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Abstract—In this paper, we consider a least-squares (LS)-based
distributed algorithm build on a sensor network to estimate an
unknown parameter vector of a dynamical system, where each
sensor in the network has partial information only but is allowed
to communicate with its neighbors. Our main task is to generalize
the well-known theoretical results on the traditional LS to the
current distributed case by establishing both the upper bound
of the accumulated regrets of the adaptive predictor and the
convergence of the distributed LS estimator, with the following
key features compared with the existing literature on distributed
estimation: Firstly, our theory does not need the previously
imposed independence, stationarity or Gaussian property on the
system signals, and hence is applicable to stochastic systems
with feedback. Secondly, the cooperative excitation condition
introduced and used in this paper for the convergence of the
distributed LS estimate is the weakest possible one, which shows
that even if any individual sensor cannot estimate the unknown
parameter by the traditional LS, the whole network can still
fulfill the estimation task by the distributed LS.

Index Terms—Least squares, distributed estimation, conver-
gence, diffusion strategies, cooperative excitation, regret, martin-
gale theory

I. INTRODUCTION

Distributed estimation over sensor networks has received
increasing research attention recently, and has been studied and
used in many areas widely, e.g., collaborative spectral sensing
in cognitive radio systems, target localization in biological
networks, environmental monitoring, military surveillance, and
so on [1]. Note that different cooperation strategies will lead
to different distributed estimation algorithms, for examples,
incremental least mean squres (LMS) [2], consensus LMS [3],
[4], diffusion LMS [5], [6], incremental LS [7], consensus LS
[8], diffusion LS [9]–[15], and distributed Kalman filter (KF)
[16]–[19]. In our recent work (see e.g. [3]–[5]), we have given
the stability and performance results for the consensus and dif-
fusion LMS filters, without imposing the usual independence
and stationarity assumptions for the system signals.

Note that when the unknown parameter is time-invariant,
the LS algorithm may generate more accurate estimates in the
transient phase and have faster convergence speed compared
with LMS algorithm. This is one of the main motivations for
us to consider the LS-based distributed estimation algorithm
in this paper. Another reason for us to study this problem
is that the existing convergence theory in the literature [7]–
[15] can hardly be applied to non-independent and non-
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stationary signals coming from practical complex systems
where feedback loops exist inevitably.

Fortunately, in the traditional single sensor case, there is
a vast literature on the convergence theory of the classical
LS, which is indeed applicable to stochastic systems with
feedback. In fact, motivated by the need to establish a rigorous
theory for the well-known LS-based self-tuning regulators pro-
posed by Åström and Wittenmark [20] in stochastic adaptive
control, the convergence study of LS with possible stochastic
feedback signals had received a great deal of attention in the
literature, see e.g., [21]–[29]. At the same time, much effort
had also been devoted to stochastic adaptive control, see e.g,
[30]–[32]. Among the many significant contributions in this
direction, here we only mention that Lai and Wei [25] estab-
lished a celebrated convergence result under a weakest possible
decaying excitation condition on the system signals, and Guo
and Chen [29] and Guo [21] finally resolved the longstanding
problem concerning the global stability and convergence of
the LS-based self-tuning regulators.

In this paper, we will provide a theoretical analysis for a
distributed LS algorithm of diffusion type [17], [18], where
the diffusion strategy is designed via the so called covariance
intersection fusion rule [33], [34]. In such a diffusion strategy,
each node is only allowed to communicate with its neighbors,
and both the estimates of the unknown parameter and the
inverse of the covariance matrices are diffused between neigh-
boring nodes. We will generalize the well-known convergence
results on the classical LS by establishing both the upper
bound of the accumulated regrets of the adaptive predictor
and the convergence of the distributed LS estimator, with the
following key features compared with the related results in the
existing literature:

• Our theory does not need the usually assumed indepen-
dence, stationarity or Gaussian property on the system
signals, and hence does not exclude the applications of
the theory to stochastic feedback systems.

• Our theory for the convergence of the distributed LS is es-
tablished under a weakest possible cooperative excitation
condition which is a natural extension of the single sensor
case. The cooperative excitation condition introduced in
this paper implies that even if any individual sensor is not
able to estimate the unknown parameter, the distributed
LS can still accomplish the estimation task.

The rest of the paper is organized as follows. In Section
II, we present some preliminaries on notations and graph
theory, the observation model, and the distributed LS algorithm
studied in the paper. The main results are stated in Section
III. In Section IV, we provide the proofs of the main results.
Finally, some concluding remarks are given in Section V.
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II. PROBLEM FORMULATION

A. Basic Notations

Let A ∈ Rn×n and B ∈ Rn×n be two symmetric matrices
with real entries, then A ≥ B(A > B) means A − B is
a positive semidefinite (definite) matrix. Also, let λmax{·}
and λmin{·} denote the largest and the smallest eigenvalues
of the corresponding matrix, respectively. For any matrix
X ∈ Rm×n, ‖ X ‖ denotes the operator norm induced by the
Euclidean norm, i.e., (λmax{XX>})

1
2 , where (·)> denotes

the transpose operator. We use E[·] to denote the mathematical
expectation operator, and E[·|Fk] to denote the conditional
mathematical expectation operator, where {Fk} is a sequence
of nondecreasing σ-algebras [35]. We also use log(·) to denote
the natural logarithm function, and Tr(·) to denote the trace of
the corresponding matrix. Through out the paper, | · | denotes
the determinant of the corresponding matrix, which should
not be confused with the absolute value of a scalar from the
context.

