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Abstract—With the fast development of the sensor and network
technology, distributed estimation has attracted more and more
attention, due to its capability in securing communication, in
sustaining scalability, and in enhancing safety and privacy. In
this paper, we consider a least-squares (LS)-based distributed
algorithm build on a sensor network to estimate an unknown
parameter vector of a dynamical system, where each sensor
in the network has partial information only but is allowed to
communicate with its neighbors. Our main task is to generalize
the well-known theoretical results on the traditional LS to the
current distributed case by establishing both the upper bound
of the accumulated regrets of the adaptive predictor and the
convergence of the distributed LS estimator, with the following
key features compared with the existing literature on distributed
estimation: Firstly, our theory does not need the previously
imposed independence, stationarity or Gaussian property on the
system signals, and hence is applicable to stochastic systems with
feedback control. Secondly, the cooperative excitation condition
introduced and used in this paper for the convergence of the
distributed LS estimate is the weakest possible one, which shows
that even if any individual sensor cannot estimate the unknown
parameter by the traditional LS, the whole network can still
fulfill the estimation task by the distributed LS. Moreover, our
theoretical analysis is also different from the existing ones for
distributed LS, because it is an integration of several powerful
techniques including stochastic Lyapunov functions, martingale
convergence theorems, and some inequalities on convex combi-
nation of nonnegative definite matrices.

Index Terms—Least squares, distributed estimation, learning,
prediction, diffusion strategies, cooperative excitation, regret,
martingale theory

I. INTRODUCTION

Distributed estimation algorithms are usually built on a

given sensor network for a complex system, aiming at estimat-

ing an unknown global system parameter vector cooperatively

by the distributed sensors. Each sensor in the network is taken

as a node which can only observe partial data of the whole

system, perform processing individually, and communicate

information only with its neighbors, where the neighbors are

defined by the network topology. In recent years, distributed

estimation over sensor networks has received increasing re-

search attention, and has been widely studied and used in many

areas, e.g., collaborative spectral sensing in cognitive radio
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systems, target localization in biological networks, environ-

mental monitoring, military surveillance, and so on (see e.g.

[1], [2]). Unlike the traditional centralized method, no node

in the network needs to transfer its information to a fusion

center for processing in the distributed case, which is more

robust and scalable since the fusion center in the centralized

method is sensitive and vulnerable to outside attacks. Once

the fusion center is under attack, the entire network could

collapse. In the distributed method, each node in the network

can only exchange data with its neighbors, which may make

the communication over the network possible, enhance the

safety and privacy of the system, improve the estimation

performance, and increase the robustness and scalability of

the system (see e.g. [2], [3]).

It goes without saying that different cooperation strategies

will lead to different distributed estimation algorithms. For

example, the proposed incremental [3]–[6], consensus [7]–

[16], and diffusion [17]–[29] strategies, may be combined

with different estimation algorithms, e.g., least mean squares

(LMS), LS and Kalman filters (KF) [30]–[33], to give rise

to different distributed estimation algorithms. Stability and

performance analyses have also been established for different

distributed estimation algorithms, for example, incremental

LMS [3], [4], consensus LMS [7], [8], diffusion LMS [17]–

[22], incremental LS [5], [6], consensus LS [9]–[11], diffusion

LS [23]–[29], and distributed KF [12]–[16]. In our recent

work (see e.g. [7], [8], [17]), we have given the stability and

performance results for the consensus and diffusion LMS fil-

ters, without imposing the usual independence and stationarity

assumptions for the system signals.

Note that the LS is a most basic, widely used and compre-

hensively studied estimation algorithm in many fields of sci-

ence and engineering. Moreover, when the unknown parameter

is time-invariant, the LS algorithm may generate more accurate

estimates in the transient phase and have faster convergence

speed compared with LMS algorithm. So the LS appears to

be more suitable for applications that require fast speed and

accurate estimates for unknown constant parameters. This is

one of the main motivations for us to consider the LS-based

distributed estimation algorithm in this paper. Another reason

for us to study this problem is that the existing convergence

theory in the literature is far from satisfactory since it can

hardly be applied to non-independent and non-stationary sig-

nals coming from practical complex systems where feedback

loops inevitably exist.

In fact, almost all the existing studies on the distributed

LS (see e.g., [5], [6], [9]–[11], [23]–[29]) require some inde-

pendent, stationary, or Gaussian assumptions for the system
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signals. For examples, an incremental LS estimation strategy

was proposed in [5], and the mean-square performance was

studied for independent regressors. Moreover, [9] presented

a distributed LS algorithm, and gave stability and perfor-

mance analyses for independent noises and regressors. [23]

proposed a diffusion scheme for LS estimation problem, and

analyzed its mean-square convergence under independence

conditions on both the system signals and Gaussian noises.

Furthermore, [24] presented a diffusion LS algorithm, and

proved that the algorithm is asymptotically unbiased and

stable for independent regressors and Gaussian noises. In [25],

a diffusion bias-compensated LS algorithm was developed,

and the closed-form expressions for the residual bias and

the mean-square deviation of the estimates were provided

under independence and stationarity assumptions. In addition,

partial diffusion LS algorithms were proposed in [26], [27],

and the performance results were established for ergodic

signals [26] and independent signals [27]. Moreover, [28]

proposed a reduced communication diffusion LS algorithm for

distributed estimation over multi-agent, and [29] developed

robust diffusion LS algorithms to mitigate the performance

degradation in the presence of impulsive noise. They both

established the performance results under independent signal

assumptions. Some other related papers, e.g., [6], [10], [11],

verified the efficiency of the LS-type algorithms via numerical

simulations. All of these indicate that to substantially relax

the widely imposed independence and stationarity conditions

on the system signals in the analyses of distributed LS,

will inevitably bring challenging difficulties in establishing a

convergence theory.

Fortunately, in the traditional single sensor case, there is a

vast literature on the convergence theory of the classical LS,

which is indeed applicable to stochastic systems with feedback

control. In fact, motivated by the need to establish a rigorous

theory for the well-known LS-based self-tuning regulators pro-

posed by Åström and Wittenmark [34] in stochastic adaptive

control, the convergence study of LS with possible stochastic

feedback signals had received a great deal of attention in the

literature, see e.g., [33], [35]–[42]. At the same time, much

effort had also been devoted to stochastic adaptive control,

see e.g, [39], [41], [43]–[45]. Among the many significant

contributions in this direction, here we only mention that

Lai and Wei [38] established a celebrated convergence result

under a weakest possible decaying excitation condition on the

system signals, and Guo and Chen [42] and Guo [33] finally

resolved the longstanding problem concerning the global sta-

bility and convergence of the LS-based self-tuning regulators.

We remark that the analysis methods including stochastic

Lyapunov functions and martingale convergence theorems,

which are so useful for the analysis of the classical LS, will

also be instrumental for us in investigating the distributed LS

algorithm in the current paper.

In this paper, we will provide a theoretical analysis for a

distributed LS algorithm of diffusion type [13]–[15], where the

diffusion strategy is designed via the so called covariance in-

tersection fusion rule (see, e.g., [46], [47]). In such a diffusion

strategy, each node is only allowed to communicate with its

neighbors, and both the estimates of the unknown parameter

and the inverse of the covariance matrices are diffused between

neighboring nodes. We will generalize the well-known conver-

gence results on the classical LS by establishing both the upper

bound of the accumulated regrets of the adaptive predictor

and the convergence of the distributed LS estimator, with the

following key features compared with the related results in the

existing literature:

• Our theory does not need the usually assumed indepen-

dence, stationarity or Gaussian property on the system

signals, and hence does not exclude the applications of the

theory to stochastic feedback systems, and will also make

it possible for further investigation on related problems

concerning the combination of learning, communication

and control.

• Our theory for the convergence of the distributed LS

is established under a weakest possible cooperative ex-

citation condition which is a natural extension of the

single sensor case. The cooperative excitation condition

introduced in this paper implies that even if any individual

sensor is not able to estimate the unknown parameter, the

distributed LS can still accomplish the estimation task. It

is also considerably weaker than the related cooperative

information condition introduced in our previous work

for the theory of the distributed LMS filters (see e.g. [7],

[8], [17]).

• The mathematical techniques used in our theoretical

analysis are also different from the existing ones for

distributed LS. Besides using the powerful techniques

from the analysis of the classical LS, we also need to

establish some inequalities on convex combination of

nonnegative definite matrices and to use the Ky Fan

convex theorem [48].

