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Abstract— Game theory is playing more and more im-
portant roles in understanding complex systems and in in-
vestigating intelligent machines with various uncertainties.
As a starting point, we consider the classical two-player
zero-sum linear-quadratic stochastic differential games, but
in contrast to most of the existing studies, the coefficient
matrices of the systems are assumed to be unknown to
both players, and consequently it is necessary to study
adaptive strategies of the players, which may be termed
as adaptive games and which has rarely been explored
in the literature. In this paper, by introducing a suitable
information structure for adaptive games, we will show
that a theory can be established on adaptive strategies
that are designed based on both the certainty equivalence
principle and the diminishing excitation technique. Under
almost the same physical structure conditions as those in
the traditional known parameters case, it is shown that the
closed-loop adaptive game systems will be globally stable
and asymptotically reach the Nash equilibrium.

Index Terms— Zero-sum games, uncertain parame-
ters, adaptive strategy, least-squares, Nash equilibrium,
stochastic differential games.

I. INTRODUCTION

COMPLEX systems are currently at the research frontiers
of many fields in scientific technology, such as economic

and social systems, biology and environmental systems, phys-
ical and engineering systems, and artificial intelligent systems.
It is quite common that the components or subsystems of
complex systems have game-like relationships, and the theory
of differential games appears to be a useful tool in modeling
and analyzing conflicts in the context of dynamical systems.

The differential game theory was firstly introduced by Isaacs
[1] in combat problems, and has been applied in many fields
(see, e.g., [2]–[4]). A great deal of research effort has been
devoted to the area in the past half a century and much
progress has been made (see, e.g., [5]–[7]). In particular, the
linear-quadratic differential games, which are described by
linear systems and quadratic payoff functions, have attracted
a lot of attention. Bernhard [8] gave necessary and sufficient
conditions for the existence of a saddle point for determin-
istic two-player zero-sum differential games on a finite time
interval. Starr and Ho [9] extended the zero-sum differential
games to the general case, i.e., the players wish to minimize
different performance criteria and they discussed three types
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of solutions. Differential game theory may also be used to
study H∞-optimal control problems [10], since this problem
is actually a minimax optimization problem. However, in all
the above-mentioned works, the parameters in the related
mathematical models are assumed to be known to the players.

When the parameters in stochastic dynamical systems are
unknown, there are a great deal of researches in the area of
adaptive control and much progress has been made over the
past half a century. A basic method in the design of adaptive
control is called the certainty equivalence principle, which
consists of two steps: firstly to use the observed information
to get an estimate of the unknown parameters at each time
instant, then to construct or update the controller by taking the
estimate as “true” parameters at the same time. This design
method is well-known to be quite powerful in dealing with
dynamical systems with possible large uncertainties (see [11],
[12]). However, since the closed-loop systems of adaptive
control are usually described by a set of very complicated
nonlinear stochastic dynamical equations, a rigorous theoret-
ical investigation is well-known to be quite hard, even for
linear uncertain stochastic systems. An example is the adap-
tive linear-quadratic-Gaussian control problem, where a key
theoretical difficulty was how to guarantee the controllability
of the online estimated model. This longstanding problem
was reasonably resolved in the work [13] based on the self-
convergence property of a class of weighted least squares and
on a random regulation theory established in [14], which turn
out to be the fundamental bases for solving the adaptive game
problems in the current paper.

It goes without saying that uncertainties in the system struc-
ture, information and environment widely exist in dynamical
games, and it is thus natural to consider adaptive game theory.
To the best of our knowledge, only a little effort has been
devoted to adaptive game theory, due to the complexity of
the related theoretical investigation. For examples, Li and
Guo [15] had considered a two-player zero-sum stochastic
adaptive differential linear-quadratic game with state matrix
to be known and stable. Yuan and Guo [16] investigated
adaptive strategies for a zero-sum game described by an input-
output stochastic model with known high gain parameters
for both players. In a related but somewhat different context,
reinforcement learning methods are also adopted to obtain the
optimal strategies of players (see [17]–[22]). In [17]–[19], both
players need to solve a least squares problem cooperatively
and update their strategies respectively. In [20] and [21], a
Stackelberg-like model is investigated, where the leader and
follower update their strategies alternately with the leader first.
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The paper [20] needs to project the feedback gain of the leader
to a known convex and compact set to ensure the stability of
the system, and the paper [21] does not need such a projection
but needs to assume that both players have an incentive to
stabilize the system in the first place.

