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Abstract In the classical theory of self-tuning regulators, it always requires that the conditional

variances of the systems noises are bounded. However, such a requirement may not be satisfied when

modeling many practical systems, and one significant example is the well-known ARCH (autoregressive

conditional heteroscedasticity) model in econometrics. The aim of this paper is to consider self-tuning

regulators of linear stochastic systems with both unknown parameters and conditional heteroscedas-

tic noises, where the adaptive controller will be designed based on both the weighted least-squares

algorithm and the certainty equivalence principle. The authors will show that under some natural con-

ditions on the system structure and the noises with unbounded conditional variances, the closed-loop

adaptive control system will be globally stable and the tracking error will be asymptotically optimal.

Thus, this paper provides a significant extension of the classical theory on self-tuning regulators with

expanded applicability.

Keywords ARCH model, conditional heteroscedasticity, convergence, self-tuning regulator, weighted

least-squares algorithm.

1 Introduction

In the mathematical modeling of practical complex dynamical systems, varies structural
and/or disturbance uncertainties are bound to exist, and control theory is a scientific discipline
that tries to control or regulate the behaviors of such systems. In the history of automatic
control, varies control methods have been developed to deal with internal and external un-
certainties. Roughly speaking, there are basically three ways to deal with uncertainties, i.e.,
learning (or systems identification or estimation), feedback (and feedforward), and the combina-
tion of both. The online combination of learning and feedback is usually called adaptive control
whose purpose is to achieve the desired control objective in the presence of uncertainties[1].
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A concrete and widely used way for the online combination of learning and feedback is the
so called “certainty equivalence principle”, where a real-time estimation algorithm is used to
estimate the unknown system or controller structure (typically parameterized by finite dimen-
sional unknown parameters), and the resulting online estimates are then regarded as the “true”
parameters and directly used in the controller design. Although such a principle is simple,
natural and feasible, except for a few special cases, it may well not be necessary, even may not
be stable and optimal, which is just reason why we need to establish a theory for stability and
optimality in this paper.

A well-known and widely used estimation algorithm is the recursive least-squares. Indeed,
the combination of the least-squares parameter estimation algorithm with a dead-beat con-
troller was made by Kalman[2] for discrete-time linear deterministic systems. It was not until
the work Åström and Wittenmark[3] that the least-squares estimator was combined with the
minimum variance controller for discrete-time linear stochastic systems, that such an adaptive
controller was named as self-tuning regulators (STR), and that the first remarkable step to-
wards a convergence analysis of STR was made. Since the STR is very flexible with respect to
the underlying design method and it is easy to implement with microprocessors, it has received
considerable attention. The convergence theory of the least-squares based STR was an open
problem in the 70s and 80s in the last century, which had attracted widespread research efforts
from many scientists (see, e.g., Goodwin-Ramadge-Caines[4], Lai and Wei[5], Kumar[6]), and
it was finally resolved by Guo and Chen[7] and Guo[8] where a sophisticated combinations of
nonlinear analysis, martingale theory and stochastic Lyapunov functions was introduced and
successfully used.

It is worth mentioning that in almost all the existing work of stochastic adaptive control
theory, the conditional variance sequence of the noises is assumed to be bounded almost surely.
However, this assumption may not be true in many interesting situations. For example, in
the well-known ARCH and GARCH (generalized autoregressive conditional heteroscedasticity)
models in econometrics, the conditional variance sequence of the noises is unbounded[9, 10].
Thus, it is necessary to establish a theory of adaptive control for linear stochastic systems with
noises having unbounded conditional variances.

The purpose of this paper is to consider self-tuning control problems of linear stochastic
systems with both unknown coefficients (including the high-frequency gain) and conditional
heteroscedastic noises. Firstly, we propose some natural conditions on the system structure
and the noises, and introduce a suitable sequence of time-varying weights into the least-squares
estimation algorithm. Then, we use the “certainty equivalence principle”[11] to design the
adaptive controller, modify the high-frequency gain slightly, and finally provide a convergence
theory of self-tuning regulators. To be specific, we will prove that under some natural conditions
on the system structure and the conditional heteroscedastic noises, the closed-loop adaptive
control system is globally stable and the tracking error is asymptotically optimal.

