
neighbors. For t ≥ 0, define

G(t) = G({X1(t), X2(t), · · · , Xn(t)}, E(t))

to be the position graph of the model at time t, where E(t) = {(i, j) : j ∈ Ni(t)}, 1 ≤ i ≤ n,
notice that for all 1 ≤ i ≤ n and t ≥ 0, (i, i) ∈ E(t), and the graphs formed in this way are
directed. Denote P (t) as the average matrix of the graph G(t), i.e.,

(P (t))ij =

⎧
⎨

⎩

1
Mn

, if (i, j) ∈ E(t),

0, else,
∀i, j = 1, 2, · · · , n.
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Notice that P (t) is a stochastic matrix. Set θ(t) := (θ1(t), θ2(t), · · · , θn(t))T, then the iteration
rule of the headings and positions of the model based on (1) and (3) can be rewritten as

⎧
⎨

⎩
θ(t) = P (t − 1)θ(t − 1),

Xi(t) = Xi(t − 1) + vn(cos θi(t), sin θi(t)),
∀t ≥ 1, 1 ≤ i ≤ n. (9)

Let us use the measure τ(P ) to describe the convergence speed of the infinite products of a
stochastic matrix P :

τ(P ) =
1
2

max
i,j

n∑

s=1

|Pis − Pjs| = 1 − min
i,j

n∑

s=1

min(Pis, Pjs). (10)

A lemma related to τ(P ) will be presented first.

Lemma 3.1 (see [17]) Let y = [y1, y2, · · · , yn]T ∈ R
n be an arbitrary vector, and P =

[Pij ] ∈ R
n×n be a stochastic matrix. If z = [z1, z2, · · · , zn]T = Py, then

max
s,s′

|zs − zs′ | ≤ τ(P )max
j,j′

|yj − yj′ | . (11)

Let Xn(t) = {X1(t), X2(t), · · · , Xn(t)} be the set of the positions of the n agents at time
t, hence Xn(0) denotes the set including n points which are independently and uniformly dis-
tributed in [0, 1]2. Also, for convenience, we use B(Xi(t), r) to denote the circle centered at
Xi(t) with radius r, so Xn(t)

⋂
B(Xi(t), r) is the set which consists of the positions of the agents

lying in B(Xi(t), r) at time t.

Lemma 3.2 Suppose that Mn � log n, then for any ηn ∈ (0, 1),

P
{∣∣|Xn(0) ∩ B(Xi(0), (1 + ηn)rn))|

− nπ[(1 + ηn)rn]2
∣∣∣ ≤ εnnπ[(1 + ηn)rn]2

}

= 1 − O(n−gn), (12)

where rn satisfies (7).

Proof First consider the small disk B(Xi(0), (1 + ηn)rn). Denote Yj as the indicator
function of the event where agent j falls into B(X1(0), (1 + ηn)rn). Then {Yj, 1 ≤ j ≤
n} are i.i.d. Bernoulli random variables with success probability p = π[(1 + ηn)rn]2 and
|Xn(0) ∩ B(X1(0), (1 + ηn)rn)| =

∑n
j=1 Yj . According to Chernoff Bound, for given εn, it

is true that

P {||Xn(0) ∩ B(X1(0), (1 + ηn)rn)| − np| > εnnp} ≤ 2 exp
(
−ε2

nnp

3

)
. (13)

Obviously, {|Xn(0) ∩ B(Xi(0), (1 + ηn)rn))|, 1 ≤ i ≤ n} are identically distributed random
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variables, hence using the Boole’s inequality

P

{
max

1≤j≤n
||Xn(0) ∩ B(Xj(0), (1 + ηn)rn)| − np| ≤ εnnp

}

≥1 −
n∑

j=1

P {||Xn(0) ∩ B(Xj(0), (1 + ηn)rn)| − np| > εnnp}

≥1 − 2n exp
(
−ε2

nnp

3

)

=1 − 2 exp
(

log n − np · 1
3
· 3(gn + 1) log n

Mn

)

=1 − O(n−gn).