In this paper, we consider the problem of adaptive linear-
quadratic zero-sum stochastic differential games, by using
some of the powerful techniques developed in stochastic
adaptive control but in a quite different and more complicated
framework. First, a new information structure which describes
a kind of complex situations involving both “competition and
cooperation” will be introduced in the paper, where “cooper-
ation” here implies that both players have a first priority to
stabilize the game systems in the process of “competition”.
Second, a common adaptive parameter estimator will be de-
signed and provided to both players with some guaranteed
nice properties regardless of the players’ strategies. Third,
a theory will be established on adaptive strategies that are
designed based on both the certainty equivalence principle and
the diminishing excitation technique. To be specific, it will
be shown that the closed-loop adaptive game systems will be
globally stable and asymptotically reach the Nash equilibrium.

The remainder of the paper is organized as follows: In
Section II, the design procedure of the adaptive strategies is
provided and the main results on global stability, convergence
of the estimate and Nash equilibrium of the closed-loop game
systems are presented. Section III gives the proofs of above
theorems and Section IV concludes this paper.

II. PROBLEM FORMULATION AND MAIN
RESULTS

A. Problem Formulation
Consider the following basic stochastic linear quadratic

zero-sum differential game:

dx(t) = (Ax(t) +B1u1(t) +B2u2(t))dt+Ddw(t), (1)

where x(t) ∈ Rn is the state with the initial state x(0) =
x0, ui(t) ∈ Rmi is the strategy of Player i (i = 1, 2),
(w(t),Ft; t ≥ 0) is a Rp-valued standard Wiener process,
and A ∈ Rn×n, Bi ∈ Rn×mi , D ∈ Rn×p are system matrices.

The payoff function is :

J(u1, u2) = lim sup
T→∞

1

T

∫ T

0

(xTQx+ uT1R1u1 − uT2R2u2)dt,

(2)
where Q = QT, R1 = RT

1 > 0, R2 = RT
2 > 0 are given

weighting matrices. The objective of Player 1 is to minimize
the payoff function, while Player 2 wants to maximize it.

It is well-known that the information structure and the
timing of actions play a crucial role in games (see [7]). The
basic information structure of the above zero-sum game is
summarized as follows:

1) The system matrices {A,B1, B2, D} are unknown to
both players. But, the weighting matrices {Q,R1, R2} and
the state x(t) are “common” knowledge at time instant t.

2) The strategies ui(t), i = 1, 2 are of adaptive patterns, i.e.,
ui(t) is adapted to {Ft; t ≥ 0} where Ft is a known non-
decreasing filtration containing the filtration F x

t generated by
the state process x(t), i.e., F x

t , σ(x(s); 0 ≤ s ≤ t).

3) Neither of the players knows its opponent’s strategy, and
we assume that a common adaptive parameter estimator can
be provided to both players.

4) Both players are of rationality in the sense that they have
a first priority in stabilizing the game system and know about
some basic principles in improving their respective strategies.

Remark 1: In the information structure 2), the strategies are
usually referred to as feedback patterns when Ft = σ{x(t)}.
The general concept of adaptive pattern introduced here will
make the design more flexible to include, e.g., “exploration”
signals in the adaptive strategies. Since neither of the players
knows its opponent’s strategy as assumed in the information
structure 3), it is hard for the players to estimate their
opponents’ input matrices without the assistance of a common
estimator. Moreover, the information structure 4) on securing
the stability of the game systems by both players is similar
to that assumed in the non-adaptive deterministic case in [6].
In this sense, the information structure stated above describes
a kind of complex situations involving both “competition and
cooperation” rather than the scenario of pure “competition”,
which exists widely in social and economic systems. In fact,
the players who are involved in competition must exist in the
same system, and the breakdown of the system will not be
beneficial to any players in general.

Definition 1: A pair of strategies (u1(t), u2(t)) are said to
be admissible if they are adapted to {Ft; t ≥ 0} and under
which the following properties hold for any initial state x(0):

lim sup
T→∞

1

T

∫ T

0

(|x(t)|2 + |u1(t)|2 + |u2(t)|2)dt <∞ and

lim
T→∞

|x(T )|2

T
= 0 a.s.

