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The relationship between stability of complex ecosystems and the inter-
actions among species has always been a basic research focus in ecol-
ogy. In this paper, we rigorously prove two facts about mutualistic
ecological networks based on the Lotka–Volterra model of n-species.
First, we prove that the dominant eigenvalue of the mutualistic interac-
tion matrix will monotonically increase to infinity as any one of its off-
diagonal elements increases to infinity, coinciding with the discoveries
by ecologists via simulations. Second, we show that the persistence  of
mutualistic networks is equivalent to the stability of their interaction
matrix. These two results together reveal the fact that the persistence of
large mutualistic ecosystems can be guaranteed with proper interaction
strengths, though they will eventually be destroyed as the interaction
strength between any two species increases.

Introduction1.

Since May’s work 40 years ago [1] the study of the stability of large
complex ecological networks [2–8] has attracted much attention. Vari-
ous features of ecosystems are connected with their stability, includ-
ing species diversity [3], the system architecture [4, 5], the strength of
interactions among species [6], and also the interaction types [7, 8].

As a basic class of ecosystems, mutualistic systems have been inves-
tigated by ecologists and mathematicians [9–11]. It has been verified
by using the mutualistic Lotka–Volterra model that the persistence of
mutualistic networks can be guaranteed by the stability of their inter-
action matrix [10, 11]. Here, persistence is one type of stability, re-
lated to two features: the system possesses a feasible (positive) equilib-
rium point, and the equilibrium point is stable (which means all
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species  have  a  constant  positive  abundance  across  time)  [12].  But  be-
yond that, how the interaction strength among species affects the per-
sistence of mutualistic ecosystems is still unclear. Very recently, it has
been  shown  by  simulations  that  increasing  interaction  strength  be-
tween species could increase the maximum real part of eigenvalues of
the interaction matrix [12]. One important implication of this result is
that  the  persistence  of  mutualistic  ecosystems  might  be  destroyed
when the interaction strength increases. 

In  this  paper,  we  will  rigorously  prove  that  the  dominant  eigen-
value  (a  real  eigenvalue  that  is  larger  than  the  real  part  of  any  other
eigenvalue)  of  the  mutualistic  interaction  matrix  will  monotonically
increase to infinity as any one of its off-diagonal elements increases to
infinity,  thus  mathematically  justifying  the  interesting  observation  of
[12].  In  addition,  under  a  weaker  assumption  that  one  intrinsic
growth rate is positive, we further prove that the existence of a glob-
ally asymptotically stable equilibrium point in R+

n
 (open positive half-

plane),  which  defines  the  persistence,  is  equivalent  to  the  stability  of
the mutualistic interaction matrix. These results distinctly indicate the
fact that the proper interaction strength will guarantee the coexistence
of  species,  while  too  strong  an  interaction  strength  is  detrimental  to
the persistence of mutualistic ecosystems. 

The rest of this paper is organized as follows: the model of mutual-
istic  ecological  networks  and  the  main  results  are  described  in  Sec-
tion�2, and Section 3 gives some concluding remarks. 

Main Results2.

Consider  the  following  nonlinear  Lotka–Volterra  population  dynam-
ics with a linear functional response [7, 8, 12]: 

x i  xi ri + aiixi +
j≠i

aijxj , i  1, … , n, (1)

where n is the number of species of the ecosystem, xi is the abundance

of species i, ri  is the intrinsic growth rate of i, aii  is the density-depen-

dent  self  regulation,  and  aij  is  the  interaction  coefficient  of  i  with

species  j.  Let  x  (x1, … , xn)
T,  A  aij,  1 ≤ i, j ≤ n,  and

r  (r1, … , rn)
T,  then  equation  (1)  can  be  rewritten  in  the  following

form:

x1

⋱

xn

Ax + r. (2)
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For  mutualistic  networks,  equation  (2)  satisfies  aii < 0,

aij ≥ 0(i ≠ j),  and  r ≥ 0  with  at  least  one  ri  positive.  Other  than  that,

we  commonly  assume  that  the  ecological  network  is  strongly  con-
nected; that is, for any two species i and j, there exists a direct interac-
tion  path  of  finite  length  from  i  to  j.  The  strong  connectivity  means
the interaction matrix A is an irreducible matrix, which will be shown
by a preliminary lemma in Appendix A. 