Let {Ak, k ≥ 0} be a matrix sequence and {bk, k ≥ 0} be a
positive scalar sequence. Then by Ak = O(bk) we mean that
there exists a constant M > 0 such that ‖Ak‖ ≤Mbk,∀k ≥ 0,
and by Ak = o(bk) we mean that lim

k→∞
‖Ak‖/bk = 0.

B. Graph Theory

As usual, let the communication structure among sensors be
represented by an undirected weighted graph G = (V, E ,A),
where V = {1, 2, ......, n} is the set of sensors and E ⊆ V ×V
is the set of edges. The structure of the graph G is described
by A = {aij}n×n which is called the weighted adjacency
matrix, where aij > 0 if (i, j) ∈ E and aij = 0 otherwise.
In this paper, we assume that the elements of the weighted
matrix A satisfy aij = aji,∀i, j = 1, . . . , n, and

∑n
j=1 aij =

1,∀i = 1, . . . , n. Thus the matrix A is symmetric and doubly
stochastic1.

A path of length ` in the graph G is a sequence of nodes
{i1, . . . , i`} subject to (ij , ij+1) ∈ E , for 1 ≤ j ≤ ` − 1.
The maximum value of the distances between any two nodes
in the graph G is called the diameter of G. Here in this
paper, we assume that the graph is connected, and denote
the diameter of the graph G as DG . Then 1 ≤ DG < ∞
holds. The set of neighbors of the sensor i is denoted as
Ni = {j ∈ V |(j, i) ∈ E}, and the sensor i can only share
information with its neighboring sensors from Ni.

C. Observation Model

Let us consider a sensor network consisting of n sensors.
Assume that at each time instant k, each sensor i ∈ {1, . . . , n}
in the sensor network receives a noisy scalar measurement
yk+1,i and an m-dimensional regressor ϕk,i ∈ Rm. They are
related by a typical linear stochastic regression model

yk+1,i = ϕ>k,iθ + wk+1,i, k ≥ 0, (1)

where wk+1,i is a random noise process, and θ ∈ Rm is an
unknown parameter vector which needs to be estimated. We

1A matrix is called doubly stochastic, if all elements are nonnegative, both
the sum of each row and the sum of each column equal to 1.

assume that at any time instant k ≥ 1, each sensor i uses
both the observations yj+1,i and the regressors ϕj,i(j ≤ k) to
estimate the unknown parameter θ.

D. Distributed LS Algorithm

We now consider the following basic class of distributed LS
algorithms of diffusion type:

Algorithm 1 A Distributed LS algorithm
For any given sensor i ∈ {1 . . . , n}, begin with an initial
estimate θ0,i ∈ Rm, and an initial positive definite matrix
P0,i ∈ Rm×m. The algorithm is recursively defined at any
time instant k ≥ 0 as follows:

1: Adapt (generate θ̄k+1,i and P̄k+1,i on the bases of
θk,i, Pk,i and ϕk,i, yk+1,i):

θ̄k+1,i = θk,i + bk,iPk,iϕk,i(yk+1,i −ϕ>k,iθk,i), (2)

P̄k+1,i = Pk,i − bk,iPk,iϕk,iϕ>k,iPk,i, (3)

bk,i = (1 +ϕ>k,iPk,iϕk,i)
−1, (4)

2: Combine (generate P−1k+1,i and θk+1,i by a convex com-
bination of P̄−1k+1,j and θ̄k+1,j):

P−1k+1,i =
∑
j∈Ni

ajiP̄
−1
k+1,j , (5)

θk+1,i = Pk+1,i

∑
j∈Ni

ajiP̄
−1
k+1,j θ̄k+1,j . (6)

Remark 2.1: When A = In, the distributed LS will
degenerate to the classical LS at any sensor i. Note that for
stochastic gradient-based [28] and LMS-based [36] distributed
estimation algorithms, the communication complexity may be
reduced. However, for those algorithms, the estimation error
either converges slowly to zero or does not converge to zero at
all. Therefore, there is a tradeoff between the complexity and
the convergence rate of the distributed estimation algorithms.
Moreover, the convergence rate would be “optimal” when P̄k,i
is chosen to be the form in the paper. Furthermore, some
existing methods may be used to reduce the communication
complexity and to make the algorithm suitable for higher
dimensional signals, for examples, event-driven methods [37],
partial diffusion methods [12], [13], and compressed methods
[38] and so on.

III. THE MAIN RESULTS

A. Some Preliminaries

For the theoretical analysis, we need some standard assump-
tions on noise processes, regressors, and network topology.

Assumption 3.1: For each i ∈ {1, . . . , n}, the noise se-
quence {wk,i,Fk} is a martingale difference (where {Fk} is
a sequence of nondecreasing σ-algebras), and there exists a
constant β > 2 such that supk≥0 E[|wk+1,i|β |Fk] <∞, a.s.