Definition 2: For the zero-sum linear-quadratic differential
game (1)-(2) with both players in the adaptive pattern, a pair of
admissible strategies (u∗1, u

∗
2) are called to attain an adaptive

Nash equilibrium if they satisfy

J(u∗1, u2) ≤ J(u∗1, u
∗
2) ≤ J(u1, u

∗
2),

for any admissible pairs (u∗1, u2) and (u1, u
∗
2).

It is well-known that if the algebraic Riccati equation (ARE)

ATP + PA+Q− PB1R
−1
1 BT

1 P + PB2R
−1
2 BT

2 P = 0 (3)

admits a real symmetric solution P such that A−(B1R
−1
1 BT

1−
B2R

−1
2 BT

2 )P is stable, then the following pair of strategies
constitute a feedback Nash equilibrium [6]:

ui(t) = (−1)iR−1
i BT

i Px(t), i = 1, 2. (4)

It is worth mentioning that such solution P is called the
stabilizing solution to ARE (3) and it is unique.

Now, we introduce a class of matrices defined by

L ,

{
L ,

(
L1

L2

)
|A+B1L1 +B2L2 is stable

}
,

and we need the following notations:

B = [B1, B2], R = diag(R1,−R2), (5)

G(s) = R+BT(−sI −AT)−1Q(sI −A)−1B, (6)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3274863

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on September 18,2023 at 09:43:28 UTC from IEEE Xplore.  Restrictions apply. 



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

NL(s) = I + L(sI −A−BL)−1B, (7)

G̃L(s) = NH
L (s)G(s)NL(s), (8)

where AH denotes the conjugate transpose of A.
Definition 3: A matrix function G(s) is called antianalytic

factorizable if there exist matrix functions Ξ(s) and Ω(s)
such that G(jω) = Ξ(−jω)Ω(jω), where Ξ,Ξ−1,Ω,Ω−1

are all proper rational matrix functions without poles on the
imaginary axis.

In the spectral theory of linear-quadratic optimal control, the
above factorization has been well discussed and more details
may be found in [23] and [24].

Definition 4: Assume (A,B) is stabilizable. We will say that
G(s) is antianalytic prefactorizable (see [25]) if there exists
L ∈ L such that G̃L(s) is antianalytic factorizable.

Proposition 1 [25]: The algebraic Riccati equation (3) has
a stabilizing solution and R is nonsingular if and only if the
pair (A,B) is stabilizable and the matrix function G(s) is
antianalytic prefactorizable.

Then, the following basic assumptions are made.
A1) the pair (A,B) is controllable.
A2) the matrix function G(s) defined by (6) is antianalytic

prefactorizable.
Remark 2: Assumption A1) and A2) ensure that the ARE

(3) has a stabilizing solution. Unfortunately, the corresponding
strategies (4) are not implementable, because the system
matrices (A,B) are unknown to both players. To solve this
problem, it is natural to resort to adaptive methods based on
online estimation of the system matrices. The controllability
assumption A1) also makes it possible to transform excitation
properties from the input to the state signals, necessary for
the convergence of the parameter estimation. These are the
contents of the next subsections.

B. The WLS Estimation

To describe the estimation problem in the standard form,
we first introduce the following notations:

θT = [A,B1, B2], (9)

ϕ(t) = [xT(t), uT1 (t), uT2 (t)]T, (10)

and rewrite the system (1) into the following compact form:

dx(t) = θTϕ(t)dt+Ddw(t). (11)

Now the continuous-time weighted least-square (WLS) es-
timates (θ(t), t ≥ 0) are given by [13]

dθ(t) = a(t)Q(t)ϕ(t)[dxT(t)− ϕT(t)θ(t)dt], (12)

dQ(t) = −a(t)Q(t)ϕ(t)ϕT(t)Q(t)dt, (13)

where the initial conditions Q(0) > 0 and θT(0) =
[A(0), B1(0), B2(0)] are arbitrary deterministic values such
that (A(0), B(0)) is controllable with B(0) = [B1(0), B2(0)],
a(t) = 1/ log(1+δ) r(t), δ > 0 is a constant and

r(t) = ‖Q−1(0)‖+

∫ t

0

|ϕ(s)|2ds. (14)

Lemma 1 [13]: Let (θ(t), t ≥ 0) be defined by (12)-(13).
Then the following properties are satisfied:

(1) sup
t≥0
‖Q− 1

2 (t)θ̃(t)‖2 <∞ a.s.