To  begin  with,  we  first  present  some  basic  mathematical  defini-
tions,  while  all  preliminary  lemmas  are  given  in  Appendix  A.  Let

A  aij ∈ Rn⨯n. A is called a non-negative (positive) matrix, denoted

by A ≥ (>) 0, if aij ≥ (>) 0. Let B ∈ Rn⨯n; if A -B ≥ (>) 0, then it is de-

noted  A ≥ (>)B.  Let  A  aij;  if  A ≥ 0,  then  A  A.  A  is  called  a

Z-matrix,  denoted  by  A ∈ Zn,  if  aij ≤ 0  (i ≠ j)  and  an  M-matrix  if

A ∈ Zn  and  -A  is  stable,  that  is,  all  eigenvalues  of  -A  possess  nega-

tive  real  parts.  A  is  called  an  irreducible  matrix  if  I + An-1 > 0.

ρA ≡ max{λ : λ is an eigenvalue of A} is called the spectral radius of

A;  dA,  which  is  an  algebraically  simple  real  eigenvalue  of  A  and

larger  than  the  real  part  of  any  other  eigenvalue,  is  called  the  domi-
nant eigenvalue of A, if it exists. 

Suppose  f :Rn⨯n → R.  If  for  any  two  matrices  α, β ∈ Rn⨯n,  with
α ≥ β and α ≠ β, one has f(α) ≥ f(β), then it is said that f(X) is mono-
tonically increasing along with X ∈ Rn⨯n. Furthermore, if the inequal-
ity  holds  strictly,  it  is  said  that f(X)  is  strictly  monotonically  increas-
ing along with X. 

For  the  interaction  matrix  A  of  the  mutualistic  network  in  equa-
tion�(2),  the  simulation  discoveries  in  [12]  imply  that  the  maximum
real  part  of  eigenvalues  decreases  along  with  the  increasing  interac-
tion strength. Here, we prove the following conclusion. 

Theorem 1. Let A  aij and aij ≥ 0 (i ≠ j). If A is irreducible, then for

any matrix B  bij ≥ 0, the following conclusions hold: 

A + B has a dominant eigenvalue d(A + B).1.

d(A + B) ≥ d(A), and d(A + B) > d(A) if B ≠ 0.2.

d(A + B) → ∞, as B → ∞.3.

Proof. It is easy to verify that A +B is irreducible and the off-diagonal
elements  are  all  non-negative.  Then  conclusion  1  holds  by  Lemma  4.
As for conclusion 2, it is easy to know by the proof of Lemma 4 that
there  exists  γ > 1  such  that  γI +A  is  irreducible  and  non-negative,

and  dA  ργI +A - γ.  Then  by  Lemma  5,  γI +A +B  is  still  irre-

ducible  and  non-negative,  and  dA +B  ργI +A +B - γ.  Thus,  it
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only  remains  to  prove ργI +A +B > ργI +A,  which  can  be  ob-

tained  from  Lemma  5  directly.  Since  A +B  is  still  irreducible  with  its
off-diagonal  elements  non-negative,  conclusion  2  actually  indicates

that dA +B is strictly monotonically increasing along with B.

Now  we  prove  conclusion  3.  When  B → ∞,  there  is  at  least  one

element  bij  of  B  that  satisfies  bij → ∞.  Since  dA +B 

ργI +A +B - γ,  and  because  of  the  monotone  increase  of  dA +B

along with B as indicated by conclusion 2, we know that to prove con-
clusion  3,  it  only  remains  to  prove  that  for  any  given  1 ≤ i, j ≤ n,

ργI +A +B → ∞, when bij → ∞. 

Now,  since  γI +A +B  is  irreducible  and  non-negative,  by  Lem-
ma�3,  we  know  that  for  any  bij ≥ 0,  there  exists  a  positive  vector

xbij  x1bij, … , xnbij
T, such that 

γI +A +Bxbij  ργI +A +Bxbij. (3)

If i  j, then

γ + aii + bii +
k≠i

aik + bik
xkbij

xibij
 ργI +A +B. (4)

Since  the  second  term  of  the  left  side  of  equation  (4)  is  always  non-

negative, it follows that ργI +A +B → ∞ as bii → ∞.