The rest of the paper is organized as follows. In Section

II, we present some preliminaries on notations and graph

theory, the observation model, and the distributed LS algorithm

studied in the paper. The main results are stated in Section

III. In Section IV, we provide the proofs of the main results.

Finally, some concluding remarks are given in Section V.

II. PROBLEM FORMULATION

A. Basic Notations

In the sequel, X ∈ R
n is viewed as an n-dimensional

column vector and A ∈ R
m×n is viewed as an m × n-

dimensional matrix. Let A ∈ R
n×n and B ∈ R

n×n be two

symmetric matrices, then A ≥ B(A > B) means A − B
is a positive semidefinite (definite) matrix. Also, let λmax{·}
and λmin{·} denote the largest and the smallest eigenvalues

of the corresponding matrix respectively. For any matrix

X ∈ R
m×n, ‖ X ‖ denotes the operator norm induced by the

Euclidean norm, i.e., (λmax{XXT}) 1
2 , where (·)T denotes

the transpose operator. We use E[·] to denote the mathematical

expectation operator, and E[·|Fk] to denote the conditional

mathematical expectation operator, where {Fk} is a sequence

of nondecreasing σ-algebras [49]. We also use log(·) to denote

the natural logarithm function, and Tr(·) to denote the trace of

the corresponding matrix. Through out the paper, | · | denotes

the determinant of the corresponding matrix, which should
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not be confused with the absolute value of a scalar from the

context.

Let {Ak, k ≥ 0} be a matrix sequence and {bk, k ≥ 0} be a

positive scalar sequence. Then by Ak = O(bk) we mean that

there exists a constant M > 0 such that ‖Ak‖ ≤ Mbk, ∀k ≥ 0,

and by Ak = o(bk) we mean that lim
k→∞

‖Ak‖/bk = 0.

B. Graph Theory

As usual, let the communication structure among sensors be

represented by an undirected weighted graph G = (V , E ,A),
where V = {1, 2, ......, n} is the set of sensors and E ⊆ V ×V
is the set of edges. The structure of the graph G is described by

A = {aij}n×n which is called the weighted adjacency matrix,

where aij > 0 if (i, j) ∈ E and aij = 0 otherwise. Note that

(i, j) ∈ E ⇔ aij > 0. In this paper, we assume that the

elements of the weighted matrix A satisfy aij = aji, ∀i, j =
1, . . . , n, and

∑n
j=1 aij = 1, ∀i = 1, . . . , n. Thus the matrix

A is symmetric and doubly stochastic1.

A path of length ℓ in the graph G is a sequence of nodes

{i1, . . . , iℓ} subject to (ij , ij+1) ∈ E , for 1 ≤ j ≤ ℓ − 1. The

maximum value of the distances between any two nodes in

the graph G is called the diameter of G. Here in this paper, we

assume that the graph is connected, and denote the diameter

of the graph G as DG . Then 1 ≤ DG < ∞ holds. The set of

neighbors of the sensor i is denoted as

Ni = {j ∈ V |(j, i) ∈ E},
and the sensor i can only share information with its neighbor-

ing sensors from Ni.

C. Observation Model

Let us consider a sensor network consisting of n sensors.

Assume that at each time instant k, each sensor i ∈ {1, . . . , n}
in the sensor network receives a noisy scalar measurement

yk+1,i and an m-dimensional regressor ϕk,i ∈ R
m. They are

related by a typical linear stochastic regression model

yk+1,i = ϕT
k,iθ + wk+1,i, k ≥ 0, (1)

where wk+1,i is a random noise process, and θ ∈ R
m is an

unknown parameter vector which needs to be estimated. Here

we assume that at any sensor i ∈ {1, . . . , n}, ϕk,i is Fk-

measurable, where {Fk} is a sequence of nondecreasing σ-

algebras. Many problems from different application areas can

be cast as (1), see, e.g., [3], [30], [31]. At any time instant

k ≥ 1, sensor i uses both the observations yj+1,i and the

regressors ϕj,i(j ≤ k) to estimate the unknown parameter θ,

which can be regarded as a supervised learning problem [50].

Because of its “optimality” and fast convergence rate, the

well-known LS algorithm is one of the most basic and widely

used algorithms in science and technology. The LS estimate at

each sensor i is defined by the following at each time instant

k:

θk,i = arg min
θ∈Rm

k∑

j=1

(yj,i −ϕT
j−1,iθ)

2,

1A matrix is called doubly stochastic, if all elements are nonnegative, both
the sum of each row and the sum of each column equal to 1.

which can be solved explicitly and can be calculated recur-

sively as follows (see e.g. [41]):

θk+1,i = θk,i + bk,iPk,iϕk,i(yk+1,i −ϕT
k,iθk,i), (2)

Pk+1,i = Pk,i − bk,iPk,iϕk,iϕ
T
k,iPk,i, (3)

bk,i = (1 +ϕT
k,iPk,iϕk,i)

−1, (4)

where the initial estimate θ0,i ∈ R
m, and the initial positive

definite matrix P0,i ∈ R
m×m can be chosen arbitrarily. Note

that in practice P0,i is usually set as α0Im, where α0 is a

positive constant, and Im denotes the m × m-dimensional

identity matrix.

The above defined LS algorithm can be used for adaptive

prediction problems. For any i ∈ {1, . . . , n}, and at any time

instant k ≥ 1, the best prediction to the future observation

yk+1,i is the following conditional mathematical expectation:

E[yk+1,i|Fk] = ϕT
k,iθ,

if the noise is a martingale difference sequence with second

moment. Unfortunately, this optimal predictor is unavailable

because θ is unknown. A natural way is to construct an

adaptive predictor ŷk+1,i by using the online LS estimate θk,i,

i.e.,

ŷk+1,i = ϕT
k,iθk,i.

The error between the best predictor and the adaptive predictor

may be referred to as the regret denoted by

Rk,i = (E[yk+1,i|Fk]− ŷk+1,i)
2, (5)

which may not be zero and even may not be small in sample

paths due to the persistent disturbance of the unpredictable

noises in the model. However, one may evaluate the averaged

regrets defined as follows:

1

nt

n∑

i=1

t∑

k=0

Rk,i, (6)

which we are going to show tends to zero as t increases

to infinity under essentially no excitation conditions on the

regressors and no independence, stationarity or Gaussian as-

sumptions on system signals, see Theorem 3.2 below. This is a

clerbrated property that is widely studied in distributed online

learning and optimization problems [51]–[54], but under rather

restrictive assumptions such as boundedness, stationarity or

independence on the system signals. Moreover, different from

[51]–[54], to make the supervised learning result applicable

to prediction or classification problem with unseen data, one

needs the so called generalization ability in theory, which in

turn needs to further study the convergence of the LS estimate

itself.

It is well-known that the estimation error of the above

classical LS has the following upper bound (see [33], [38])

for each sensor i ∈ {1, . . . , n} as k → ∞:

‖θk+1,i−θ‖2 = O

(
log
(
λmax{P−1

0,i }+
∑k

j=0 ‖ϕj,i‖2
)

λmin

{
P−1
0,i +

∑k
j=0 ϕj,iϕ

T
j,i

}
)
, a.s.

(7)
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Consequently, it is easy to see that the LS estimates will

converge to the true parameter if

lim
k→∞

log
(
λmax{P−1

0,i }+
∑k

j=0 ‖ϕj,i‖2
)

λmin

{
P−1
0,i +

∑k
j=0 ϕj,iϕ

T
j,i

} = 0, a.s. (8)

Moreover, examples can be constructed to show that if the

above limit is a nonzero constant, then the LS estimate cannot

converge to the true parameter (see [38]). In this sense, one

can say that the condition (8) is the weakest possible one

for convergence of the classical LS [38]. Despite of this,

the verification of (8) is still a very challenging issue for

stochastic adaptive control systems (see e.g. [33], [34], [38],

[39], [41]). Moreover, for high-dimensional or sparse stochas-

tic regressors, the condition (8) may indeed be not satisfied.

This situation may be improved by exchanging information

among nodes in a sensor network on which the distributed LS

is defined.

D. Distributed LS Algorithm

In this paper, we will consider the following basic class

of distributed LS algorithms of diffusion type, and our main

contribution is to establish a convergence theory for general

correlated, non-stationary and non-Gaussian regression sig-

nals, so that the theory is applicable to control systems.