Assumption 3.2: For each i ∈ {1, . . . , n}, the regressor
sequence {ϕk,i,Fk} is an adapted sequence.

Assumption 3.3: The graph G is connected.
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Remark 3.1: From Lemma 8.1.2 in [39], it is not difficult
to see that for any two nodes i and j, there exists a path from
i to j with length not larger than ` if and only if the (i, j)th
entry of the matrix A` is positive. From this, it is easy to see
that each entry of the matrix A` will be positive when ` is not
smaller than the diameter of the graph G, i.e., DG , see also
[18].

B. Theoretical Results

Here we first introduce the following notations:

Yk
4
= col{yk,1, . . . , yk,n}, Φk

4
= diag{ϕk,1, . . . ,ϕk,n},

Wk
4
= col{wk,1, . . . , wk,n}, Θ

4
= col{θ, . . . ,θ︸ ︷︷ ︸

n

},

Θk
4
= col{θk,1, . . . ,θk,n}, Θ̄k

4
= col{θ̄k,1, . . . , θ̄k,n},

Θ̃k
4
= col{θ̃k,1, . . . , θ̃k,n}, where θ̃k,i = θ − θk,i,˜̄Θk
4
= col{˜̄θk,1, . . . , ˜̄θk,n}, where ˜̄θk,i = θ − θ̄k,i,

Pk
4
= diag{Pk,1, . . . , Pk,n}, P̄k

4
= diag{P̄k,1, . . . , P̄k,n},

bk
4
= diag{bk,1, . . . , bk,n}, ck

4
= bk ⊗ Im, A

4
= A⊗ Im,

where col{· · · } denotes a vector by stacking the specified
vectors, diag{· · · } is used in a non-standard manner which
means that m×1 column vectors are combined “in a diagonal
manner” resulting in a mn×n matrix, and ⊗ is the Kronecker
product. Then (1) can be rewritten in the following compact
form:

Yk+1 = Φ>kΘ +Wk+1, (7)

Similarly, for the distributed LS algorithm we have

Θ̄k+1 = Θk + ckPkΦk(Yk+1 −Φ>kΘk),

P̄k+1 = Pk − ckPkΦkΦ
>
k Pk,

bk = (In + Φ>k PkΦk)−1,

ck = bk ⊗ Im,
vec{P−1k+1} = A vec{P̄−1k+1},
Θk+1 = Pk+1A P̄−1k+1Θ̄k+1,

(8)

where vec{·} denotes the operator that stacks the blocks of a
block diagonal matrix on top of each other.

Since Θ̃k = Θ − Θk and ˜̄Θk = Θ − Θ̄k by definition,
substituting (7) into (8), we can get

˜̄Θk+1 =Θ−Θk − ckPkΦk(Φ>kΘ +Wk+1 −Φ>kΘk)

=(Imn − ckPkΦkΦ
>
k )Θ̃k − ckPkΦkWk+1

=P̄k+1P
−1
k Θ̃k − ckPkΦkWk+1.

Note also that

Pk+1A P̄−1k+1Θ

=col
{
Pk+1,1

∑
j∈N1

aj1P̄
−1
k+1,jθ, . . . , Pk+1,n

∑
j∈Nn

ajnP̄
−1
k+1,jθ

}
=Θ.

Then we have

Θ̃k+1 =Θ− Pk+1A P̄−1k+1Θ̄k+1 = Pk+1A P̄−1k+1
˜̄Θk+1

=Pk+1A P−1k Θ̃k

− Pk+1A P̄−1k+1ckPkΦkWk+1. (9)

Before establishing the convergence of the distributed LS,
we first present a critical theorem, which requires no excitation
conditions on the regression process ϕk,i.

Theorem 3.1: Let Assumptions 3.1 and 3.2 be satisfied, we
have as t→∞,

1)
t∑

k=0

Θ̃>k ΦkbkΦ
>
k Θ̃k = O(log(rt)), a.s.,

2) Θ̃>t+1P
−1
t+1Θ̃t+1 = O(log(rt)), a.s.,

where

rt = λmax{P−10 }+
n∑
i=1

t∑
k=0

‖ϕk,i‖2. (10)

From this, we can obtain the upper bound of the accumu-
lated regrets for the distributed LS-based adaptive predictor.
For any i ∈ {1, . . . , n}, and at any time instant k ≥ 1, the best
prediction to the future observation yk+1,i is the conditional
mathematical expectation E[yk+1,i|Fk] = ϕ>k,iθ, since the
noise is a martingale difference sequence with second moment.
Unfortunately, this optimal predictor is unavailable because θ
is unknown. A natural way is to construct an adaptive predictor
ŷk+1,i by using the online distributed LS estimate θk,i, i.e.,
ŷk+1,i = ϕ>k,iθk,i. The error between the best predictor and
the adaptive predictor is referred to as the regret denoted by

Rk,i = (E[yk+1,i|Fk]− ŷk+1,i)
2, (11)

which may not be zero and even may not be small in sample
paths due to the persistent disturbance of the unpredictable
noises in the model.