If  i ≠ j,  by  conclusion  2,  ργI +A +B  increases  strictly  monotoni-

cally  along  with  bij.  If  conclusion  3  does  not  hold,  then  ργI +A +B

is  monotonically  increasing  with  an  upper  bound,  and  hence  a  real
number c exists such that 

lim
bij→∞

ργI +A +B  c. (5)

By equation (3), ργI +A +B is the eigenvalue of γI +A +B. Thus

γI +A +Bn-1xbij  ργI +A +Bn-1xbij. (6)

Denote  γI +A +Bn-1  sij ∈ Rn⨯n.  By  equations  (3)  and  (6),  we

have

γ + aii + bii + aij + bij
xjbij

xibij
+ 
k≠i,j

aik + bik
xkbij

xibij


ργI +A +B,

(7)

160 W. Su and L. Guo

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.2.157



and

sjj + sji
xibij

xjbij
+ 
k≠i,j

sjk
xkbij

xjbij
 ργI +A +Bn-1. (8)

It  is  easy  to  observe  that  every  part  of  the  left  side  of  equation  (7)  is
non-negative, thus from equation (5), we can get

xjbij

xibij
→ 0, as bij → ∞,

which implies

xibij

xjbij
→ ∞, as bij → ∞. (9)

Moreover,  it  is  obvious  that  γ - 1I +A +B  is  irreducible,  which

implies

γI +A +Bn-1 > 0.

By  direct  calculations,  it  can  be  easily  checked  that  sji  is  positive  and

monotonically  nondecreasing  along  with  bij.  It  can  be  known  from

equation (9) that when bij → ∞, the left side of equation (8) will tend

to infinity, while the right side tends to cn-1 < ∞, which is a contradic-
tion. Thus

ργI +A +B → ∞,

as bij → ∞ (i ≠ j). This completes the proof of conclusion 3. □

Corollary 1.  For  the  mutualistic  system  of  equation  (2),  there  exists  a

dominant  eigenvalue  dA  for  its  interaction  matrix  A.  Moreover,  for

any given 1 ≤ i, j ≤ n, dA is monotonically increasing along with aij,

and dA → ∞, as aij → ∞. 

Proof. The first part holds by letting B  0 in Lemma 1, and the sec-
ond part holds by letting B ≥ 0 and B ≠ 0. □

Theorem  1  and  Corollary  1  indicate  that  when  the  mutualistic
strength  lies  within  an  appropriate  level,  the  interaction  matrix  will
stay  stable,  while  too  strong  an  interaction  strength  will  destroy  the
stability  of  the  mutualistic  matrix.  Now  we  present  an  example  to  il-
lustrate part of the results of Theorem 1 and Corollary 1. 
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Example 1. Let 

A 

-2 a 0

0 -3 b

c 0 -4

where a, b, c are all positive real numbers. It can be checked that A is
irreducible, whose characteristic polynomial is

f(λ)�detλI -A  λ3 + 9λ2 + 26λ + 24 - abc.

When  a < 2, b < 3, c < 4,  the  Gerschgorin  disk  theorem  states  that
all eigenvalues of A possess negative real parts. If abc  24, then 0 is

an  eigenvalue  of  A,  since  f0  24 - abc.  While  abc > 24,  it  holds

that  f0 < 0, f abc - 24
3

> 0,  and  by  continuity,  f(λ)  0  has  a

positive root, meaning A has a positive eigenvalue.

In mathematics, a matrix is said to be stable if all of its eigenvalues
have  negative  real  parts,  which  means  that  the  states  of  the  corre-
sponding  continuous-time  linear  systems  will  tend  to  the  equilibrium
point under the action of the matrix. Theorem 1 indicates that the sta-
bility  of  the  mutualistic  interaction  matrix  will  be  destroyed  as  the
strength  between  any  two  species  increases,  since  at  least  one  of  its
eigenvalues  will  eventually  be  positive.  However,  since  equation  (2)
possesses a nonlinear structure, it is far from obvious how its stability
can be affected by the stability of the interaction matrix. This will be
answered by the following theorem. 