Algorithm 1 Distributed LS algorithm

For any given sensor i ∈ {1 . . . , n}, begin with an initial

estimate θ0,i ∈ R
m, and an initial positive definite matrix

P0,i ∈ R
m×m. The algorithm is recursively defined at any

iteration k ≥ 0 as follows:

1: Adapt (generate θ̄k+1,i and P̄k+1,i on the bases of

θk,i, Pk,i and ϕk,i, yk+1,i):

θ̄k+1,i = θk,i + bk,iPk,iϕk,i(yk+1,i −ϕT
k,iθk,i), (9)

P̄k+1,i = Pk,i − bk,iPk,iϕk,iϕ
T
k,iPk,i, (10)

bk,i = (1 +ϕT
k,iPk,iϕk,i)

−1, (11)

2: Combine (generate P−1
k+1,i and θk+1,i by a convex com-

bination of P̄−1
k+1,j and θ̄k+1,j):

P−1
k+1,i =

∑

j∈Ni

ajiP̄
−1
k+1,j , (12)

θk+1,i = Pk+1,i

∑

j∈Ni

ajiP̄
−1
k+1,j θ̄k+1,j . (13)

When A = In, the above distributed LS will degenerate to

the classical LS. One may also perform the combination stage

for more steps to improve the performance of the algorithm,

see e.g. [13]. Note that the diffusion strategy used above is

called the covariance intersection fusion rule in (e.g., [46],

[47]), and that the above distributed LS algorithm can be

deduced from the distributed KF algorithms [13]–[15] by

assuming that the state to be estimated is a constant parameter.

In this paper, we are interested in the case where each sensor in

the network expects to estimate the unknown parameter for its

decision, which is a problem widely studied in the literature,

see e.g., [1]–[29]. Here we focus on the scenario where the

individual sensor has insufficient information and capability to

fulfill the estimation task. It is well known that the estimates

and covariance matrices from different sensors may contain

complementary information. Combining these two kinds of

information together may help to achieve a more accurate esti-

mation of the unknown parameter. Moreover, as stated in [13],

the unaware reuse of the same data due to the presence of loops

within the network as well as the possible correlation between

measurements of different sensors may lead to inconsistency

and divergence, which is the primary motivation that leads to

the development of the so-called covariance intersection fusion

rule [46], [47]. Thus, in order to guarantee the convergence of

the estimates for non-independent signals, sometimes it may

not be sufficient enough to only exchange information about

the estimates.

Note that in the above distributed LS, the computation

complexity of each sensor is O(m3). Moreover, every sensor

needs to communicate a total of (m2 + 3m)/2 scalars to its

neighboring nodes, and to store a total of 2m2 + 5m+ n+ 2
scalars locally at each time instant k. The algorithm is going to

be time-consuming when m is very large, and the covariance

intersection fusion rule would only be beneficial when the

number of the parameters is manageable locally. Note that

if the matrix P̄k,i degenerates to a scalar, for examples,

in stochastic gradient-base [41] and LMS-based [30]–[33]

distributed estimation algorithms, the communication com-

plexity will be reduced. However, for those algorithms, the

estimation error either converges slowly to zero or does not

converge to zero at all. Therefore, there is a tradeoff between

the complexity and the convergence rate of the distributed

estimation algorithms. Moreover, the convergence rate would

be “optimal” when P̄k,i is chosen to be the form in the paper.

Furthermore, some existing methods can be used to reduce

the communication complexity and to make the algorithm

suitable for higher dimensional signals, for examples, event-

driven methods [55], partial diffusion methods [21], [26], [27],

and compressed methods [56] and so on.

III. THE MAIN RESULTS

A. Some Preliminaries

For the theoretical analysis, we need the following standard

condition on the noise processes.

Condition 3.1 (Noise condition). For any i ∈ {1, . . . , n}, the

noise sequence {wk,i,Fk} is a martingale difference (where

{Fk} is a sequence of nondecreasing σ-algebras), and there

exists a constant β > 2 such that

sup
k≥0

E[|wk+1,i|β|Fk] < ∞, a.s. (14)

In order to guarantee the convergence of the above dis-

tributed LS algorithm, the following condition on the network

topology is naturally required to avoid isolated nodes in the

network.

Condition 3.2 (Network topology). The graph G is con-

nected.
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Remark 3.1. From Lemma 8.1.2 in [57], it is not difficult to

see that for any two nodes i and j, there exists a path from

i to j with length not less than ℓ if and only if the (i, j)th
entry of the matrix Aℓ is positive. From this, it is easy to see

that each entry of the matrix Aℓ will be positive when ℓ is not

smaller than the diameter of the graph G, i.e., DG , see also

[15].

B. Theoretical Results

For convenience of analysis, we need to introduce the

following notations:

Yk+1
△
= col{yk+1,1, . . . , yk+1,n}, (n× 1)

Φk
△
= diag{ϕk,1, . . . ,ϕk,n}, (mn× n)

Wk+1
△
= col{wk+1,1, . . . , wk+1,n}, (n× 1)

Θ
△
= col{θ, . . . , θ︸ ︷︷ ︸

n

}, (mn× 1)

Θk
△
= col{θk,1, . . . , θk,n}, (mn× 1)

Θ̄k
△
= col{θ̄k,1, . . . , θ̄k,n}, (mn× 1)

Θ̃k
△
= col{θ̃k,1, . . . , θ̃k,n}, (mn× 1)

where θ̃k,i = θ − θk,i,

˜̄
Θk

△
= col{˜̄θk,1, . . . ,

˜̄θk,n}, (mn× 1)

where ˜̄θk,i = θ − θ̄k,i,

bk
△
= diag{bk,1, . . . , bk,n}, (n× n)

ck
△
= bk ⊗ Im, (mn×mn)

Pk
△
= diag{Pk,1, . . . , Pk,n}, (mn×mn)

P̄k
△
= diag{P̄k,1, . . . , P̄k,n}, (mn×mn)

A
△
= A⊗ Im, (mn×mn)

where col{· · · } denotes a vector by stacking the specified

vectors, diag{· · · } is used in a non-standard manner which

means that m×1 column vectors are combined “in a diagonal

manner” resulting in a mn×n matrix, and ⊗ is the Kronecker

product. Note also that Θ is just the n-times replication of

vectors θ, and the matrix A is the weighted adjacency matrix

of the graph G.

Then (1) can be rewritten in the following compact form:

Yk+1 = Φ
T
kΘ+Wk+1, (15)

Similarly, for the distributed LS algorithm we have




Θ̄k+1 = Θk + ckPkΦk(Yk+1 −Φ
T
kΘk),

P̄k+1 = Pk − ckPkΦkΦ
T
kPk,

bk = (In +Φ
T
kPkΦk)

−1,

ck = bk ⊗ Im,

vec{P−1
k+1} = A vec{P̄−1

k+1},
Θk+1 = Pk+1A P̄−1

k+1Θ̄k+1,

(16)

where vec{·} denotes the operator that stacks the blocks of a

block diagonal matrix on top of each other.

Since Θ̃k = Θ − Θk and ˜̄
Θk = Θ − Θ̄k by definition,

substituting (15) into (16), we can get

˜̄
Θk+1 =Θ− Θ̄k+1

=Θ−Θk − ckPkΦk(Φ
T
kΘ+Wk+1 −Φ

T
k Θk)

=(Imn − ckPkΦkΦ
T
k )Θ̃k − ckPkΦkWk+1

=P̄k+1P
−1
k Θ̃k − ckPkΦkWk+1.

Note also that

Pk+1A P̄−1
k+1Θ

=col

{
Pk+1,1

∑

j∈N1

aj1P̄
−1
k+1,jθ, . . . , Pk+1,n

∑

j∈Nn

ajnP̄
−1
k+1,jθ

}
.

Then for each sensor i ∈ {1, 2 . . . , n},

Pk+1,i

∑

j∈Ni

ajiP̄
−1
k+1,jθ =

[
Pk+1,i

(
∑

j∈Ni

ajiP̄
−1
k+1,j

)]
θ = θ.

Thus, Θ = Pk+1A P̄−1
k+1Θ holds. Then we have

Θ̃k+1 =Θ−Θk+1

=Θ− Pk+1A P̄−1
k+1Θ̄k+1

=Pk+1A P̄−1
k+1Θ− Pk+1A P̄−1

k+1Θ̄k+1

=Pk+1A P̄−1
k+1

˜̄
Θk+1

=Pk+1A P−1
k Θ̃k

− Pk+1A P̄−1
k+1ckPkΦkWk+1. (17)

Before establishing a theory on the learning and prediction

behavior of the distributed LS, we first present a critical theo-

rem, which requires no excitation conditions on the regression

process ϕk,i.