The last equality holds because the condition that rn satisfies (7).
For fixed ηn ∈ (0, 1), denote the set

Bηn

1 =
{

ω ∈ Ω :
∣∣ |Xn(0) ∩ B(Xi(0), (1 + ηn)rn)|

−nπ[(1 + ηn)rn]2
∣∣∣ ≤ εnnπ[(1 + ηn)rn]2, 1 ≤ i ≤ n

}
,

hence from Lemma 3.2, under the condition Mn � log n,

P (Bηn

1 ) = 1 − O(n−gn). (14)

The proof is finished.
For the same ηn, let us partition the unit square [0, 1]2 into �1/an
2 small squares with the

length of each side equal to 1
�1/an� , where an = 1√

5
(1 − ηn)rn. If Mn � log n, we can deduce

that an � √
log n/n. Furthermore, we label these small squares as Sj , j = 1, 2, · · · , �1/an
2,

from left to right and from bottom to top. Denote the set

Bηn

2 =
{

ω ∈ Ω : na2
n(1 − o(1)) ≤ |Xn(0) ∩ Sj |

≤ na2
n(1 + o(1)), 1 ≤ j ≤ �1/an
2

}
.

The following lemma can be deduced directly from Lemma 4 in [7].

Lemma 3.3 Assume an � √
log n/n, then P (Bηn

2 ) = 1 − O(n−gn).

Proof of Theorem 2.2 Since the distribution of initial positions are independent and uniform,
then for any ηn ∈ (0, 1), by Lemmas 3.2 and 3.3, Bηn

1

⋂
Bηn

2 happens with the probability
1 − O(n−gn). The following discussion is restricted on the set Bηn

1 ∩Bηn

2 . Then the number of
agents lying in B(Xi(0), (1 + ηn)rn) is not more than nπ(1 + ηn)rn

2(1 + εn), from (7), that is
Mn, so for arbitrary r < (1 + ηn)rn, we have Xn(0)

⋂
B(Xi(0), r) ⊂ Ni(0). For the grids we

just delineated, notice that any two agents in two adjacent squares have a distance less than
(1 − ηn)rn, so they are neighbors of each other at the initial time. See Figure 1.
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n n

na

Figure 1 For this grid, the side length an = 1√
5
(1−ηn)rn, for some i, the vertexes in

the disk with i as the center and (1 + ηn)rn as the radius are all neighbors

of i, so the vertexes in the adjacent squares are neighbors of each others

When t ≥ 0, we have

dij(t + 1) = ‖Xi(t + 1) − Xj(t + 1)‖2

≤ dij(t) + vn

∣∣∣∣2 sin
θi(t + 1) − θj(t + 1)

2

∣∣∣∣

≤ dij(t) + vn |θi(t + 1) − θj(t + 1)| ,

set Δt = maxi,j {θi(t) − θj(t)}, we obtain

dij(t + 1) ≤ dij(t) + vnΔt+1. (15)

From (3) we know that Δt is monotonously decreasing. Actually, there exists Ln = 1 −
( n

Mn
)Kna

2(Kn−1)
n (1 + o(1)) such that

Δk·Kn ≤ Lk
nΔ1, ∀k ≥ 0, (16)

where Kn = 2(
⌈

1
an

⌉
+ 1) is defined in Lemma 2.2. Actually, (15) still holds if we substitute Δt

for Δt+1, so does (16) if Δ1 is substituted by Δ0. Then taking the same analysis just as that
being showed later we can obtain (6*). Next, we use induction to prove (16).