Theorem 2. Equation (2) possesses a globally asymptotically stable equi-
librium point in R+

n
 if and only if A is stable. 

Proof.  Sufficiency:  Suppose  A  is  stable.  For  equation  (2),  it  is  easy  to
see that the only possible positive equilibrium point is the solution of
the equation Ax + r  0. Suppose 

Ax + r  0, (10)

then  x  -A-1r.  Since  -A  is  a  Z-matrix  and  A  is  stable,  then  -A  is

an M-matrix, and hence -A-1 ≥ 0 by Lemma 8, implying

x  -A-1r ≥ 0.

To prove the positivity of x, one only needs to prove that no entry in

x  is  0.  If  not,  suppose  x  x1, … , xn, N  1, 2, … , n  and

D  i xi  0, i ∈ N;  then  both  D  and  D  N -D  are  nonempty.

By the strong connectivity of equation (2), there exist i ∈ D and j ∈ D
satisfying aji > 0. Thus, one has
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
k1

n

ajkxk  ajj⨯0 +
k≠j

ajkxk ≥ ajixi > 0,

which contradicts equation (10) since r ≥ 0. Therefore, x is the unique
positive equilibrium point.

Next, we prove x is globally asymptotically stable in R+
n . Since -A

is  an  M-matrix,  by  Lemma  9,  there  exists  a  positive  diagonal  matrix

D  diagd1, … , dn,  such  that  DA +ATD  is  negative  definite.  Con-

struct the following Lyapunov function [10]: 

V(x) 
i1

n

di
xi

xi
1 -

xi

x
dx,

then V(x)  0, and V(x) > 0 when x ∈ R+
n - {x}. Since Ax + r  0, the

derivative of V(x) about t along the trajectory of equation (2) is

dV(x)

dt


i1

n

di 1 -
xi

xi
x i 


i1

n

di 1 -
xi

xi
xi -aiixi +

j≠i

aijxj + ri 


i1

n

dixi - xi -aiixi - xi +
j≠i

aijxj - xj 

1

2
x - xTDA +ATDx - x < 0, x ∈ +

n - {x}.

In  addition,  it  is  easy  to  check  that  V(x) → ∞  as  xi → 0  or  ∞  for  any

i  1, … , n,  and  the  global  stability  of  equilibrium  in  R+
n

 is  obtained

by the Lyapunov theorem (Barbashin–Krasovskii theorem, see [13]).

Necessity:  Suppose  x  x1, … , xn  is  the  globally  asymptotically

stable  positive  equilibrium  point.  Then  x  is  the  solution  of  the  equa-

tion Ax + r  0, and thus the Jacobian of equation (2) at x is XA as in

equation (11), where X  diagx1, … , xn is the diagonal matrix with

diagonal entries taking values x and other entries taking values 0: 

a11x1 + r1 +∑j1
n a1jxj⋯ a1ix1 ⋯ a1nx

⋮ ⋮ ⋮

ai1xi ⋯aiixi + ri +∑j1
n aijxj⋯ ainxi

⋮ ⋮ ⋮

an1xn ⋯ anixn ⋯annxn + rn +∑j1
n anjxj

�XA.
(11)
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Since x  is  asymptotically  stable,  by  Lemma 10,  no  eigenvalue  of

XA has a positive real part. Now, we prove that all eigenvalues of XA
have  negative  real  parts.  If  not,  suppose  there  is  at  least  one  eigen-

value of XA whose real part is 0. It is easy to see that all the off-diago-

nal  entries  of  XA  are  non-negative,  and  XA  is  irreducible,  thus  by

Lemma  4,  0  is  the  dominant  eigenvalue  of  XA  and  hence  an  eigen-
value of A. Next, we will show that 0 is also the dominant eigenvalue
of A. 

By Lemma 4, A has a dominant eigenvalue λ  dA. If 0 is not the

dominant  eigenvalue  of  A,  then  λ > 0  and  0  is  the  dominant  eigen-

value  of  A - λI,  and  thus  the  eigenvalue  of  XA - λI.  Suppose

xm  minx1, … , xn;  then  X  xmI +X
c
,  where  X

c
 X - xmI ≥ 0.