Theorem 3.1. Let Condition 3.1 be satisfied, we have as

t → ∞,

1)
t∑

k=0

Θ̃
T
k ΦkbkΦ

T
k Θ̃k = O(log(rt)), a.s.,

2) Θ̃
T
t+1P

−1
t+1Θ̃t+1 = O(log(rt)), a.s.,

where

rt = λmax{P−1
0 }+

n∑

i=1

t∑

k=0

‖ϕk,i‖2. (18)

The detailed proof of Theorem 3.1 is supplied in the next

section. From this, we can obtain the following upper bound of

the accumulated regrets for the distributed LS-based adaptive

predictor.

Theorem 3.2. Let Condition 3.1 be satisfied. Then the

sample paths of the accumulated regrets have the following

bound as t → ∞:

n∑

i=1

t∑

k=0

Rk,i = O(log(rt)), a.s., (19)

provided that ΦT
t PtΦt = O(1), a.s.

The proof of Theorems 3.2 is given in Section IV.

Remark 3.2. We remark that when the regressors at each

node are bounded in the time-averaging sense, then rt will be

of the order O(t), and consequently by Theorem 3.2 , we know
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that the bound on the accumulated regret (19) will be sublinear

with respect to nt, i.e., 1
nt

∑n
i=1

∑t
k=0 Rk,i = O( logt

t
) →

0, as t → ∞, i.e., the averaged regret goes to zero and the

distributed LS algorithm for the prediction problem performs

well. The order O(log(rt)) for the accumulated regrets may be

shown to be the best possible among all adaptive predictors,

as is already known in the traditional single sensor case, see

[58]. The precise constant in O(·) may also be determined if

we have further conditions on the regressors, see Corollary

3.3 in [33] in the single sensor case.

We point out that one can also get precise upper bound for

the expected accumulated regrets for any finite t ≥ 1, which

is stated in the following remark.

Remark 3.3. Let Condition 3.1 be satisfied. Then the ex-

pected accumulated regrets have the following bound for any

t ≥ 1:
n∑

i=1

t∑

k=0

E[Rk,i] ≤ a log(E[rt]) + b,

provided that E[‖ϕk,i‖2] < ∞, ∀k ≥ 0, ∀i ∈ {1, . . . , n}, and

there exists deterministic constants c > 0, σ̄ > 0 such that

‖ΦT
t PtΦt‖ ≤ c, σw ≤ σ̄, where

a = (1 + c)mnσ̄,

b = (1 + c)
{
E[Θ̃T

0 P
−1
0 Θ̃0]− σ̄E[log(|P−1

0 |)]
}
.

Note that

σw
△
=

n∑

i=1

σ2
i , σ2

i

△
= sup

k≥0
E[w2

k+1,i|Fk], (20)

which is finite almost surely by Condition 3.1. The detailed

proof is given in Appendix B.

From Theorem 3.1, we can also obtain the strong consis-

tency of the distributed LS to guarantee the generalization

ability of learning, under the following cooperative excitation

condition.

Condition 3.3 (Cooperative excitation condition). The

growth rate of log(λmax{P−1
k }) is slower than that of

λmin{P−1
k }, in other words,

lim
t→∞

log(rt)

λn,t
min

= 0, a.s., (21)

where rt is defined by (18), and

λn,t
min = λmin

{
n∑

j=1

P−1
0,j +

n∑

j=1

t−DG+1∑

k=0

ϕk,jϕ
T
k,j

}
.

Remark 3.4. Let us give some intuitive explanations for

Condition 3.3 used in the paper. To start with, let us first

consider the extreme case where the regressor process ϕi
j is

identically zero. It is clear that Condition 3.3 is not satisfied,

which is indeed a trivial case where the system is not iden-

tifiable since the observations contain no information about

the unknown parameters. Hence, to estimate the unknown

parameters, some non-zero “excitation” conditions should be

imposed on the regressors ϕi
j , which are usually reflected

in the so called (Fisher) information matrix P−1
k , and now

explicitly required in our Condition 3.3. We remark that in

the traditional single sensor case (where n = 1 and DG = 1),

Condition 3.3 reduces to the well-known Lai-Wei excitation

condition (8) for i = 1, which is known to be the weakest

possible data condition for the convergence of the classical

LS estimates [38]. This condition is much weaker than the

well-known persistence of excitation (PE) condition usually

used in the parameter estimation of finite-dimensional linear

control systems, since the PE condition requires that the

condition number of P−1
k , i.e.,

λmax{P
−1

k
}

λmin{P−1

k
}

is bounded a.s.

for all k ≥ 1. Moreover, it is easy to convince oneself that

the cooperative excitation condition (Condition 3.3) will make

it possible for the distributed LS to consistently estimate the

unknown parameter, even if any individual sensor cannot due

to lack of suitable excitation, e.g., when (8) is not satisfied,

because Condition 3.3 is obviously weaker than (8) for any

i. Finally, we remark that the verification of Condition 3.3 is

straightforward in the ergodic case, since log(rt) is of the order

O(log t), and λn,t
min/t tends to λmin

{∑n
j=1 E[ϕ0,jϕ

T
0,j ]
}

as

t → ∞, which will be positive if the expectation of the

summation of the covariance matrices is positive definite. For

more general correlated non-stationary signals from control

systems, the verification of Condition 3.3 may be conducted

following a similar way as that for the traditional single sensor

case (see, [41]).

Theorem 3.3 below states that if Condition 3.3 holds, then

the distributed LS estimate Θt will converge to the true

unknown parameter.

Theorem 3.3. Let Conditions 3.1 and 3.2 be satisfied, we

have as t → ∞,

‖Θ̃t+1‖2 = O

(
log(rt)

λn,t
min

)
, a.s., (22)

where rt is defined by (18) and λn,t
min is defined in Condition

3.3.

Remark 3.5. The detailed proof of Theorem 3.3 is given

in the next section. We remark that the upper bound of the

estimation error Θ̃t+1 established in Theorem 3.3 does not

need Condition 3.3. It is needed only when the estimation

error Θ̃t+1 is required to approach zero. Moreover, the above

theoretical analysis method can naturally be generalized to

multidimensional cases, e.g. the widely used autoregressive-

moving average with exogenous input (ARMAX) model [41],

where the unknown parameter is a matrix, both the regressors

and observations are stochastic vectors, and the noises are

colored.

Note that the linear stochastic regression model (1) is a

basic hypothesis for our theoretical investigation, which can

be regarded as an approximation of more complex systems and

is widely used and studied in many different fields, e.g., auto-

matic control, signal processing, statistics, adaptive filtering,

distributed estimation, and so on. Note also that the linearity in

the model (1) is only assumed for the unknown parameter θ,

it can be nonlinear in terms of the input and output data in the

regressor ϕk,i. Of course, when the data does not satisfy such a

model, the estimates may be biased and the problem as well as

the corresponding theory should reformulated and investigated.

If we assume that the noise process wk+1,i contains not only
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the observation noise satisfying Condition 3.1, but also some

unknown dynamics (or model bias) which is assumed to be

bounded, then it is not difficult to prove that the above regret

bound will depend on the bound of the unknown dynamics

under the PE condition [41]. Moreover, if we assume that

the observation model contains some types of bias, then the

deviation in the estimates may either be corrected by some

bias-compensation techniques [25], or be approximated by

using a regression model with slowly increasing lags (see [41],

Chapter 9). Furthermore, some model validation methods may

be also used to estimate the bound of the unknown dynamics

(or model bias) when the ideal mathematical model is biased

[59]. In all theses cases, the analyses in this paper should serve

as a basis for further investigation on the related distributed

estimation problems.

Remark 3.6. Let us now compare the above distributed LS

algorithm with centralized methods whereby, at each time in-

stant k, all the n sensors transmit their raw data {yk+1,i,ϕk,i}
to a fusion center for processing to obtain the centralized

estimate θc
k+1. Note that there are many different ways to

construct a centralized algorithm, which may give different

estimation errors. Let us consider a simple and natural way in

the following. Denote

Yk+1
△
= col{yk+1,1, . . . , yk+1,n}, (n× 1)

Wk+1
△
= col{wk+1,1, . . . , wk+1,n}, (n× 1)

Φ
c
k

△
=
(
ϕk,1, · · · , ϕk,n

)
, (m× n)

then one has the following regression model:

Yk+1 = (Φc
k)

Tθ +Wk+1.