Obviously, the conclusion holds for the case k = 0.
Assume Δk·Kn ≤ Lk

nΔ1 holds for all k ≤ T . From the monotonicity of Δt, for ∀t ∈
[lKn, (l + 1)Kn), l ≤ T , Δt ≤ Ll

nΔ1 holds. So for arbitrary i, j and ∀t ∈ [TKn, (T + 1)Kn),
from (15) we have

dij(t + 1) ≤ dij(0) + vn

t∑

l=1

Δl

≤ dij(0) + Knvn(1 + Ln + L2
n + · · · + LT

n )Δ1

< dij(0) + Knvn
1

1 − Ln
Δ1,
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since vn satisfies (6), we have
dij(t + 1) < dij(0) + ηnrn. (17)

Similarly, we can get

dij(0) ≤ dij(t + 1) + ηnrn. (18)

So

dij(t + 1)

⎧
⎨

⎩
< rn, if dij(0) < (1 − ηn)rn;

> rn, if dij(0) > (1 + ηn)rn.
(19)

From (19), we obtain that when TKn ≤ t ≤ T (Kn + 1) − 1,

Xn(0) ∩ B(Xi(0), (1 − ηn)rn) ⊂ Xn(t) ∩ B(Xi(t), rn), (20)

and at the time t, the agents outside the circle B(Xi(0), (1+ηn)rn) cannot move into the circle
B(Xi(t), rn), the agents in B(Xi(0), (1 − ηn)rn) cannot run off from B(Xi(t), rn), then

Xn(t) ∩ B(Xi(t), rn) ⊂ B(Xi(0), (1 + ηn)rn), (21)

so
|Xn(t) ∩ B(Xi(t), rn)| < Mn,

that means Xn(t) ∩ B(Xi(t), rn) ⊂ Ni(t), hence from (20) we get

Xn(0) ∩ B(Xi(0), (1 − ηn)rn)(0) ⊂ Ni(t), (22)

that means the neighbor relationship at time t = 0 will not change during the time interval
TKn ≤ t ≤ T (Kn + 1) − 1.

Next, we prove that

P ((T + 1)Kn − 1)P ((T + 1)Kn − 2) · · ·P (TKn) ≥ cn

Mn
I · IT, (23)

where I is the vector with all the entries equal to 1 and cn = (na2
n

Mn
)Kn−1(1 + o(1)). Define ei to

be a vector whose i’s entry is 1 and other entries are 0 , 1 ≤ i ≤ n, then (23) is equal to

P ((T + 1)Kn − 1)P ((T + 1)Kn − 2) · · ·P (TKn)ei ≥ cn

Mn
I. (24)

We define the value of the j’th entry of the vector ei as agent j’s potential at time TKn − 1,
and P (t) · · ·P (TKn)ei as the potential of agent j at time t. Intuitively, (24) can be interpreted
as follows: when t = TKn − 1, the agent i has potential 1 and other agents have potential 0,
when the system evolves to t = (T + 1)Kn − 1, all the agents get potential not less than cn

Mn
,

so the potential of the system is dispersed from one agent to all other agents. As a result, we
only need to prove that for any j �= i, at the time t = (T + 1)Kn − 1, j has the potential not
less than cn

Mn
.
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Without loss of generality, assume that at the time TKn, agent i lies in Sm1 and agent j

lies in Sm2. Then there exists a path from left to right and bottom to top joining Sm1 and Sm2,
and such a path is denoted as Sm1 → Sm1+1 · · ·Sm2−1 → Sm2. See Figure 2.

j

ms

i

ms

an

Figure 2 The only path connecting Sm1 and Sm2 is displayed by solid arrows

From (22), we know that agent i is a neighbor of all the agents in squares Sm1, Sm1+1, so
the entries in the i’ th column of P (TKn) whose responding agents are also in the set Sm1,
Sm1+1 have the values 1

Mn
, that means the corresponding entries of the vector P (TKn)ei have

values 1
Mn

. As a result, the agents which lie in the sets Sm1, Sm1+1 have the potential of 1
Mn

.
When t = TKn + 1, the topology of the graph G(TKn + 1) has changed compared with

G(TKn) , because every agent has moved during the time interval. For example, some agents
in Sk may escape from Sk but some others not belonging to Sk at the beginning may run into
Sk, for some k. Despite of this, from (22), we know that all the neighbor relationships among
the agents in the sets Sm1, Sm1+1, · · · , Sm2−1, Sm2 at time 0 do not change during the time
interval 0 ≤ t ≤ (T + 1)Kn − 1. Hence, under P (TKn + 1), the agents in Sm1+2 have potential
increasing from 0 to not less than