Thus by Lemma 6, 

dXA - λI  dXA - λxmI - λX
c
 ≤ dXA - λxmI

 dXA - λxm < dXA  0,

which contradicts the fact that 0 is the eigenvalue of XA - λI. There-

fore, 0 is the dominant eigenvalue of A.
Now, denote t  max1≤i≤naii; then tI +A is a non-negative and ir-

reducible  matrix  and  t  is  the  dominant  eigenvalue  of  tI +A,  since

t + λA  is  an  eigenvalue  of  tI +A,  with  λA  being  any  eigenvalue  of

A. By Lemma 3, t  ρtI +A and there is a positive vector y such that

yTtI +A  tyT.  Thus,  yTA  0.  Since  r ≥ 0  and  at  least  one  entry  is

positive, then 

yTAx + r  yTAx + yTr  yTr > 0,

which contradicts Ax + r  0. Thus, all eigenvalues of XA have nega-

tive real parts. Notice that -XA is a Z-matrix, which implies -XA is

an M-matrix, and by Lemma 7, -X
-1
-XA  A is stable. This com-

pletes the proof. □

Theorem  2  indicates  the  persistence  of  the  mutualistic  system  in
equation  (2)  is  equivalent  to  the  stability  of  its  interaction  matrix.  In
[11], the equivalence between the existence of the positive equilibrium
point  and  the  stability  of  the  mutualistic  interaction  matrix  was
proved  with  the  assumption  that  ri > 0,  i  1, … , n.  Here,  we  carry

out  the  proof  under  a  weaker  assumption  that  at  least  one  intrinsic
growth rate is supposed to be positive. In [10], it has been proved that
if equation (2) has a positive equilibrium point, and if the interaction
matrix is stable, then the positive equilibrium point is globally asymp-
totically  stable  in  R+

n .  In  Theorem  2,  we  also  strictly  prove  that  the
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global  stability  of  the  positive  equilibrium  point  implies  the  stability
of the interaction matrix. Since Corollary 1 indicates that the increase
of the interaction strength between any two species will eventually de-
stroy  the  stability  of  the  interaction  matrix,  then  Theorem  2  shows
that it also destroys the existence of the globally asymptotically stable
positive equilibrium point, or persistence, of equation (2). 

Conclusion3.

It is known that the properties of one large complex system can be es-
sentially  determined  by  the  interactions  among  the  components.  In
this  paper,  we  have  theoretically  investigated  how  the  interaction
strength  determines  the  persistence  of  complex  mutualistic  networks.
We  proved  that  increasing  the  interaction  strength  between  any  two
species  will  finally  destroy  the  stability  of  the  mutualistic  interaction
matrix, which is equivalent to the persistence of mutualistic networks.
On the other hand, our results also indicate that the proper mutualis-
tic  interaction  strength  can  ensure  the  persistence  of  mutualistic
networks.

After  that,  our  results  may  demonstrate  their  own  potential  value
in two ways. First, since mutualism or cooperation ubiquitously exists
in nature, it is necessary to probe strategies to eliminate the instability
of  mutualistic  ecosystems  by  reducing  or  transforming  mutualistic  in-
teractions.  Other  than  that,  as  a  typical  complex  system,  ecosystems
provide some insights into the study of properties of many other com-
plex systems, such as biological systems, economic systems, social sys-
tems, and others. Our results uncover the role of positive interactions
on  ecosystems  with  specific  mutualistic  structure,  which  may  stimu-
late  more  theoretical  explorations  of  systems  with  different  richer  in-
teraction types in the future. 

Appendix

Preliminary LemmasA.

Lemma 1.  [14]  Suppose  G  is  a  directed  graph  and  A  is  its  interaction
matrix. Then G is strongly connected if and only if A is irreducible. 

Lemma 2. [14] Let A, B ∈ Rn⨯n; if A ≤ B, then ρA ≤ ρA ≤ ρ(B). 

Lemma 3. [14] Suppose A is a positive or an irreducible and non-nega-
tive matrix. Then 
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ρ(A) > 0.1.

ρ(A) is an eigenvalue of A.2.

There  are  two  positive  vectors  x, y  such  that  Ax  ρ(A)x  and
yTA  ρ(A)yT.