Let the centralized LS estimate be defined by the following at

each time instant k:

θc
k = arg min

θ∈Rm

k∑

j=1

[Yj − (Φc
j−1)

Tθ]T [Yj − (Φc
j−1)

Tθ],

which can be calculated recursively as follows:

θc
k+1 = θc

k + PkΦ
c
kBk[Yk+1 − (Φc

k)
Tθc

k],

Pk+1 = Pk − PkΦ
c
kBk(Φ

c
k)

TPk,

Bk = [In + (Φc
k)

TPkΦ
c
k]

−1,

where the initial estimate θc
0 ∈ R

m, and the initial positive

definite matrix P0 ∈ R
m×m can be chosen arbitrarily. Then

by (7), the above centralized LS has the following upper bound

for the estimation error as k → ∞:

‖θc
k+1 − θ‖2

=O

(
log
(
λmax{P−1

0 }+∑k
j=0 ‖Φc

j‖2
)

λmin

{
P−1
0 +

∑k
j=0 Φ

c
j(Φ

c
j)

T

}
)
, a.s.

=O

(
log
(
λmax{P−1

0 }+∑n
i=1

∑k
j=0 ‖ϕj,i‖2

)

λmin

{
P−1
0 +

∑n
i=1

∑k
j=0 ϕj,i(ϕj,i)T

}
)
, a.s.

From this and Theorem 3.3 one can see that both the

convergence condition and the convergence rate of the cen-

tralized algorithm is essentially the same as those for the

distributed algorithm. Moreover, for the centralized algo-

rithm, the computation complexity of the fusion center is

O(m3 + m2n + mn2 + n3), which is of the same order

compared with the computation complexity of Algorithm 1.

Every sensor needs to communicate a total of m+1 scalars to

the fusion center, and the fusion center needs to communicate

a total of m scalars to each sensor and store a total of

(m2 + 3m + n2 + 3n)/2 + mn scalars at each time instant

k. Although the centralized algorithm has some advantages

over the distributed algorithm in terms of communication

complexity, it also has some drawbacks compared with the

distributed case. Firstly, the distributed methods may have

stronger structural robustness compared with the centralized

ones. This is because the centralized algorithm will fail once

the fusion center is broken down by outside attacks, while

the distributed algorithm can still estimate the unknown pa-

rameters even if the communications among some sensors are

interrupted, as long as the network connectivity is maintained.

Secondly, if the fusion center is far away from some sensors,

the communications with the fusion center may not be feasible,

and the transmission of observations and regression vectors

may compromise the safety and privacy of the system even if

the communication is possible. Hence, there may be many

factors need to be considered when we choose to use the

centralized or distributed algorithms.

IV. PROOFS OF THE MAIN RESULTS

A. Proof of Theorem 3.1

To prove Theorem 3.1, we need to establish several lemmas

first. The first lemma below is a key inequality on convex

combination of nonnegative definite matrices.

Lemma 4.1. For any adjacency matrix A = {aij} ∈ R
n×n,

denote A = A⊗Im, and for any nonnegative definite matrices

Qi ∈ R
m×m, i = 1, . . . , n, denote

Q = diag{Q1, . . . , Qn},
Q

′

= diag{Q′

1, . . . , Q
′

n},

where Q
′

i =
n∑

j=1

ajiQj . Then the following inequality holds:

A QA ≤ Q
′

. (23)

Proof: By the definition of A and Q, we can get that

A QA

=




n∑
j=1

a1jaj1Qj · · ·
n∑

j=1

a1jajnQj

n∑
j=1

a2jaj1Qj · · ·
n∑

j=1

a2jajnQj

...
. . .

...
n∑

j=1

anjaj1Qj · · ·
n∑

j=1

anjajnQj




.

In order to prove (23), we only need to prove that for any

unit column vector x ∈ R
mn with ‖x‖ = 1, xTA QA x ≤

xTQ
′

x holds. Denote x = col{x1, x2, . . . , xn} with xi ∈ R
m,
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then by the Schwarz inequality and noticing that Qj ≥ 0,∑n
j=1 aij = 1, and aji = aij , (i, j = 1, . . . , n), we have

xT
A QA x

=

n∑

p=1

n∑

q=1

n∑

j=1

apjajqx
T
p Qjxq

=
n∑

p=1

n∑

q=1

n∑

j=1

√
apjajqx

T
p Q

1
2

j · √apjajqQ
1
2

j xq

≤
{

n∑

p=1

n∑

q=1

n∑

j=1

apjajqx
T
p Qjxp

} 1
2

·
{

n∑

p=1

n∑

q=1

n∑

j=1

apjajqx
T
q Qjxq

} 1
2

=

{
n∑

p=1

n∑

j=1

apjx
T
p Qjxp

} 1
2
{

n∑

q=1

n∑

j=1

ajqx
T
q Qjxq

} 1
2

=

n∑

i=1

n∑

j=1

ajix
T
i Qjxi

=xTQ
′

x,

which completes the proof.

By Lemma 4.1, we can obtain the following result.

Lemma 4.2. For any adjacency matrix A = {aij} ∈ R
n×n,

denote A = A⊗ Im. Then for any k ≥ 1,

A P̄−1
k+1A ≤ P−1

k+1, (24)

and

A Pk+1A ≤ P̄k+1, (25)

holds, where P̄k+1 and Pk+1 are defined in (16).

Proof: By taking Qi = P̄−1
k+1,i ≥ 0 and noticing P−1

k+1,i =∑n
j=1 ajiP̄

−1
k+1,j = Q

′

i, we know from Lemma 4.1 that

A P̄−1
k+1A ≤ P−1

k+1,

holds. To prove (25), we first assume that A is invertible.

Then by Lemma A.1 in Appendix A, it is easy to see that

A Pk+1A ≤ P̄k+1.

Next, we consider the case where A is not invertible. Since

the number of eigenvalues of the matrix A is finite, then exists

a constant ε∗ ∈ (0, 1) such that the perturbed adjacency matrix

A ε = A + εImn = {aεij} will be invertible for any 0 < ε <
ε∗. By the definition of A ε, we know that A ε is symmetric

and the sums of each columns and rows of the matrix A ε are

all 1 + ε. Then we define

(P ε
k+1,i)

−1 =
n∑

j=1

aεjiP̄
−1
k+1,j ,

and we can denote P ε
k+1 = diag{P ε

k+1,1, . . . , P
ε
k+1,n} since

(P ε
k+1,i)

−1 defined above is invertible. Similar to the proof of

Lemma 4.1, for any unit column vector x ∈ R
mn, we have

xT
A

εP̄−1
k+1A

εx

≤
{

n∑

p=1

n∑

q=1

n∑

j=1

aεpja
ε
jqx

T
p P̄

−1
k+1,jxp

} 1
2

·
{

n∑

p=1

n∑

q=1

n∑

j=1

aεpja
ε
jqx

T
q P̄

−1
k+1,jxq

} 1
2

=(1 + ε)

n∑

i=1

n∑

j=1

aεjix
T
i P̄

−1
k+1,jxi

=(1 + ε)xT (P ε
k+1)

−1x.

Consequently, we have A εP̄−1
k+1A

ε ≤ (1+ε)(P ε
k+1)

−1. Since

A
ε is invertible, we know from Lemma A.1 in Appendix A

that

A
εP ε

k+1A
ε ≤ (1 + ε)P̄k+1.

By taking ε → 0 on both sides of the above equation, we can

obtain that

lim
ε→0

A
εP ε

k+1A
ε = A Pk+1A ≤ lim

ε→0
(1 + ε)P̄k+1 = P̄k+1.

This completes the proof.

To accomplish the proof of Theorem 3.1, we also need the

following inequality.

Lemma 4.3. For any adjacency matrix A = {aij} ∈ R
n×n,

and for any k ≥ 1,

|P̄−1
k+1| ≤ |P−1

k+1|, (26)

holds, where P̄k+1 and Pk+1 are defined in (16).

Proof: Since

P−1
k+1 =




n∑
j=1

aj1P̄
−1
k+1,j · · · 0

...
. . .

...

0 · · ·
n∑

j=1

ajnP̄
−1
k+1,j




,

and

P̄−1
k+1 =



P̄−1
k+1,1 · · · 0

...
. . .

...