However, one may evaluate the averaged regrets defined as
follows:

1

nt

n∑
i=1

t∑
k=0

Rk,i,

which we are going to show tends to zero as t increases
to infinity under essentially no excitation conditions on the
regressors, see Theorem 3.2 below. This is a celebrated
property that has been widely studied in distributed online
learning and optimization problems [40], [41], but under rather
restrictive assumptions such as boundedness, stationarity or
independence on the system signals.

Theorem 3.2: Let Assumptions 3.1 and 3.2 be satisfied. Then
the sample paths of the accumulated regrets have the following
bound as t→∞:

n∑
i=1

t∑
k=0

Rk,i = O(log(rt)), a.s., (12)

provided that Φ>t PtΦt = O(1), a.s.
Remark 3.2: We remark that the order O(log(rt)) for the

accumulated regrets may be shown to be the best possible
among all adaptive predictors in a certain sense, as is already
known in the traditional single sensor case, see [42]. The
precise constant in O(·) may also be determined if we have
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further conditions on the regressors, see Corollary 3.3 in [21]
in the single sensor case.

From Theorem 3.1, we can also obtain the strong consis-
tency of the distributed LS to guarantee the generalization
ability of learning.

Theorem 3.3: Let Assumptions 3.1-3.3 be satisfied, we have
as t→∞,

‖Θ̃t+1‖2 = O

(
log(rt)

λn,tmin

)
, a.s., (13)

where rt is defined by (10) and

λn,tmin = λmin

{ n∑
j=1

P−10,j +
n∑
j=1

t−DG+1∑
k=0

ϕk,jϕ
>
k,j

}
. (14)

Remark 3.3: Theorem 3.3 shows that if

lim
t→∞

log(rt)

λn,tmin

= 0, a.s., (15)

then the distributed LS estimate Θt will converge to the
true unknown parameter. We may name (15) as a coop-
erative excitation condition. In the traditional single sensor
case (where n = 1, DG = 1), (15) reduces to the well-
known Lai-Wei excitation condition, which is known to be
the weakest possible data condition for the convergence of the
classical LS estimates [25], and is much weaker than the well-
known persistence of excitation (PE) condition usually used
in the parameter estimation of finite-dimensional linear control
systems.

Moreover, it is easy to convince oneself that the cooper-
ative excitation condition (15) will make it possible for the
distributed LS to consistently estimate the unknown parameter,
even if any individual sensor cannot due to lack of suitable
excitation, thanks to the cooperative nature of the excitation
condition (15). Finally, we remark that the verification of
(15) is straightforward in the ergodic case. For more general
correlated non-stationary signals from control systems, the
verification of (15) may be conducted following a similar way
as that for the traditional single sensor case (see, [28]).

Furthermore, the convergence rate established in Theorem
3.3 is essentially in terms of the increase of the number of
observations rather than the number of iterations in computa-
tion.

Remark 3.4: Let us now compare the above distributed
LS algorithm with centralized methods whereby, at each
time instant k, all the n sensors transmit their raw data
{yk+1,i,ϕk,i} to a fusion center for processing to obtain a
centralized estimate. Although the centralized algorithm may
have some advantages over the distributed algorithm in terms
of communication complexity, it also has some drawbacks
compared with the distributed case. Firstly, the distributed
methods may have stronger structural robustness compared
with the centralized ones. This is because the centralized
algorithm will fail once the fusion center is broken down
by outside attacks or some sensors lost the connection to
the fusion center, while the distributed algorithm can still
estimate the unknown parameters even if the communications
among some sensors are interrupted, as long as the network
connectivity is maintained. Secondly, if the fusion center

is far away from some sensors, the communications with
the fusion center may not be feasible, and the transmission
of observations and regression vectors may compromise the
safety and privacy of the system even if the communication
is possible. Hence, our distributed estimation problem is not
a purely computational problem.

IV. PROOFS OF THE MAIN RESULTS

A. Proof of Theorem 3.1

To prove Theorem 3.1, we need to establish several lemmas
first. The first lemma below is a key inequality on convex
combination of nonnegative definite matrices.

Lemma 4.1: For any adjacency matrix A = {aij} ∈ Rn×n,
denote A = A⊗Im, and for any nonnegative definite matrices
Qi ∈ Rm×m, i = 1, . . . , n, denote Q = diag{Q1, . . . , Qn},
and Q

′
= diag{Q′1, . . . , Q

′

n}, where Q
′

i =
∑n
j=1 ajiQj . Then

the following inequality holds:

AQA ≤ Q
′
. (16)

Proof: By the definition of A and Q, we can get that

AQA =


n∑
j=1

a1jaj1Qj · · ·
n∑
j=1

a1jajnQj

...
. . .

...
n∑
j=1

anjaj1Qj · · ·
n∑
j=1

anjajnQj

 .