Different from the author’s previous work[12], this paper focuses on the case where the high-
frequency gain is unknown, since this is the case that we meet commonly in practice[13, 14].
To ensure that the closed-loop control system still has the nice properties mentioned above,
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some suitable modifications are introduced in the weighted least square (WLS) estimation of
the high-frequency gain, and this modification is inspired by [15].

The rest of the paper is organized as follows. We introduce the problem formulation in
Section 2. The stability and optimality of the closed-loop systems controlled by STR are
presented and proved in Section 3. Finally, some concluding remarks are given in Section 4.

2 Problem Formulation

2.1 ARCH Model and Conditional Heteroscedastic Noises

Traditional time series analysis assumes that the fluctuation amplitude (variance) of time
series variables is fixed, but this assumption is not realistic. To deal with conditional het-
eroscedastic noises, Engle proposed the ARCH model in 1982[16]. This model may effectively
capture inflation and stock market returns[17, 18].

In the ARCH model, the conditional heteroscedastic noise is defined as a martingale differ-
ence sequence {wn,Fn} with time-varying conditional varices {hn}, i.e.,

E[w2
n | Fn−1] = hn,

where {wn} is defined as the product of a white Gaussian noise {en} and a time-dependent
series {hn},

wn = hnen,

and where the series {hn} is modelled as[19]

h2
n = λ0 + λ1w

2
n−1 + · · · + λqw

2
n−q = λ0 +

q∑

i=1

λiw
2
n−i,

with λ0 > 0, q > 0 and λi ≥ 0, i > 0.

2.2 Weighted Least-Squares Self-Tuning Regulator

Consider the single-input single-output (SISO) stochastic systems

A(z)yn = B(z)un−1 + wn, n ≥ 0, (1)

where {yn}, {un} and {wn} are output, input and noise (without losing generality, suppose
yn = un = wn = 0, ∀n < 0), A(z) and B(z) are polynomials in backward shift operator z,

A(z) = 1 + a1z + · · · + apz
p, p ≥ 0,

B(z) = b1 + b2z + · · · + bqz
q−1, q ≥ 1,

where ai and bj (i = 1, 2, · · · , p, j = 1, 2, · · · , q) are unknown parameters, p and q are two
known upper bounds of system order.

In order to write the model into a compact form, we introduce the following unknown
parameter vector:

θ = [−a1 · · · − ap, b1 · · · bq]T (2)
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and the corresponding regression vector:

ϕn = [yn · · · yn−p+1, un · · ·un−q+1]T. (3)

Then the system (1) can be abbreviated as the following regression model

yn+1 = θTϕn + wn+1, n ≥ 0. (4)

Our purpose is to construct a feedback law un, based on the known data {y0y1 · · · yn, u0u1 · · ·
un−1} at any time n, such that the following averaged tracking error asymptotically approaches
to its minimum:

Jn
def==

1
n

n∑

i=1

(yi − y∗
i )2, (5)

where {y∗
i } is a known reference signal to be tracked.

In order to analyse the above problem theoretically, the following conditions are introduced:
(A1) The noise sequence {wn,Fn} is a martingale difference sequence ({Fn} is a sequence of

nondecreasing sub σ-algebras) satisfying
∑n

i=1 w2
i = Θ(n)†. Furthermore, suppose that there

exists β > 4 such that
E[| wn+1 |β | Fn] = O(σβ(n)) a.s., (6)

where σβ(n) is a nondecreasing sequence which satisfies σβ(n) = O(rε
n) for some constant

ε ∈ (0, 1), with rn defined as rn
def==1+

∑n
i=1 || ϕi ||2;

(A2) B(z) �= 0, ∀z : | z |≤ 1 (minimum phase condition);
(A3) {y∗

n} is a deterministic bounded signal.
Condition (A2) is necessary to ensure the stability of the closed-loop system for (4)[20].
To construct the STR, we consider the case where the parameter θ is known firstly.
Since {wn} is an unpredictable noise, it is easily to see that the tracking performence (5)

will achieve its minimum, if we have

y∗
n+1 = E[yn+1 | Fn], (7)

or
θTϕn = y∗

n+1, (8)

by (4) and Condition (A1). Therefore, we can express the optimal control that minimizes the
tracking error (5) as

un =
1
b1

(a1yn + a2yn−1 + · · · + apyn−p+1 − b2un−1 − · · · − bqun−q−1 + y∗
n+1). (9)

Substituting (9) into the system (1) (or (8) into (4)), then the ideal closed-loop equation
can be written as

yn − y∗
n − wn ≡ 0, ∀n ≥ 0. (10)

†there exist constants C > C′ > 0 such that C′ < 1
n

∑n
i=1 w2

i < C for all large n.