0 · · · P̄−1
k+1,n


 ,

by Lemma A.2 in Appendix A and noticing the definition of

the adjacency matrix A = {aij}, we can see that

|P−1
k+1| =

n∏

i=1

∣∣∣∣∣

n∑

j=1

ajiP̄
−1
k+1,j

∣∣∣∣∣

≥
n∏

i=1

|P̄−1
k+1,1|a1i |P̄−1

k+1,2|a2i · · · |P̄−1
k+1,n|ani

=|P̄−1
k+1,1|

n∑

i=1

a1i |P̄−1
k+1,2|

n∑

i=1

a2i · · · |P̄−1
k+1,n|

n∑

i=1

ani

=|P̄−1
k+1,1| · |P̄−1

k+1,2| · · · |P̄−1
k+1,n|

=|P̄−1
k+1|,

which completes the proof.

To prove Theorem 3.1, we also need the following critical
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lemma.

Lemma 4.4. Let Condition 3.1 be satisfied. Then the dis-

tributed LS defined by (15) and (16) satisfies the following

relationship as t → ∞:

Θ̃
T
t+1P

−1
t+1Θ̃t+1

+ [1 + o(1)]
t∑

k=0

Θ̃
T
kΦkbkΦ

T
k Θ̃k

+ [1 + o(1)]
t∑

k=0

Θ̃
T
kP

−1
k ∆k+1P

−1
k Θ̃k

≤σw log(|P−1
t+1|) + o(log(|P−1

t+1|)) +O(1), a.s., (27)

where bk = (In + Φ
T
kPkΦk)

−1, ck = bk ⊗ Im,∆k+1
△
=

P̄k+1 − A Pk+1A ≥ 0 by Lemma 4.2, and σw is defined by

(20).

Proof: Since bk = (In+Φ
T
kPkΦk)

−1 and ck = bk⊗Im,

then by (17), we know that

Θ̃k+1 = Pk+1A P−1
k Θ̃k − Pk+1A P̄−1

k+1ckPkΦkWk+1.

Hence, we have the following expansion for the stochastic

Lyapunov function Vk = Θ̃
T
kP

−1
k Θ̃k:

Vk+1 =Θ̃
T
k+1P

−1
k+1Θ̃k+1

=(Θ̃T
k P

−1
k A Pk+1 −W T

k+1Φ
T
k PkckP̄

−1
k+1A Pk+1)

· (A P−1
k Θ̃k − A P̄−1

k+1ckPkΦkWk+1)

=Θ̃
T
k P

−1
k A Pk+1A P−1

k Θ̃k

− 2Θ̃T
kP

−1
k A Pk+1A P̄−1

k+1ckPkΦkWk+1

+W T
k+1Φ

T
kPkckP̄

−1
k+1A Pk+1A P̄−1

k+1

· ckPkΦkWk+1. (28)

Now, we proceed to estimate the right-hand-side (RHS) of

(28) term by term. Firstly, we know that

Θ̃
T
kP

−1
k A Pk+1A P−1

k Θ̃k

=Θ̃
T
kP

−1
k P̄k+1P

−1
k Θ̃k − Θ̃

T
kP

−1
k ∆k+1P

−1
k Θ̃k

=Θ̃
T
kP

−1
k (Pk − PkΦkbkΦ

T
kPk)P

−1
k Θ̃k

− Θ̃
T
k P

−1
k ∆k+1P

−1
k Θ̃k

=Θ̃
T
kP

−1
k Θ̃k − Θ̃

T
k ΦkbkΦ

T
k Θ̃k

− Θ̃
T
k P

−1
k ∆k+1P

−1
k Θ̃k

=Vk − Θ̃
T
k ΦkbkΦ

T
k Θ̃k − Θ̃

T
kP

−1
k ∆k+1P

−1
k Θ̃k. (29)

Moreover, by the (block) diagonal property of bk, ck,Pk

and Φk, we have

ckPk = Pkck, Φ
T
k ck = bkΦ

T
k , ckΦk = Φkbk. (30)

By Lemma A.3 in Appendix A and let A = P−1
k , B =

Φk, C = Φ
T
k and D = In respectively, it is easy to see that

(P−1
k +ΦkΦ

T
k )

−1

=Pk − PkΦk(In +Φ
T
kPkΦk)

−1
Φ

T
kPk

=Pk − PkΦkbkΦ
T
k Pk

=P̄k+1.

From this, we have P̄−1
k+1 = P−1

k + ΦkΦ
T
k . Thus, we can

estimate the second term on the RHS of (28) as follows:

Θ̃
T
kP

−1
k A Pk+1A P̄−1

k+1ckPkΦkWk+1

=Θ̃
T
kP

−1
k A Pk+1A (P−1

k +ΦkΦ
T
k )ckPkΦkWk+1

=Θ̃
T
kP

−1
k A Pk+1A ckΦkWk+1

+ Θ̃
T
k P

−1
k A Pk+1A ΦkΦ

T
k ckPkΦkWk+1

=Θ̃
T
kP

−1
k A Pk+1A ckΦkWk+1

+ Θ̃
T
k P

−1
k A Pk+1A Φkbk(In +Φ

T
kPkΦk)Wk+1

− Θ̃
T
k P

−1
k A Pk+1A ΦkbkWk+1

=Θ̃
T
kP

−1
k A Pk+1A ckΦkWk+1

+ Θ̃
T
k P

−1
k A Pk+1A ΦkWk+1

− Θ̃
T
k P

−1
k A Pk+1A ΦkbkWk+1

=Θ̃
T
kP

−1
k A Pk+1A ΦkWk+1

=Θ̃
T
kP

−1
k P̄k+1ΦkWk+1 − Θ̃

T
k P

−1
k ∆k+1ΦkWk+1. (31)

As for the last term on the RHS of (28), by A Pk+1A ≤
P̄k+1, we can estimate it as follows:

W T
k+1Φ

T
kPkckP̄

−1
k+1A Pk+1A P̄−1

k+1ckPkΦkWk+1

≤W T
k+1Φ

T
kPkck(P

−1
k +ΦkΦ

T
k )ckPkΦkWk+1

=W T
k+1Φ

T
kPkc

2
kΦkWk+1

+W T
k+1Φ

T
kPkckΦkΦ

T
k ckPkΦkWk+1

=W T
k+1b

2
kΦ

T
k PkΦkWk+1

+W T
k+1(In +Φ

T
kPkΦk)b

2
kΦ

T
k PkΦkWk+1

−W T
k+1b

2
kΦ

T
kPkΦkWk+1

=W T
k+1bkΦ

T
k PkΦkWk+1. (32)

By (29), (31) and (32), we can get from (28) that

Vk+1 ≤Vk − Θ̃
T
k ΦkbkΦ

T
k Θ̃k − Θ̃

T
k P

−1
k ∆k+1P

−1
k Θ̃k

− 2Θ̃T
kP

−1
k P̄k+1ΦkWk+1

+ 2Θ̃T
kP

−1
k ∆k+1ΦkWk+1

+W T
k+1bkΦ

T
kPkΦkWk+1. (33)

Summing from k = 0 to t yields

Vt+1 +
t∑

k=0

Θ̃
T
k ΦkbkΦ

T
k Θ̃k

+

t∑

k=0

Θ̃
T
kP

−1
k ∆k+1P

−1
k Θ̃k

≤V0 − 2

t∑

k=0

Θ̃
T
kP

−1
k P̄k+1ΦkWk+1

− 2

t∑

k=0

Θ̃
T
kP

−1
k (−∆k+1)ΦkWk+1

+

t∑

k=0

W T
k+1bkΦ

T
k PkΦkWk+1. (34)

Next, we estimate the last three terms on the RHS of

(34) separately. By Condition 3.1, and Θ̃
T
k P

−1
k P̄k+1Φk ∈
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Fk, Θ̃
T
kP

−1
k (−∆k+1)Φk ∈ Fk, we can use the martingale

estimation theorem (Theorem 2.8 in [41]) to get the following

estimation for any δ > 0,

t∑

k=0

Θ̃
T
kP

−1
k P̄k+1ΦkWk+1

=O

({
t∑

k=0

‖Θ̃T
kP

−1
k P̄k+1Φk‖2

} 1
2
+δ)

a.s, (35)

and

t∑

k=0

Θ̃
T
kP

−1
k (−∆k+1)ΦkWk+1

=O

({
t∑

k=0

‖Θ̃T
kP

−1
k ∆k+1Φk‖2

} 1
2
+δ)

a.s. (36)

To further analyze (35) and (36), we note from (30) and the

definitions of P̄k+1 and bk that

P−1
k P̄k+1Φk

=Φk − ckΦkΦ
T
k PkΦk

=Φk − ckΦk(In +Φ
T
kPkΦk) + ckΦk

=Φkbk.