(2)

∫ ∞
0

a(t)‖θ̃T(t)ϕ(t)‖2dt <∞ a.s.

(3) lim
t→∞

θ(t) = θ̄ a.s.

where θ̃(t) = θ(t)− θ and θ̄ is a finite random variable.

C. Regularization

To construct the adaptive version of the ARE (3) by using
the estimates (A(t), B(t)) with guaranteed solvability, one
needs at least the stabilizability of the estimates (A(t), B(t))
which may not be provided by the above WLS algorithm.
To solve this problem, We resort to the regularization method
introduced in [14] to modify the WLS estimates to ensure
their uniform controllablility. We first introduce the following
definition in [13]:

Definition 5: A family of system matrices (A(t), B(t); t ≥
0) is said to be uniformly controllable if there is a constant
c > 0 such that

n−1∑
i=0

Ai(t)B(t)BT(t)AiT(t) ≥ cI,

for all t ∈ [0,∞), where A(t) ∈ Rn×n, B(t) ∈ Rn×m.
By Lemma 1(3), it is known that θ(t) converges to a certain

random matrix θ̄ which may not be the true parameter matrix
θ and naturally, the controllability of the estimate models may
not be guaranteed. To solve this problem, we observe that by
Lemma 1(1), the matrix sequence {Q− 1

2 (t)(θ− θ(t)), t ≥ 0}
is bounded. In other words, there exists a bounded random
sequence {β∗(t), t ≥ 0} such that

θ = θ(t)−Q 1
2 (t)β∗(t).

Note that (A,B) is controllable, this inspires the following
modification for getting controllable estimated models:

θ(t, β(t)) = θ(t)−Q 1
2 (t)β(t),

where β(t) ∈ R(n+m1+m2)×n is a sequence of bounded
matrices to be defined shortly. For simplicity, we denote

θT(t, β(t)) = [Ā(t), B̄(t)], B̄(t) = [B̄1(t), B̄2(t)].

To guarantee the uniform controllability of (Ā(t), B̄(t)), we
need only to select the sequence {β(t), t ≥ 0} to guarantee
the uniform positivity of Y (t) defined by

Y (t, β(t)) = det
( n−1∑
i=0

Āi(t)B̄(t)B̄T(t)ĀiT(t)
)
.

For this purpose, we proceed to choose a suitable process
{β(t), t ≥ 0} to prevent Y (t, β(t)) from being close to zero.
We adopt a method inspired by that in random optimization
[13]. Let {ηk ∈ R(n+m1+m2)×n, k ∈ N} be a sequence of
independent random variables which are uniformly distributed
in the unit ball for a norm of the matrices and are also
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independent of (w(t), t ≥ 0). The procedure of choosing β(k)
is recursively given by the following:

β(0) = 0,

β(k) =

{
ηk, if Y (k, ηk) ≥ (1 + γ)Y (k, β(k − 1))

β(k − 1), otherwise,
(15)

where γ ∈ (0,
√

2 − 1) is a fixed constant. Thus, a sequence
of regularized estimates (θ̄k, k ∈ N) can be defined by

θ̄k = θ(k)−Q 1
2 (k)β(k). (16)

Finally, the continuous-time estimates used for the design
of adaptive strategies can be defined piecewise as follows:

θ̂(t) = θ̄k, (17)

for any t ∈ (k, k + 1] and for all k ∈ N.
The following lemma shows that the regularized estimates

(θ̂(t), t ≥ 0) defined above do indeed ensure the uniform
controllability of the estimated models, while keeping the nice
properties of the WLS.

Lemma 2: Let A1) be satisfied for the game system (1)-(2).
Then the family of regularized WLS estimates (θ̂(t), t ≥ 0)
defined by (12)-(17) has the following properties.

(1) Self-convergence, that is, θ̂(t) converges a.s. to a finite
random matrix as t→∞.

(2) The family (A(t), B(t); t ≥ 0) is uniformly controllable
where [A(t), B(t)] = θ̂T(t).

(3) Semi-consistency, that is,∫ t

0

|(θ̂(s)− θ)Tϕ(s)|2ds = o(r(t)) +O(1),

where r(t) is defined in (14).
The proof is similar to Lemma 2 of [13].

D. The Main Result
For simplicity, we rewrite the estimates given by (17) as

θ̂T(t) = [A(t), B1(t), B2(t)].