240 ZHANG YAQI · GUO LEI

When the parameter θ is not available, the controller (9) is not applicable, and we now
introduce a weighted least-squares algorithm (WLS) to estimate the unknown parameter vector
θ,

θn+1 = θn + anPnϕn(yn+1 − ϕT
nθn), (11)

Pn+1 = Pn − anPnϕnϕT
nPn, (12)

an = (λ−1
n + ϕT

nPnϕn)−1, (13)

where
λn = σβ(n)−

2
β , (14)

with σβ(n) defined by Condition (A1), and the initial values θ0 and P0 > 0 can be chosen
arbitrarily.

According to the “certainty equivalence principle”, replacing θ in (8) by θn, we can get a
WLS-type STR as bellow:

θT
n ϕn = y∗

n+1 (15)

or

un =
1

b1n
(a1nyn + · · · + apnyn−p+1 − b2nun−1 − · · · − bqnun−q−1 + y∗

n+1), (16)

where ain, bjn are θn’s components

θn
def== [−a1n · · · − apn, b1n · · · bqn]T.

Noting that in the ideal case where the parameter is known, the closed-loop equation is
Equation (10). It is natural to expect that under the adaptive control (15) the closed-loop
equation has the form

yn − y∗
n − wn ≈ 0, ∀n.

In the current stochastic adaptive case, it is feasible to achieve a weaker expectation, i.e.,
to expect the averaged tracking error goes to zero asymptotically. In other words, we expect
the accumulated tracking error of the closed-loop system

Rn
def==

n∑

i=1

(yi − y∗
i − wi)2 (17)

to satisfy
Rn = o(n) a.s., (18)

which indicates that “yi − y∗
i − wi” approaches to zero on average.

From (A1) and the martingale convergence theorem[15], it is not difficult to show that

Rn = o(n) ⇔ Jn −−→
n→∞

l2w a.s. (19)

with Jn defined by (5), and l2w is defined as limn→∞ 1
n

∑n
i=1 w2

i (assume this limit exists), which
is the minimum value of the tracking performance (5).

The above analysis yields that the necessary and sufficient condition for the STR (15) to be
stable and optimal is that (18) holds. Then we only need to discuss whether (18) would hold
or not when the WLS-based STR is defined by (15).



CONVERGENCE OF SELF-TUNING REGULATORS 241

2.3 Modification on High-Frequency Gain

From the system (1), we know there holds

lim
z→∞

B(z−1)
A(z−1)

= b1,

where b1 is usually called as “high-frequency gain”.
In the previous work, we have discussed the case where b1 is known[12], so this in paper we

consider the general case where the high-frequency gain b1 is unknown. The first problem we
meet is that un may not be well defined as (16), since the set {b1n = 0} may have a positive
probability.

Since we are not going to make additional assumptions in the analysis, a natural and simple
method for overcoming this difficulty is to modify θn slightly. Denote this modified estimate
by θ̂n, then the WLS-based STR can be written as

θ̂T
n ϕn = y∗

n−1 (20)

or

ûn =
1

b̂1n

(â1nyn + · · · + âpnyn−p+1 − b̂2nun−1 − · · · − b̂qnun−q−1 + y∗
n+1), (21)

where âin and b̂jn are the components of θ̂n, which are the (modified) estimates for ai and bj

respectively.
We try to design a modification of θk, such that the closed-loop system has the convergence

rate (30) as long as the system (1) satisfies Conditions (A1)–(A3).
Consider the following form of modifications on θn