In order to prove the inequality, we only need to prove
that for any unit column vector x ∈ Rmn with ‖x‖ = 1,
x>AQA x ≤ x>Q′x holds. Denote x = col{x1, x2, . . . , xn}
with xi ∈ Rm, then by the Schwarz inequality and noticing
that Qj ≥ 0,

∑n
j=1 aij = 1, and aji = aij , (i, j = 1, . . . , n),

we have

x>AQA x =
n∑
p=1

n∑
q=1

n∑
j=1

apjajqx
>
p Qjxq

=

n∑
p=1

n∑
q=1

n∑
j=1

√
apjajqx

>
p Q

1
2
j ·
√
apjajqQ

1
2
j xq

≤

{
n∑
p=1

n∑
q=1

n∑
j=1

apjajqx
>
p Qjxp

} 1
2

·

{
n∑
p=1

n∑
q=1

n∑
j=1

apjajqx
>
q Qjxq

} 1
2

=

{
n∑
p=1

n∑
j=1

apjx
>
p Qjxp

} 1
2
{

n∑
q=1

n∑
j=1

ajqx
>
q Qjxq

} 1
2

=
n∑
i=1

n∑
j=1

ajix
>
i Qjxi = x>Q

′
x,

which completes the proof.
By Lemma 4.1, we can obtain the following result:
Lemma 4.2: For any adjacency matrix A = {aij} ∈ Rn×n,

denote A = A⊗ Im. Then for any k ≥ 1,

A P̄−1k+1A ≤ P
−1
k+1, (17)
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and

A Pk+1A ≤ P̄k+1, (18)

holds, where P̄k+1 and Pk+1 are defined in (8).
Proof: By taking Qi = P̄−1k+1,i ≥ 0 and noticing P−1k+1,i =∑n

j=1 ajiP̄
−1
k+1,j = Q

′

i, we know from Lemma 4.1 that

A P̄−1k+1A ≤ P
−1
k+1,

holds. To prove (18), we first assume that A is invertible.
Then by Lemma A.1 in Appendix A, it is easy to see that

A Pk+1A ≤ P̄k+1.

Next, we consider the case where A is not invertible. Since
the number of eigenvalues of the matrix A is finite, then exists
a constant ε∗ ∈ (0, 1) such that the perturbed adjacency matrix
A ε = A + εImn = {aεij} will be invertible for any 0 < ε <
ε∗. By the definition of A ε, we know that A ε is symmetric
and the sums of each columns and rows of the matrix A ε

are all 1 + ε. Then we define (P εk+1,i)
−1 =

∑n
j=1 a

ε
jiP̄
−1
k+1,j ,

and we can denote P ε
k+1 = diag{P εk+1,1, . . . , P

ε
k+1,n} since

(P εk+1,i)
−1 defined above is invertible. Similar to the proof of

Lemma 4.1, for any unit column vector x ∈ Rmn, we have

x>A εP̄−1k+1A
εx ≤ (1 + ε)x>(P ε

k+1)−1x.

Consequently, we have A εP̄−1k+1A
ε ≤ (1+ε)(P ε

k+1)−1. Since
A ε is invertible, we know from Lemma A.1 in Appendix A
that A εP ε

k+1A
ε ≤ (1 + ε)P̄k+1. By taking ε → 0 on both

sides of the above equation, we can obtain that

lim
ε→0

A εP ε
k+1A

ε = A Pk+1A ≤ lim
ε→0

(1 + ε)P̄k+1 = P̄k+1.

This completes the proof.
To accomplish the proof of Theorem 3.1, we also need the

following inequality:
Lemma 4.3: For any adjacency matrix A = {aij} ∈ Rn×n,

and for any k ≥ 1,

|P̄−1k+1| ≤ |P
−1
k+1|, (19)

holds, where P̄k+1 and Pk+1 are defined in (8).
Proof: By Ky Fan convex theorem [43] and noticing the

definitions of P̄k+1,Pk+1, and A = {aij}, we can see that

|P−1k+1| =
n∏
i=1

∣∣∣∣ n∑
j=1

ajiP̄
−1
k+1,j

∣∣∣∣
≥

n∏
i=1

|P̄−1k+1,1|
a1i |P̄−1k+1,2|

a2i · · · |P̄−1k+1,n|
ani

=|P̄−1k+1,1|
n∑
i=1

a1i
|P̄−1k+1,2|

n∑
i=1

a2i
· · · |P̄−1k+1,n|

n∑
i=1

ani

=|P̄−1k+1,1| · |P̄
−1
k+1,2| · · · |P̄

−1
k+1,n| = |P̄

−1
k+1|,

which completes the proof.
To prove Theorem 3.1, we also need the following critical

lemma:

Lemma 4.4: Let Assumptions 3.1 and 3.2 be satisfied. Then
the distributed LS defined by (7) and (8) satisfies the following
relationship as t→∞:

Θ̃>t+1P
−1
t+1Θ̃t+1 + [1 + o(1)]

t∑
k=0

Θ̃>k ΦkbkΦ
>
k Θ̃k

+ [1 + o(1)]
t∑

k=0

Θ̃>k P
−1
k ∆k+1P

−1
k Θ̃k

≤σw log(|P−1t+1|) + o(log(|P−1t+1|)) +O(1), a.s., (20)

where ∆k+1
4
= P̄k+1 − A Pk+1A ≥ 0 by Lemma 4.2, and

σw =
∑n
i=1 σ

2
i , σ

2
i = supk≥0 E[w2

k+1,i|Fk].
Proof: Since bk = (In+Φ>k PkΦk)−1 and ck = bk⊗Im,

then by (9), we know that

Θ̃k+1 = Pk+1A P−1k Θ̃k − Pk+1A P̄−1k+1ckPkΦkWk+1.