Hence, it is easy to see that

‖Θ̃T
kP

−1
k P̄k+1Φk‖2

=Θ̃
T
kP

−1
k P̄k+1ΦkΦ

T
k P̄k+1P

−1
k Θ̃k

=Θ̃
T
kΦkb

2
kΦ

T
k Θ̃k

≤Θ̃
T
kΦkbkΦ

T
k Θ̃k, (37)

where for the last inequality we have used the fact that bk ≤
In. By taking 0 < δ < 1

2 , we have from (35) and (37) that

t∑

k=0

Θ̃
T
k P

−1
k P̄k+1ΦkWk+1

=O(1) + o

({
t∑

k=0

‖Θ̃T
kP

−1
k P̄k+1Φk‖2

})

=O(1) + o

({
t∑

k=0

Θ̃
T
k ΦkbkΦ

T
k Θ̃k

})
a.s. (38)

To further analyze (36), we now prove that

∆k+1ΦkΦ
T
k ∆k+1 ≤ ∆k+1. (39)

For this, we need only to prove that

∆
1
2

k+1ΦkΦ
T
k∆

1
2

k+1 ≤ Imn.

Since ∆k+1 = P̄k+1 −A Pk+1A ≤ P̄k+1, by Lemma A.1 in

Appendix A, we have

∆
1
2

k+1ΦkΦ
T
k∆

1
2

k+1

≤λmax{∆
1
2

k+1ΦkΦ
T
k∆

1
2

k+1} · Imn

=λmax{ΦT
k∆k+1Φk} · Imn

≤λmax{ΦT
k P̄k+1Φk} · Imn

=λmax{ΦT
k (Pk − ckPkΦkΦ

T
k Pk)Φk} · Imn

=λmax{ΦT
kPkΦk − bk(Φ

T
kPkΦk)

2} · Imn

=λmax{bkΦT
k PkΦk} · Imn < Imn.

Hence, we have (39), and so we have

‖Θ̃T
kP

−1
k ∆k+1Φk‖2

=Θ̃
T
kP

−1
k ∆k+1ΦkΦ

T
k∆k+1P

−1
k Θ̃k

≤Θ̃
T
kP

−1
k ∆k+1P

−1
k Θ̃k. (40)

By taking 0 < δ < 1
2 , we know from (36) and (40) that

t∑

k=0

Θ̃
T
k P

−1
k (−∆k+1)ΦkWk+1

=O(1) + o

({
t∑

k=0

‖Θ̃T
kP

−1
k ∆k+1Φk‖2

})

=O(1) + o

({
t∑

k=0

Θ̃
T
kP

−1
k ∆k+1P

−1
k Θ̃k

})
a.s. (41)

We now proceed to estimate the last term in (34). Firstly,

we know that

W T
k+1bkΦ

T
kPkΦkWk+1

≤‖bkΦT
kPkΦk‖ · ‖Wk+1‖2

=λmax{bkΦT
kPkΦk} ·

{
n∑

i=1

w2
k+1,i

}
. (42)

Following a similar proof idea in the traditional single

sensor case ( [38], see also [41]), from P̄k+1 = Pk −
ckPkΦkΦ

T
kPk, we have P−1

k = P̄−1
k+1(Imn − ckPkΦkΦ

T
k ).

By taking determinants on both sides of the above identity, and

noticing 0 ≤ bkΦ
T
kPkΦk ≤ In and Lemma A.1 in Appendix

A, we have

|P−1
k | =|P̄−1

k+1| · |Imn − ckPkΦkΦ
T
k |

=|P̄−1
k+1| · |In − bkΦ

T
kPkΦk|

=|P̄−1
k+1| ·

{
n∏

i=1

(1− bk,iϕ
T
k,iPk,iϕk,i)

}

≤|P̄−1
k+1| · (1− max

i=1,...,n
{bk,iϕT

k,iPk,iϕk,i})

=|P̄−1
k+1| · (1− λmax{bkΦT

kPkΦk}).

Moreover, we know from Lemma 4.3 that

λmax{bkΦT
kPkΦk} ≤

|P̄−1
k+1| − |P−1

k |
|P̄−1

k+1|

=1− |P−1
k |

|P̄−1
k+1|

≤1− |P−1
k |

|P−1
k+1|

≤
|P−1

k+1| − |P−1
k |

|P−1
k+1|

.
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Therefore

t∑

k=0

λmax{bkΦT
kPkΦk} ≤

t∑

k=0

|P−1
k+1| − |P−1

k |
|P−1

k+1|

≤
t∑

k=0

∫ |P−1

k+1
|

|P−1

k
|

dx

x

= log(|P−1
t+1|)− log(|P−1

0 |). (43)

By the Cr-inequality and the Lyapunov inequality [60], it

is easy to see that for any α ∈ (2,min(β, 4)],

sup
k

E

[(
n∑

i=1

w2
k+1,i − E

[
n∑

i=1

w2
k+1,i

∣∣∣∣∣Fk

])α

2
∣∣∣∣∣Fk

]

≤2 sup
k

E

[
n∑

i=1

|wk+1,i|α
∣∣∣∣∣Fk

]
< ∞, a.s.

Consequently, by using the martingale estimation theorem

(Theorem 2.8 in [41]), we have for any ∀η > 0,

t∑

k=0

λmax{bkΦT
kPkΦk}

·
{

n∑

i=1

w2
k+1,i − E

[
n∑

i=1

w2
k+1,i

∣∣∣∣∣Fk

]}

=O

(
St

(
α

2

){
log

(
St

(
α

2

)
+ e

)} 2
α
+η)

, a.s., (44)

where

St

(
α

2

)
△
=

[
t∑

k=0

(λmax{bkΦT
k PkΦk})

α

2

] 2
α

.

Since bkΦ
T
kPkΦk ≤ In and α

2 > 1, we have from (43) that

St

(
α

2

)
= O(1) +O((log |P−1

t+1|)
2
α ).

From this, we can get from (42)-(44) that

t∑

k=0

W T
k+1bkΦ

T
kPkΦkWk+1

≤
n∑

i=1

σ2
i

t∑

k=0

λmax{bkΦT
kPkΦk}+ o(log |P−1

t+1|) +O(1)

≤σw log |P−1
t+1|+ o(log |P−1

t+1|) +O(1).

Finally, substituting this together with (38) and (41) into

(34), we know that the desired result (27) is true. This

completes the proof.

Proof of Theorem 3.1.

Proof: By the definitions of P̄−1
t,i and P−1

t,i , it is easy to

know that for any t ≥ 0,

P−1
t+1,i =

n∑

j=1

ajiP̄
−1
t+1,j

=

n∑

j=1

aji(P
−1
t,j +ϕt,jϕ

T
t,j). (45)

Consequently, we have

max
1≤i≤n

λmax{P−1
t+1,i}

≤ max
1≤i≤n

n∑

j=1

aji

(
λmax{P−1

t,j }+ λmax{ϕt,jϕ
T
t,j}
)

≤ max
1≤i≤n

λmax{P−1
t,i }

n∑

j=1

aji +

n∑

j=1

λmax{ϕt,jϕ
T
t,j}

= max
1≤i≤n

λmax{P−1
t,i }+

n∑

j=1

‖ϕt,j‖2

≤ · · ·

≤ max
1≤i≤n

λmax{P−1
0,i }+

n∑

j=1

t∑

k=0

‖ϕk,j‖2

=λmax{P−1
0 }+

n∑

j=1

t∑

k=0

‖ϕk,j‖2. (46)

From (46) and the connection between determinant and

eigenvalues of a matrix, it is easy to conclude that

log(|P−1
t+1|) ≤mn log

(
max
1≤i≤n

λmax{P−1
t+1,i}

)

≤mn log(rt). (47)

Consequently, Theorem 3.1 follows from this and Lemma

4.4 immediately.

B. Proof of Theorem 3.2

By the definition of bk in (16), we know that

ΦkΦ
T
k = ΦkbkΦ

T
k +Φk(bkΦ

T
kPkΦk)Φ

T
k .