1
Mn

(
|Sm1+1| · 1

Mn

)
=

na2
n

M2
n

(1 + o(1)),

and at this time, the potential of agents belonging to Sm1, Sm1+1 does not decrease.
Similarly, there exists t0 ≤ (T + 1)Kn − 1 such that all the agents in Sm1, Sm1+1 · · · , Sm2−1

have potential not less than 1
Mn

(na2
n

Mn
)t0−1(1 + o(1)). So under P (t0), the agents in Sm2 have

potential not less than

1
Mn

(
1

Mn

(na2
n

Mn

)t0−1

(1 + o(1)) · |Sm1+1|
)

=
1

Mn

(na2
n

Mn

)t0
(1 + o(1)) ≥ cn

Mn
.
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By the arbitrariness of j, we obtain

P (t0)P (t0 − 1) · · ·P (TKn)ei ≥ cn

Mn
I,

hence

P ((T + 1)Kn − 1)P ((T + 1)Kn − 2) · · ·P (TKn)ei ≥ cn

Mn
I, (25)

then (23) holds.
By (23) and (10), we can calculate that

τ(P ((T + 1)Kn − 1) · · ·P (TKn)) ≤ 1 − ncn

Mn
,

from Lemma 3.1, we obtain

Δ(T+1)·Kn
≤ τ((P ((T + 1)Kn − 1) · · ·P (TKn))ΔT ·Kn

≤
(
1 − ncn

Mn

)
ΔT ·Kn

=LnΔT ·Kn < ΔT ·Kn . (26)

The last inequality holds because Ln < 1, the reason is that

ncn

Mn
=

(na2
n

Mn

)Kn 1
a2

n

(1 + o(1))

=
(n( 1√

5
(1 − ηn)rn)2

nπ((1 + ηn)rn)2
)Kn 1

a2
n

(1 + o(1))

≤
( 1

5π

)Kn 1
a2

n

<
( 1

5π

) 2
an 1

a2
n

. (27)

Set y = 2
an

, then the right hand side of (27) is f(y) := y2

4 ( 1
5π )y , where y ∈ (2,∞) because of

an ∈ (0, 1). Notice that f(2) < 1 and limy→∞ f(y) = 0, besides,

f ′(y) =
( 1

5π

)y

log
( 1

5π

)y2

4
+

( 1
5π

)y y

2
< 0 (28)

on (2,∞), then f(y) < 1 on (2,∞). Hence the last inequality of (26) holds .
Up to now, we have proved Δk·Kn ≤ LkΔ1 in the case of k = T + 1, so the induction

argument of Δk·Kn ≤ Lk
nΔ1 is completed.

Hence, Δt will converge to 0 with exponential rate, that means the system will achieve
consensus.

Remark 3.4 Since the corresponding graphs are not symmetric due to the M -nearest-
neighbor interaction, then estimating the spectral gap of the corresponding stochastic matrixes,
which is an often-used method to measure the speed of the systems consensus, does not work in
our situation. Hence, we use some new techniques. To avoid analyzing the spectral gap, we turn
to estimating τ of the matrixes. Using the connectivity property under random framework, we
can design an appropriate speed such that within a bounded time interval, τ of the products
of corresponding stochastic matrixes is strictly smaller than 1. Then consensus analysis can be
carried on.
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Proof of Corollary 2.5 Now, we will estimate the order of Δ1 under initial headings’ distri-
bution and then calculate the right-hand side of (6).

Throughout the sequel, for fixed ηn, we denote hn = na2
n

gn log n , which satisfies limn→∞ hn = ∞
by the choice of an and gn. Two useful lemmas are listed below.