θ̂n = θn + P
1
2

n ein, (22)

where θn is the WLS estimate defined by (11), Pn is defined by (12), and {in} is a sequence of
integers taking values on {0, 1, · · · , d} with d = p + q, which is defined by

in = argmax
0≤i≤d

| b1n + eT
p+1P

1
2 ei |, (23)

where e0 = 0, and ei, 1 ≤ i ≤ d, is the ith column of the d × d identity matrix.
In the proof of Theorem 3.1, we will show that the follows three basic properties are satisfied:
(H1) || θ̂n ||2= O(log rn−1) a.s.;

(H2)
∑n

k=1
ϕT

k θ̃n

λ−1
k +ϕT

k Pkϕk
= O(log rn) a.s.;

(H3) lim infn→∞
√

log (n + rn−1) | b̂1n |�= 0 a.s.;
here {ϕn} and {Pn} are defined by (3) and (12), θ̃n � θ − θ̂n, and b̂1n is the estimate for

b1n given by θ̂n.
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2.4 Notations and Estimations

First, we introduce some notations:

αk
def==

(ϕT
k θ̃k)2

λ−1
k + ϕT

k Pkϕk

, δk
def== tr(Pk − Pk+1), (24)

rn
def==1+

n∑

i=1

|| ϕi ||2, rn
def==1+

n∑

i=1

λi || ϕi ||2, θ̃n =θ−θn. (25)

If System (1) satisfies Condition (A1), then[20]

n∑

k=0

αk = O(log rn), a.s. (26)

It is not difficult to obtain O(log rn) = O(log rn) from the definition (25), so we have

n∑

k=0

αk = O(log rn), a.s. (27)

Suppose {dn} is a nondecreasing positive deterministic sequence, then

w2
n+1 = O(dn), a.s. (28)

When Condition (A1) is satisfied, using Markov inequality and (6), we have

∞∑

n=1

P (w2
n+1 ≥ σ

2
β

β (n)nδ | Fn) ≤
∞∑

n=1

E[| wn+1 |β | Fn]

σβ(n)n
δβ
2

< ∞, a.s.,

where β is given by (6).
Then by means of Borel-Cantelli lemma we can get

dn = σ
2
β

β (n)nδ, ∀δ ∈
(

2
β

,
1
2

)
. (29)

3 The Main Result

Theorem 3.1 Let Conditions (A1)–(A3) be satisfied for the system (1). If the control law
is defined by (20), with {θ̂k} defined by (22) and (23), then the closed-loop system is globally
stable and asymptotically optimal with the following rate of convergence:

Rn = O(nγdn), a.s. ∀γ > 0, (30)

where Rn, dn are defined by (17) and (29).

To prove this theorem, we need to establish two lemmas first.

Lemma 3.2 Consider the system (1), if it satisfies Conditions (A1)–(A3), the control law
is defined by (20), then there exists a positive random sequence {Ln} such that

y2
n ≤ Ln, a.s. ∀n, (31)
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and {Ln} satisfies following “linear time-varying” relation:

Ln+1 ≤ (ξ + Cfn)Ln + tn, (32)

where the constants ξ ∈ (0, 1), C > 0, and αn and

fn = [αnδnlog(n + rn)]2 + αnδn, (33)

tn = O([dn + λ−1
n ] log4(n + rn)), (34)

with αn and δn defined in (24), {tn} is a positive random sequence satisfying dn defined by (29)
and rn defined by (25).

Lemma 3.3 Under the same conditions as those of Lemma 3.1, we have the follow esti-
mation

|| ϕn ||2= O([dn + λ−1
n ][n + rn]γ), a.s. ∀γ > 0, (35)

where rn is defined by (25) and dn is defined by (29).

The detailed proof of Lemma 3.2 and Lemma 3.3 are supplied in the Appendix.

Proof First, we prove that when {θ̂k} satisfies Conditions (H1)–(H3), the closed-loop sys-
tem is globally stable, the tracking error is asymptotically optimal and has the convergence
rate (30).