Hence, we have the following expansion for the stochastic
Lyapunov function Vk = Θ̃>k P

−1
k Θ̃k:

Vk+1 =Θ̃>k+1P
−1
k+1Θ̃k+1

=(Θ̃>k P
−1
k A Pk+1 −W>

k+1Φ
>
k PkckP̄

−1
k+1A Pk+1)

· (A P−1k Θ̃k −A P̄−1k+1ckPkΦkWk+1)

=Θ̃>k P
−1
k A Pk+1A P−1k Θ̃k

− 2Θ̃>k P
−1
k A Pk+1A P̄−1k+1ckPkΦkWk+1

+W>
k+1Φ

>
k PkckP̄

−1
k+1A Pk+1A P̄−1k+1

· ckPkΦkWk+1. (21)

Now, we proceed to estimate the right-hand-side (RHS) of
(21) term by term. Firstly, we know that

Θ̃>k P
−1
k A Pk+1A P−1k Θ̃k

=Θ̃>k P
−1
k P̄k+1P

−1
k Θ̃k − Θ̃>k P

−1
k ∆k+1P

−1
k Θ̃k

=Θ̃>k P
−1
k (Pk − PkΦkbkΦ

>
k Pk)P−1k Θ̃k

− Θ̃>k P
−1
k ∆k+1P

−1
k Θ̃k

=Θ̃>k P
−1
k Θ̃k − Θ̃>k ΦkbkΦ

>
k Θ̃k − Θ̃>k P

−1
k ∆k+1P

−1
k Θ̃k

=Vk − Θ̃>k ΦkbkΦ
>
k Θ̃k − Θ̃>k P

−1
k ∆k+1P

−1
k Θ̃k. (22)

Moreover, by the (block) diagonal property of bk, ck,Pk
and Φk, we have ckPk = Pkck,Φ

>
k ck = bkΦ

>
k , and ckΦk =

Φkbk. By the matrix inversion lemma [36], we have

P̄−1k+1 = P−1k + ΦkΦ
>
k .

Thus, we can estimate the second term on the RHS of (21) as
follows:

Θ̃>k P
−1
k A Pk+1A P̄−1k+1ckPkΦkWk+1

=Θ̃>k P
−1
k A Pk+1A ckΦkWk+1

+ Θ̃>k P
−1
k A Pk+1A ΦkΦ

>
k ckPkΦkWk+1

=Θ̃>k P
−1
k A Pk+1A ckΦkWk+1

+ Θ̃>k P
−1
k A Pk+1A ΦkWk+1

− Θ̃>k P
−1
k A Pk+1A ΦkbkWk+1

=Θ̃>k P
−1
k A Pk+1A ΦkWk+1

=Θ̃>k P
−1
k P̄k+1ΦkWk+1 − Θ̃>k P

−1
k ∆k+1ΦkWk+1. (23)
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As for the last term on the RHS of (21), by A Pk+1A ≤
P̄k+1, we can estimate it as follows:

W>
k+1Φ

>
k PkckP̄

−1
k+1A Pk+1A P̄−1k+1ckPkΦkWk+1

≤W>
k+1Φ

>
k Pkck(P−1k + ΦkΦ

>
k )ckPkΦkWk+1

=W>
k+1Φ

>
k Pkc

2
kΦkWk+1

+W>
k+1Φ

>
k PkckΦkΦ

>
k ckPkΦkWk+1

=W>
k+1b

2
kΦ
>
k PkΦkWk+1

+W>
k+1(In + Φ>k PkΦk)b2kΦ

>
k PkΦkWk+1

−W>
k+1b

2
kΦ
>
k PkΦkWk+1

=W>
k+1bkΦ

>
k PkΦkWk+1. (24)

By (21)-(24), we have

Vk+1 ≤Vk − Θ̃>k ΦkbkΦ
>
k Θ̃k − Θ̃>k P

−1
k ∆k+1P

−1
k Θ̃k

− 2Θ̃>k P
−1
k P̄k+1ΦkWk+1

+ 2Θ̃>k P
−1
k ∆k+1ΦkWk+1

+W>
k+1bkΦ

>
k PkΦkWk+1. (25)

Summing from k = 0 to t yields

Vt+1 +
t∑

k=0

Θ̃>k ΦkbkΦ
>
k Θ̃k +

t∑
k=0

Θ̃>k P
−1
k ∆k+1P

−1
k Θ̃k

≤V0 − 2
t∑

k=0

Θ̃>k P
−1
k P̄k+1ΦkWk+1

− 2
t∑

k=0

Θ̃>k P
−1
k (−∆k+1)ΦkWk+1

+
t∑

k=0

W>
k+1bkΦ

>
k PkΦkWk+1. (26)

Next, we estimate the last three terms on the RHS of (26) sep-
arately. By Assumptions 3.1 and 3.2, and Θ̃>k P

−1
k P̄k+1Φk ∈

Fk, Θ̃>k P
−1
k (−∆k+1)Φk ∈ Fk, we can use the martingale

estimation theorem (Theorem 2.8 in [28]) to get the following
estimation for any δ > 0:

t∑
k=0

Θ̃>k P
−1
k P̄k+1ΦkWk+1

=O

({ t∑
k=0

‖Θ̃>k P−1k P̄k+1Φk‖2
} 1

2+δ
)
, a.s., (27)

and
t∑

k=0

Θ̃>k P
−1
k (−∆k+1)ΦkWk+1

=O

({ t∑
k=0

‖Θ̃>k P−1k ∆k+1Φk‖2
} 1

2+δ
)
, a.s. (28)

To further analyze (27) and (28), we note from the defini-
tions of P̄k+1 and bk that

P−1k P̄k+1Φk = Φk − ckΦkΦ
>
k PkΦk

=Φk − ckΦk(In + Φ>k PkΦk) + ckΦk = Φkbk.