Lemma 3.5 (see Lemma 8 in [7]) Let Sj
∼ =

∑
k∈Sj

θk(0), j = 1, 2, · · · ,
⌈

1
a2

n

⌉
, and denote

D(an, gn, hn) =

{
ω : max

1≤j≤
⌈

1
a2

n

⌉

∣∣∣∣
∼
Sj

∣∣∣∣ ≤ na2
nπ

√
2
hn

(1 + o(1))

}
.

Then P{D(an, gn, hn) ∩ Bηn

2 } = 1 − O(n−gn).

Lemma 3.6 (Theorem 4 in [7]) On the set D(an, gn, hn)∩Bηn

2 , we have for n sufficiently
large

Δ1 ≤ 2π

√
2
hn

(1 + o(1)). (29)

Hence, P (D(an, gn, hn) ∩ Bηn

2 ∩ Bηn

1 ) = 1 − O(n−gn) from Lemma 3.5 and (14). And (6)
and (29) both hold on the set P (D(an, gn, hn)∩Bηn

2 ∩Bηn

1 ). Substitute (29) into (6), we obtain
that the system will achieve consensus under the condition

vn <
( n

Mn
)Kna

2(Kn−1)
n ηnrn

2π
√

2
hn

(1 + o(1))Kn

=
( n

Mn
)Kna

2(Kn−1)
n ηnrn

na2
n

gn log n

2π
√

2(1 + o(1))Kn

� Vn.

When n ia large enough, by the definition in Theorem 2.2, we have

rn =
1

1 + ηn

√
Mn

nπ
� C1

√
Mn

nπ
,

an =
1 − ηn√
5(1 + ηn)

√
Mn

nπ
� C2

√
Mn

nπ
,

Kn = 2
⌈

1
C2

√
nπ

Mn
+ 1

⌉
= 2

( 1
C2

√
nπ

Mn
(1 + o(1)) + 1

)
.

The last equality holds as n → ∞.
Substitute all above into Vn, we have

Vn =
ηn

2π
√

2(1 + o(1))
· ( n

Mn
)Kna2Kn

n rnn

gn log nKn

=
ηn

2π
√

2(1 + o(1))
·
(C2

2

π

)Kn · nrn

gn log nKn

=
ηn

2π
√

2(1 + o(1))
· C

√
n

Mn · Mn

gn log n
,

where C = (C2
2

π )
2
√

π
C2 < (5π)−2

√
5π < 1. Notice that Mn � log n and 1 � gn � Mn

log n , so

Vn = o

(
(5π)−2

√
5πn/MnMn/ logn

)
. The proof is finished.
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Proof of Corollary 2.6 When Mn = αn(1 + o(1), the conclusion is obvious from Corollary
2.5.

4 Simulation

In this section, we demonstrate some simulation examples. Here, the initial positions and
headings of n agents are distributed uniformly and independently in [0, 1]2 and (−π, π) respec-
tively, and the agents’ speed is taken as v = 0.01. Figure 3 shows the change of the consensus
frequency with the population size n when Mn = 0.1n, Mn = 0.2n and Mn = 0.3n, respectively.
From this simulation, we see that for the same speed v = 0.01, the systems with α = 0.2 and
α = 0.3 will achieve consensus with the frequency very close to 1, when the number of agents is
greater than 100 and 40 respectively. This is consistent with Theorem 2.6. At the same time,
the system with α = 0.1 can not achieve consensus with large probability when n < 150. It
means that when n and v is fixed, the upper bound of the speed for consensus deceases as α

decreases, which is consistent with Corollary 2.6.
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Figure 3 Simulation result for the system (1)–(3) with v = 0.01 and Mn = 0.1n,

Mn = 0.2n and Mn = 0.3n, respectively
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5 Conclusion and Future Work

For a class of flocks motivated by starling birds whose interaction rules are modeled by
the “M -nearest neighbor rule”, this paper gives some easily verifiable conditions for consensus
together with a complete theoretical analysis. In particular, we find that under some mild
assumptions, the system will achieve consensus for any given speed almost surely, provided
that the population size is large enough.

Of course, many interesting problems still remain open, for example, the case where noise
effects should be considered, and the case where the number of agents are prescribed. These
belong to further investigation.
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