Using (24), (27), (34) and 3.3, we can get

Rn+1 =
n∑

i=0

(yi+1 − y∗
i+1 − wi+1)2

=
n∑

i=0

(ϕT
i θ̃i)2

=
n∑

i=0

αi(λ−1
i + ϕT

i Piϕi)

= O(λ−1
n log rn) + O

( n∑

i=0

αiδi || ϕi ||2
)

= O(λ−1
n log rn) + O([n + rn]γ [dn + λ−1

n ] log rn)

= O([n + rn]γ [dn + λ−1
n ] log rn), ∀γ > 0. (36)

We just need to prove rn = O(n).
Using (36), the boundedness of {y∗

i } and the property of {wi} in Condition (A1), we obtain

n+1∑

i=0

y2
i = O(n) + O([n + rn]γ [dn + λ−1

n ]), ∀γ > 0. (37)

Based on the minimum phase Condition (A2) and the above formula we can get the following
estimation from the system (1),

n∑

i=0

u2
i = O(n) + O([n + rn]γ [dn + λ−1

n ]), ∀γ > 0. (38)
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By the last two relationships, (14), (27), and Condition (A1) we have

rn = 1 +
n∑

i=1

|| ϕi ||2

= O(n) + O

(
[σ

2
β

β (n)nδ + σ
2
β

β (n)][n + rn]γ
)

= O(n) + O

(
σ

2
β

β (n)nδ[n + rn]γ
)

= O(n) + O

(
r

2ε
β

n nδ[n + rn]γ
)

= O(n) + O

(
r

2ε
β

n nδ+γ + r
2ε
β +γ

n nδ

)

= O(n) + O

(
r

2ε
β +γ

n nδ+γ

)
, ε ∈ (0, 1), ∀γ > 0.

Since β > 4, δ ∈ ( 2
β , 1

2 ), we can choose γ small enough to satisfy 2ε
β + 2γ + δ < 1, such that

rn

n
= O(1) + O

([
rn

n

] 2ε
β +γ

· 1

n1− 2ε
β −2γ−δ

)

= O(1) + o

([
rn

n

] 2ε
β +γ)

, ε ∈ (0, 1), ∀γ > 0.

So we have
rn = O(n), a.s., (39)

substituting the above estimation into (36), we obtain

Rn = O(nγdn), ∀γ > 0, (40)

which implies
Rn = o(n), a.s.

Consequently, the closed-loop system has optimality by (19). Furthermore, based on the
optimality and Conditions (A1)–(A3) we have for any initial values y0 and u0,

n∑

i=0

(y2
i + u2

i ) = O(n), a.s.,

which shows the system has global stability.
Next, we need only show that {θ̂n} defined by (22) and (23) satisfies the requirements

(H1)–(H3).
From [8] we know that θn has the estimation

|| θn ||= O(
√

log rn−1),

since both {ein} and {P 1
2

n } are bounded

|| θ̂n ||2=|| θn + P
1
2

n ein ||2= O(log rn−1).
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So (H1) is satisfied.
Next, from (12) and (13), we have the relation

n∑

k=0

αkλkϕT
k Pkϕk =

n∑

k=0

| P−1
k+1 | − | P−1

i |
| P−1

k+1 |
≤ log | P−1

n+1 | + log | P−1
0 |, (41)

by (27) and this relation, we have

n∑

k=1

[ϕT
k (θ − θ̂k)]2

λ−1
k + ϕT

k Pkϕk

=
n∑

k=1

αk[ϕT
k (θ − θk − P

1
2

k eik)]2

=O

( n∑

k=1

αk[ϕT
k (θ − θk)]2

)
+ O

( n∑

k=0

αkϕT
k Pkϕk

)

=O(log rn).

Hence, (H2) is also satisfied.
To prove (H3) is satisfied, we set βn = P

1
2

n (θ − θn), so we have θ = θn + P
1
2

n βn. Since we
know that || βn ||2= O(log rn−1)[8],

| b1 |2 =| b1n + ep+1P
1
2

n βn |2

=
∣∣∣∣
[
b1n ep+1P

1
2
1

]
⎡

⎣ 1

βn

⎤

⎦
∣∣∣∣
2

=
∥∥∥∥

[
b1n ep+1P

1
2

n

] ∥∥∥∥
2

(1+ || βn ||2)

= O

(∥∥∥∥
[
b1n ep+1P

1
2

n

] ∥∥∥∥
2

log(rn−1)
)

.