Hence, it is easy to see that

‖Θ̃>k P−1k P̄k+1Φk‖2 =Θ̃>k P
−1
k P̄k+1ΦkΦ

>
k P̄k+1P

−1
k Θ̃k

=Θ̃>k Φkb
2
kΦ
>
k Θ̃k ≤ Θ̃>k ΦkbkΦ

>
k Θ̃k,

By taking 0 < δ < 1
2 , we have from (27) that

t∑
k=0

Θ̃>k P
−1
k P̄k+1ΦkWk+1

=O(1) + o

({ t∑
k=0

‖Θ̃>k P−1k P̄k+1Φk‖2
})

=O(1) + o

({ t∑
k=0

Θ̃>k ΦkbkΦ
>
k Θ̃k

})
, a.s. (29)

Moreover, since ∆k+1 = P̄k+1 −A Pk+1A ≤ P̄k+1, then

∆
1
2

k+1ΦkΦ
>
k∆

1
2

k+1 ≤ λmax{Φ>k∆k+1Φk} · Imn
≤λmax{Φ>k P̄k+1Φk} · Imn
=λmax{Φ>k (Pk − ckPkΦkΦ

>
k Pk)Φk} · Imn

=λmax{bkΦ>k PkΦk} · Imn < Imn.

Hence, we have ∆k+1ΦkΦ
>
k∆k+1 ≤∆k+1, and so we have

‖Θ̃>k P−1k ∆k+1Φk‖2 =Θ̃>k P
−1
k ∆k+1ΦkΦ

>
k∆k+1P

−1
k Θ̃k

≤Θ̃>k P−1k ∆k+1P
−1
k Θ̃k. (30)

By taking 0 < δ < 1
2 , we know from (28) that

t∑
k=0

Θ̃>k P
−1
k (−∆k+1)ΦkWk+1

=O(1) + o

({ t∑
k=0

‖Θ̃>k P−1k ∆k+1Φk‖2
})

=O(1) + o

({ t∑
k=0

Θ̃>k P
−1
k ∆k+1P

−1
k Θ̃k

})
, a.s. (31)

We now proceed to estimate the last term in (26). Firstly,
we know that

W>
k+1bkΦ

>
k PkΦkWk+1 ≤ ‖bkΦ>k PkΦk‖ · ‖Wk+1‖2

=λmax{bkΦ>k PkΦk} ·
{ n∑
i=1

w2
k+1,i

}
. (32)

Following a similar proof idea as in the traditional single
sensor case ( [25], see also [28]), from P̄k+1 = Pk −
ckPkΦkΦ

>
k Pk, we have P−1k = P̄−1k+1(Imn − ckPkΦkΦ

>
k ).

By taking determinants on both sides of the above identity,
and noticing 0 ≤ bkΦ>k PkΦk ≤ In, we have

|P−1k | =|P̄
−1
k+1| · |In − bkΦ

>
k PkΦk|

≤|P̄−1k+1| · (1− λmax{bkΦ>k PkΦk}).

Moreover, we know from Lemma 4.3 that

λmax{bkΦ>k PkΦk} ≤
|P̄−1k+1| − |P

−1
k |

|P̄−1k+1|
≤
|P−1k+1| − |P

−1
k |

|P−1k+1|
.
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Therefore
t∑

k=0

λmax{bkΦ>k PkΦk} ≤
t∑

k=0

|P−1k+1| − |P
−1
k |

|P−1k+1|

≤
t∑

k=0

∫ |P−1
k+1|

|P−1
k |

dx

x
= log(|P−1t+1|)− log(|P−10 |). (33)

Consequently, by using the martingale estimation theorem
(Theorem 2.8 in [28]), we have for any ∀η > 0,

t∑
k=0

λmax{bkΦ>k PkΦk}
{ n∑
i=1

w2
k+1,i − E

[ n∑
i=1

w2
k+1,i|Fk

]}

=O

(
St

(
β

2

){
log

(
St

(
β

2

)
+ e

)} 2
β+η

)
, a.s., (34)

where

St

(
β

2

)
4
=

[ t∑
k=0

(λmax{bkΦ>k PkΦk})
β
2

] 2
β

.

Since bkΦ>k PkΦk ≤ In and β
2 > 1, we have from (33) that

St

(
β

2

)
= O(1) +O((log |P−1t+1|)

2
β ).

From this, we can get from (32)-(34) that
t∑

k=0

W>
k+1bkΦ

>
k PkΦkWk+1

≤
n∑
i=1

σ2
i

t∑
k=0

λmax{bkΦ>k PkΦk}+ o(log |P−1t+1|) +O(1)

≤σw log |P−1t+1|+ o(log |P−1t+1|) +O(1).