Then by noticing that bk,Φk and Pk are (block) diagonal

matrices, and Φ
T
kPkΦk = O(1), a.s., we know that

n∑

i=1

t∑

k=0

Rk,i

=

n∑

i=1

t∑

k=0

(ϕT
k,iθ̃k,i)

2

=

t∑

k=0

Θ̃
T
kΦkΦ

T
k Θ̃k

=

t∑

k=0

Θ̃
T
kΦkbkΦ

T
k Θ̃k +

t∑

k=0

Θ̃
T
kΦk(bkΦ

T
k PkΦk)Φ

T
k Θ̃k

=

t∑

k=0

Θ̃
T
kΦkbkΦ

T
k Θ̃k +

t∑

k=0

Θ̃
T
kΦkb

1
2

k (Φ
T
kPkΦk)b

1
2

k Φ
T
k Θ̃k

=O

(
t∑

k=0

Θ̃
T
k ΦkbkΦ

T
k Θ̃k

)
. (48)

Substituting this into Theorem 3.1 1), we conclude that (19)

holds.

C. Proof of Theorem 3.3

For ease of representation, let a
(s)
ij be the (i, j)-th entry of

the matrix As, s ≥ 1. Note that a
(1)
ij = aij . By Condition 3.2
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and Remark 3.1, we know that a
(DG)
ji ≥ amin > 0, where

amin = min
i,j∈V

a
(DG)
ij > 0, and DG is the diameter of the graph

G. Consequently, it is not difficult to see that for any k > DG ,

a
(k)
ji ≥ amin holds.

By (16), it is easy to see that for any t ≥ 0,

vec{P−1
t+1}

=A vec{P̄−1
t+1}

=A vec{P−1
t }+ A vec{ΦtΦ

T
t }

= · · ·

=A
t+1vec{P−1

0 }+
t∑

k=0

A
t−k+1vec{ΦkΦ

T
k }, (49)

which implies that for any t ≥ DG ,

P−1
t+1,i =

n∑

j=1

a
(t+1)
ji P−1

0,j +

n∑

j=1

t∑

k=0

a
(t−k+1)
ji ϕk,jϕ

T
k,j

≥
n∑

j=1

a
(t+1)
ji P−1

0,j +

n∑

j=1

t−DG+1∑

k=0

a
(t−k+1)
ji ϕk,jϕ

T
k,j

≥amin

n∑

j=1

P−1
0,j + amin

n∑

j=1

t−DG+1∑

k=0

ϕk,jϕ
T
k,j , (50)

holds. From this, we conclude that

λmin{P−1
t+1} ≥ aminλmin

{
n∑

j=1

P−1
0,j +

n∑

j=1

t−DG+1∑

k=0

ϕk,jϕ
T
k,j

}
.

Note also that

‖Θ̃t+1‖2 ≤ Θ̃
T
t+1

[
P−1

t+1

λmin{P−1
t+1}

]
Θ̃t+1. (51)

Hence, by (51), and 2) in Theorem 3.1, we know that

Theorem 3.3 holds.

V. CONCLUDING REMARKS

In this paper, we have established a convergence theory for

a basic class of distributed LS algorithms, under quite general

conditions on the measured information or data used in the

estimation. The accumulated regret of adaptive predictors has

been shown to have a celebrated logarithm increase without

any excitation condition imposed on the system data, and the

convergence rate of the distributed LS estimates has also been

established under a cooperative excitation condition, which can

be regarded as an extension of the weakest possible excitation

condition known for the convergence of the classical LS.

Neither independence and stationarity, nor Gaussian property,

are required in our results, which makes it possible for our

theory to be applicable to feedback control systems, and to

lay a foundation for further investigation on related problems

concerning the combination of learning, communication and

control. Moreover, the cooperative excitation condition intro-

duced and used in the paper indicates that the distributed

LS can fulfill the estimation task cooperatively, even if any

individual sensor cannot due to lack of necessary excitation.

Of course, there are still a number of interesting problems for

further research, for examples, to consider other distributed

estimation algorithms including ones based on forgetting fac-

tor LS or Kalman filter for tracking unknown time-varying

signals (e.g. [32]), to investigate the case where both of the

measurements and regressors contain noises (e.g. [61]), and to

combine distributed learning with distributed control problems,

etc.

APPENDIX A

SOME BASIC LEMMAS

Lemma A.1. [60] Let A ∈ R
d×s and B ∈ R

s×d be two

matrices. Then the nonzero eigenvalues of the matrices AB
and BA are the same, and |Id + AB| = |Is + BA| holds.

Moreover, if d = s, then |AB| = |A| · |B| = |BA|,Tr(A) =
Tr(AT ),Tr(AB) = Tr(BA). Furthermore, if A and B are

positive definite matrices with A ≥ B, then A−1 ≤ B−1.

Lemma A.2. (Ky Fan Convex Theorem) [48] For any non-

negative definite matrices Ai ∈ R
m×m(i = 1, . . . , n), and any

constants 0 ≤ λi ≤ 1(i = 1, . . . , n) satisfying
∑n

i=1 λi = 1,

the following inequality holds:

|λ1A1 + λ2A2 + · · ·+ λnAn| ≥ |A1|λ1 |A2|λ2 . . . |An|λn .

We remark that this lemma is exactly Lemma 1 in [48]

for n = 2. For n > 2, this lemma can be proved easily by

induction.

Lemma A.3. [60] For any matrices A,B,C and D with

suitable dimensions,

(A+BDC)−1 = A−1 −A−1B(D−1 + CA−1B)−1CA−1,

holds, provided that the relevant matrices are invertible.

Lemma A.4. [60] For any scalar sequence aj ≥ 0, (j =
1, . . . ,m), the following Cr-inequality holds:

(
m∑

j=1

aj

)r

≤





mr−1
m∑
j=1

arj , r ≥ 1,

m∑
j=1

arj , 0 ≤ r ≤ 1.

APPENDIX B

PROOF OF REMARK 3.3

Similar to the proof of Lemma 4.4, here we consider the

following Lyapunov function:

V̄k = E[Θ̃T
k P

−1
k Θ̃k].

Since ∆k+1 = P̄k+1 − A Pk+1A ≥ 0 and {ωk,i,Fk} is a

martingale difference sequence, it is not difficult to convince

oneself that one can take mathematical expectations on both

sides of (33) to arrive at the following relationship:

V̄k+1 ≤V̄k − E[Θ̃T
k ΦkbkΦ

T
k Θ̃k]− E[Θ̃T

k P
−1
k ∆k+1P

−1
k Θ̃k]

− 2E[Θ̃T
k P

−1
k P̄k+1ΦkWk+1]

+ 2E[Θ̃T
k P

−1
k ∆k+1ΦkWk+1]

+ E[W T
k+1bkΦ

T
k PkΦkWk+1]

≤V̄k − E[Θ̃T
k ΦkbkΦ

T
k Θ̃k]

− 2E[Θ̃T
k P

−1
k A Pk+1A ΦkWk+1]

+ E[W T
k+1bkΦ

T
k PkΦkWk+1]
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=V̄k − E[Θ̃T
k ΦkbkΦ

T
k Θ̃k]

− 2E[E[Θ̃T
k P

−1
k A Pk+1A ΦkWk+1|Fk]]

+ E[W T
k+1bkΦ

T
kPkΦkWk+1]

=V̄k − E[Θ̃T
k ΦkbkΦ

T
k Θ̃k]

+ E[W T
k+1bkΦ

T
kPkΦkWk+1].

Similar to the proof of Lemma 4.4 and Theorem 3.1,

summing from k = 0 to t yields

V̄t+1 +

t∑

k=0

E[Θ̃T
k ΦkbkΦ

T
k Θ̃k]

≤V̄0 +

t∑

k=0

E[W T
k+1bkΦ

T
kPkΦkWk+1]

≤V̄0 + E[σw log(|P−1
t+1|)]− E[σw log(|P−1

0 |)]
≤V̄0 +mnσ̄E[log(rt)]− σ̄E[log(|P−1

0 |)]
≤V̄0 +mnσ̄ log(E[rt])− σ̄E[log(|P−1

0 |)], (52)

where for the last inequality we have used the fact that log(·)
is a concave function.

Since there exists a deterministic constant c > 0 such that

‖ΦT
t PtΦt‖ ≤ c, the following result holds by (48) and (52):

n∑

i=1

t∑

k=0

E[Rk,i]

=
t∑

k=0

E[Θ̃T
k ΦkΦ

T
k Θ̃k]

≤(1 + c)

t∑

k=0

E[Θ̃T
k ΦkbkΦ

T
k Θ̃k]

≤(1 + c)
{
mnσ̄ log(E[rt]) + E[Θ̃T

0 P
−1
0 Θ̃0]

− σ̄E[log(|P−1
0 |)]

}
.

This completes the proof.
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