3.

ρ(A)  is  an  algebraically  simple  eigenvalue  of  A;  that  is,  the  algebraic
multiplicity of ρ(A) is 1. 

4.

Lemma 4.  Let  A  aij  and  suppose  aij ≥ 0  (i ≠ j).  If  A  is  irreducible,

then A has an algebraically simple real eigenvalue dA, called a domi-

nant  eigenvalue,  which  satisfies  dA > Re(λi)  for  every  other  eigen-

value λi of A. 

Proof.  Since  A  is  irreducible  and  aij ≥ 0(i ≠ j),  it  is  easy  to  see  that

there  exists  γ > 1  (such  as  γ  max0≤i≤naii + 1)  such  that  γI +A ≥ 0

and  is  irreducible.  Then  by  Lemma  3,  ργI +A  is  a  positive  eigen-

value of γI +A with algebraic multiplicity 1. For each eigenvalue λiA

of A, γ + λiA is an eigenvalue of γI +A. Denote dA  ργI +A - γ;

then  dA  is  an  eigenvalue  of  A  with  algebraic  multiplicity  1  and  is

larger than the real part of any other eigenvalue of A by the definition

of ργI +A. □

Lemma 5.  Let  A  aij  be  irreducible  and  non-negative.  Then  A +B  is

irreducible  whenever  B ∈ Rn⨯n
 is  non-negative,  and  ρA +B > ρA

whenever B ≥ 0 and B ≠ 0. 

Proof. Since A is irreducible and non-negative, then for any B ≥ 0, 

I +A +Bn-1  I +An-1 +
n - 1

n - 2

I +An-2B +⋯ +Bn-1 ≥ I +An-1 > 0,

where  the  relation  M ≥ N  between  two  matrices  M  and  N  means
M -N ≥ 0. Thus, A +B is irreducible by definition.

For the second part, by Theorem 8.1.18 in [14], it holds that

ρA +B ≥ ρA.

By Lemma 3, there exists a positive vector x such that

A +Bx  ρA +Bx. (A.1)

For B ≥ 0 and B ≠ 0, if ρA +B  ρA, then

ρA +Bx  ρAx  Ax < Ax +Bx  A +Bx, (A.2)
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since ρA  is  also  an  eigenvalue  of A.  But  equation  (A.2)  contradicts

equation (A.1), thus

ρA +B > ρA.□

Lemma 6.  Suppose  A  is  described  as  in  Lemma  4;  then  for  any  B ≥ 0

and B ≠ 0, it holds that dA +B > dA.

Proof. It is easy to see that there exists γ > 1, such that γI +A is irre-
ducible  and  non-negative;  then  by  Lemmas  3–5  we  get

dA +B  ργI +A +B - γ  for  B ≥ 0.  Again  by  Lemma  5  we  have

ργI +A +B > ργI +A for B ≥ 0 and B ≠ 0, thus dA +B > dA. □

Lemma 7. Suppose A is an M-matrix; then for all positive diagonal ma-
trices D, -DA is stable. 

Proof. Since A is an M-matrix, then by Lemma 8, A ∈ Zn is nonsingu-

lar  and  A-1 ≥ 0.  Thus,  for  any  positive  diagonal  matrix  D,  it  holds
that DA ∈ Zn, and that 

DA-1  A-1D-1 ≥ 0.

Then  by  Lemma  8,  DA  is  an  M-matrix,  and  thus  -DA  is  stable  by
definition. □

Lemma 8. [14] Suppose A ∈ Zn; then A is an M-matrix if and only if A

is nonsingular and A-1 ≥ 0. 

Lemma 9. [14] If -A is an M-matrix, there exist positive diagonal ma-

trices D, such that DA +ATD is negative definite. 

Lemma 10.  [13]  Let  x  x  be  an  equilibrium  point  for  the  nonlinear
system 

x  f(x)

where  f :D → Rn
 is  continuously  differentiable  and  D  is  a  neighbor-

hood of x. Let

A 
∂ f

∂x
(x) xx .

Then 

x is asymptotically stable if Re(λi) < 0 for all eigenvalues of A. 1.

x is unstable if Re(λi) > 0 for one or more of the eigenvalues of A. 2.
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