Finally, substituting this into (26), we know that the desired
result (20) is true. This completes the proof.

Proof of Theorem 3.1:
By the definitions of P̄−1t,i and P−1t,i , it is easy to know that

for any t ≥ 0,

P−1t+1,i =
n∑
j=1

ajiP̄
−1
t+1,j =

n∑
j=1

aji(P
−1
t,j +ϕt,jϕ

>
t,j).

Consequently, we have

max
1≤i≤n

λmax{P−1t+1,i}

= max
i=1,...,n

λmax

{ n∑
j=1

aji(P
−1
t,j +ϕt,jϕ

>
t,j)

}

≤ max
1≤i≤n

n∑
j=1

aji

(
λmax{P−1t,j }+ λmax{ϕt,jϕ>t,j}

)
≤ max

1≤i≤n
λmax{P−1t,i }+

n∑
j=1

‖ϕt,j‖2

≤ max
1≤i≤n

λmax{P−10,i }+
n∑
j=1

t∑
k=0

‖ϕk,j‖2

≤λmax{P−10 }+
n∑
j=1

t∑
k=0

‖ϕk,j‖2. (35)

From (35) and the connection between determinant and eigen-
values of a matrix, it is easy to conclude that

log(|P−1t+1|) ≤ mn log
(

max
1≤i≤n

λmax{P−1t+1,i}
)
≤ mn log(rt).

Consequently, Theorem 3.1 follows from this and Lemma 4.4
immediately.

B. Proof of Theorem 3.2
By the definition of bk in (8), we know that

ΦkΦ
>
k = ΦkbkΦ

>
k + Φk(bkΦ

>
k PkΦk)Φ>k .

Then by noticing that bk,Φk and Pk are (block) diagonal
matrices, and Φ>k PkΦk = O(1), a.s., we know that

n∑
i=1

t∑
k=0

Rk,i =
n∑
i=1

t∑
k=0

(ϕ>k,iθ̃k,i)
2 =

t∑
k=0

Θ̃>k ΦkΦ
>
k Θ̃k

=
t∑

k=0

Θ̃>k ΦkbkΦ
>
k Θ̃k +

t∑
k=0

Θ̃>k Φk(bkΦ
>
k PkΦk)Φ>k Θ̃k

=O

( t∑
k=0

Θ̃>k ΦkbkΦ
>
k Θ̃k

)
. (36)

Substituting this into Theorem 3.1 1), we conclude that (12)
holds.

C. Proof of Theorem 3.3

For ease of representation, let a(s)ij be the (i, j)-th entry of
the matrix As, s ≥ 1. Note that a(1)ij = aij . By Assumption
3.3 and Remark 3.1, we know that a(DG)ji ≥ amin > 0, where
amin = min

i,j∈V
a
(DG)
ij > 0, and DG is the diameter of the graph

G. Consequently, it is not difficult to see that for any k > DG ,
a
(k)
ji ≥ amin holds.
By (8), it is easy to see that for any t ≥ 0,

vec{P−1t+1} =A vec{P̄−1t+1} = A vec{P−1t }+ A vec{ΦtΦ
>
t }

=A t+1vec{P−10 }+

t∑
k=0

A t−k+1vec{ΦkΦ
>
k },

which implies that for any t ≥ DG ,

P−1t+1,i =
n∑
j=1

a
(t+1)
ji P−10,j +

n∑
j=1

t∑
k=0

a
(t−k+1)
ji ϕk,jϕ

>
k,j

≥
n∑
j=1

a
(t+1)
ji P−10,j +

n∑
j=1

t−DG+1∑
k=0

a
(t−k+1)
ji ϕk,jϕ

>
k,j

≥amin

n∑
j=1

P−10,j + amin

n∑
j=1

t−DG+1∑
k=0

ϕk,jϕ
>
k,j . (37)

Then we have

λmin{P−1t+1} ≥ aminλmin

{ n∑
j=1

P−10,j +
n∑
j=1

t−DG+1∑
k=0

ϕk,jϕ
>
k,j

}
.

Note also that

‖Θ̃t+1‖2 ≤ Θ̃>t+1

[
P−1t+1

λmin{P−1t+1}

]
Θ̃t+1.

Hence, by 2) in Theorem 3.1, we know that Theorem 3.3 holds.
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V. CONCLUDING REMARKS

In this paper, we have established a convergence theory for
a basic class of distributed LS algorithms, under quite general
conditions on the measured information or data used in the
estimation. The accumulated regret of adaptive predictors has
been shown to have a celebrated logarithm increase without
any excitation condition imposed on the system data, and the
convergence rate of the distributed LS estimates has also been
established under a cooperative excitation condition, which can
be regarded as an extension of the weakest possible excitation
condition known for the convergence of the classical LS. Nei-
ther independence and stationarity, nor Gaussian property, are
required in our results. Moreover, the cooperative excitation
condition introduced and used in the paper indicates that the
distributed LS can fulfill the estimation task cooperatively,
even if any individual sensor cannot due to lack of necessary
excitation.
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