By Condition (A2) we know that b1 �= 0, which means there exists a random variable c > 0
such that ∥∥∥∥

[
b1n ep+1P

1
2

n

] ∥∥∥∥
2

≥ c

log rn−1
, ∀n > 0.

Denote

M =

⎡

⎣ 1 1 · · · 1

e0 e1 · · · ed

⎤

⎦ ,

it is easily to see that M is nonsingular, so

λ0 � λmin(MMT) > 0,
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from this, with the definition of θ̂n,

| b̂1n |2 =| b1n + eT
p+1P

1
2

n ein |2

= max
0≤i≤d

∣∣∣∣
[
b1n eT

p+1P
1
2

n

]
⎡

⎣1

ei

⎤

⎦
∣∣∣∣
2

≥ (1 + d)−1

∥∥∥∥
[
b1n eT

p+1P
1
2

n

]
M

∥∥∥∥
2

≥ λ0(1 + d)−1

∥∥∥∥
[
b1n eT

p+1P
1
2

n

] ∥∥∥∥
2

≥ λ0c

1 + d

1
log rn−1

, ∀n.

So we prove that (H3) is hold. The proof of Theorem 3.1 is complete.

4 Conclusions

In this paper, we have considered self-tuning problems for dynamical systems where the
noise process is a conditional heteroscedastic time series, whose conditional variances are un-
bounded, and where the high-frequency gain of the control systems is assumed to be unknown.
By introducing a weighted least-squares algorithm for estimating of the unknown parameters,
and by further introducing a suitable modification on the weighted least squares estimates in
the design of STR, we are able to show that the closed-loop system is globally stable with
an asymptotically optimal tracking error under certain natural conditions. Compared with
the authors’ previous work on classical self-tuning regulators where the noises are of bounded
conditional variances, the main result of this paper appears to be more broadly applicable.
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[3] Åström K J and Wittenmark B, On self-tuning regulators, Automatica, 1973, 9: 185–199.

[4] Goodwin G C, Ramadge P J, and Caines P E, A globally convergent adaptive predictor, Auto-

matica, 1981, 17: 135–140.

[5] Lai T L and Wei C Z, Least squares estimates in stochastic regression models with applications

to identification and control of dynamic systems, Annals of Statistics, 1982, 10: 154–186.

[6] Kumar P R, Convergence of adaptive control schemes using least-squares parameter estimates,

IEEE Transactions on Automatic Control, 1990, 35: 416–424.
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Appendix

Proof of Lemma 3.1

Proof By (4) and (15),
yn+1 = ϕT

n θ̃n + y∗
n+1 + wn+1. (42)

From (12) we have ϕT
nPn+1ϕn ≤ λ−1

n .
By using (24), (27), Condition (A1) and the boundedness of {y∗

n}, we can get

y2
n+1 ≤ 2(ϕT

n θ̃n)2 + O(dn)

= 2[αnλ−1
n + ϕT

nPn+1ϕn + ϕT
n (Pn − Pn+1)ϕn] + O(dn)

≤ 2αn[2λ−1
n + δn || ϕn ||2] + O(dn)

= 2αnδn || ϕn ||2 +O([dn + λ−1
n ] log rn). (43)

Since System (1) satisfies the minimum phase Condition (A2), we know that there exists
ξ ∈ (0, 1) such that

u2
n−1 = O

( n∑

i=0

ξn−iy2
i

)
+ O(dn), (44)
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then

|| ϕn ||2 −u2
n = O

( n∑

i=0

ξn−iy2
i

)
+ O(dn). (45)

By the properties (H1) and (H3), it follows from (21) that

u2
n = O

(
log2(n + rn−1)

( p−1∑

i=0

y2
n−i +

q−1∑

i=1

x2
n−i

)
+ log(n + rn−1

)
, (46)

putting (44) into this, it follows that

u2
n = O

(
log2(n + rn−1)

( n∑

i=0

ξn−iy2
i + dn

))
. (47)

Let

Ln =
n∑

i=0

ξn−iy2
i ,

by (45) and (47), we have

|| ϕn ||2= O(log2(n + rn−1)[Ln + dn]). (48)

From (8) we can get

b1un = ϕT
n θ̃n + y∗

n+1 + (b1un − θTϕn), (49)

so, by (45) we have

b2
1u

2
n ≤ 3(ϕT

n θ̃n)2 + O(1+ | b1un − θTϕn |2)
= 3(ϕT

n θ̃n)2 + O(Ln + dn). (50)

Similarly to the proof of (43), it is known that

(ϕT
n θ̃n)2 ≤ 2λ−1

n αn + αnδn || ϕn ||2, (51)

substituting this into (49), we see that

u2
n = O(αnδn || ϕn ||2) + O(Ln + dn + λ−1

n log rn),

combining this with (45), we get

|| ϕn ||2= O(αnδn || ϕn ||2) + O(Ln + dn + λ−1
n log rn),

putting (48) into this, we have

|| ϕn ||2= O(αnδn[Ln + dn] log2(n + rn−1)) + O(Ln + dn + λ−1
n log rn).

Finally, substituting this into (43), we can see there exists a constant C > 0, with fn and
tn defined by (33) and (34)

Ln+1 ≤ ξLn + y2
n+1 ≤ (ξ + Cfn)Ln + tn,

so we finish the proof of Lemma 3.1.
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Proof of Lemma 3.2

Proof From (32) we can obtain

Ln+1 ≤
n∏

j=0

(ξ + Cfj)L0 +
n∑

i=0

n∏

j=i+1

(ξ + Cfj)ti

= ξn+1
n∏

j=0

(1 + ξ−1Cfj)L0 +
n∑

i=0

ξn−i
n∏

j=i+1

(1 + ξ−1Cfj)ti. (52)

We now proceed to estimate the products
∏n

j=i+1(1 + ξ−1Cfj) in the above formula. By the
property (H2), we have for an arbitrary γ > 0, there exists η > 0 and i0 large enough to make

η

n∑

j=i

αj ≤ γ log rn, ∀n ≥ i ≥ i0. (53)

From (24) we know that

∞∑

j=0

δj =
∞∑

j=0

tr(Pj − Pj+1) ≤ trP0 < ∞, (54)

using this, we know that there exists an integer i0 > 0 sufficiently large such that

4
η

(
C

ξ

) 1
2 ∞∑

j=i

δj ≤ ε, ∀i ≥ i0. (55)

Using the inequality 1 + x ≤ ex and (1 + xy) ≤ (1 + x)(1 + y) ∀x ≥ 0, y ≥ 0, we have

n∏

j=i

(1 + ξ−1Cαjδj log2(j + rj))

≤
n∏

j=i+1

[
1 +

(
1
2
ηαj

)2] n∏

j=i

{
1 + ξ−1C

[
2
η
δj log(j + rj)

]2}

≤ exp
(

η

n∑

j=i+1

αj

)
exp

{
4
η

(
C

ξ

) 1
2 n∑

j=i+1

δj log(j + rj)
}

≤ exp{γ log(rn)} exp
{

[log(n + rn)]
[

4
η

(
C

ξ

) 1
2 n∑

j=i

δj

]}

≤γ log rn exp{γ log(n + rn)}
=O([n + rn]2γ), ∀n ≥ i ≥ i0. (56)

Furthermore, for any n ≥ i ≥ i0

n∏

j=i

(1 + ξ−1Cαjδj) ≤ exp
(

ξ
n∑

j=i

αj

)
exp

{
C

ξη

n∑

j=i

δj

}

= O(rn)γ , ∀n ≥ i ≥ i0. (57)
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Finally, by the definition of fj , it follows from the above two formulae that

n∏

j=i+1

(1 + ξ−1Cfj)

≤
n∏

j=i+1

{
1 + ξ−1C

[
2
η
δj log(j + rj)

]2} n∏

j=i+1

(1 + ξ−1Cαjδj)

=O([n + rn]3γ), ∀n ≥ i ≥ i0.

Substituting this into (52), we have

Ln+1 = O([n + rn]3γ [dn + λ−1
n ] log4(n + rn)), ∀γ > 0.

Thus, the arbitrariness of γ can lead to

y2
n+1 ≤ Ln+1 = O([n + rn]γ [dn + λ−1

n ]), ∀γ > 0.

And using (44) we can get

u2
n = O([n + rn]γ [dn + λ−1

n ]), ∀γ > 0,

which completes the proof.