For any k ∈ N, it is well-known that the following ARE:

AT(k)P (k) + P (k)A(k) +Q− P (k)S(k)P (k) = 0 (18)

has at most one Hermitian matrix solution P (k) such that

Acl
(
P (k)

)
, A(k)− S(k)P (k) (19)

is stable (see [28]), where

S(k) = B1(k)R−1
1 BT

1 (k)−B2(k)R−1
2 BT

2 (k).

We can rewrite such P (k) as

P (k) = P1(k) + P2(k)j, (20)

where P1(k) is a real symmetric matrix, P2(k) is a real skew-
symmetric matrix and j is the imaginary unit with j2 = −1.

Then, we construct the desired strategy pair by considering
two cases separately.

Case (i): If the ARE (18) has a Hermitian matrix solution
P (k) such that both Acl

(
P (k)

)
and Acl

(
P1(k)

)
are stable,

then Player i (i = 1, 2) can use the following strategies
respectively:

ui(t) = (−1)iR−1
i BT

i (k)P1(k)x(t), for t ∈ (k, k + 1]. (21)

Case (ii): If the ARE (18) does not admit any Hermitian ma-
trix solution P (k) such that both Acl

(
P (k)

)
and Acl

(
P1(k)

)
are stable, then we choose the following strategy pair

(uT1 (t), uT2 (t))T = −BT(k)W−1
k x(t), for t ∈ (k, k + 1],

(22)
where Wk =

∫ 1

0
e−A(k)τB(k)(e−A(k)τB(k))Tdτ and B(k) =

[B1(k), B2(k)].
Remark 3: The strategy pair (21) is designed by the certainty

equivalence principle, and the strategy pair (22) is designed to
stabilize the system (1) whenever the ARE (18) does not have
the desired solution. In the following section, one may see that
the estimates will converge to the true parameters, and so the
strategy pair (u1(t), u2(t)) will not take the form (22) when
t is large enough.

By the well-known Fel’dbaum dual principle in optimal
control, the optimal strategy should achieve a good balance
between control and estimation for uncertain systems. A
similar philosophy used in reinforcement learning is the trade-
off between “exploitation and exploration”. Inspired by this
and following the ideas in [14], some diminishing excitation
or exploration signals that are helpful for estimation but not
essentially influence the control, are incorporated into the
adaptive strategies of both players, i.e., for t ∈ (k, k + 1],

u∗i (t) = Li(k)x(t) + γ
(i)
k (vi(t)− vi(k)) or

du∗i (t) = Li(k)dx(t) + γ
(i)
k dvi(t), i = 1, 2 (23)

where [L1(t), L2(t)] = [−R−1
1 BT

1 (k)P1(k), R−1
2 BT

2 (k)P1(k)]
in Case (i); [LT

1 (t), LT
2 (t)]T = −BT(t)W−1

k in Case (ii).
The sequences {γ(i)

k , k ∈ N}, i = 1, 2 can be any sequences
satisfying the following:

lim
k→∞

γ
(1)
k = lim

k→∞
γ

(2)
k = 0,

min{γ(1)
k , γ

(2)
k } ≥ γk = (

log k√
k

)
1
2 , with γ0 = 0.

For simplicity, we choose γ
(1)
k = γ

(2)
k = γk in the rest of

the paper. The processes (v1(t), t ≥ 0) and (v2(t), t ≥ 0) are
chosen as sequences of independent standard Wiener processes
that are independent of (w(t), t ≥ 0) and (ηk, k ∈ N).

Now, we have the following theorems and the proofs will
be given in the next section.

Theorem 1: Let A1) be satisfied. Then, under the adaptive
strategies (23) of the players, the following properties hold:

1) The system (1) is globally stable in the sense that for
any initial state x(0),

lim sup
T→∞

1

T

∫ T

0

|x(t)|2dt <∞ a.s. (24)

2) The parameter estimates θ̂(t) adopted by the players are
strongly consistent, i.e.,

lim
t→∞

θ̂(t) = θ a.s. (25)
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where θ is the true system parameter defined by (9).
Theorem 2: For the stochastic game system (1) with the

payoff function (2), if A1) and A2) are satisfied, then the
above adaptive strategies (23) constitute an adaptive Nash
equilibrium. Moreover, we have

J(u∗1, u
∗
2) = tr(DTPD) a.s. (26)

where P is the stabilizing solution to the ARE (3).

III. PROOF

We first present the following lemmas:
Lemma 3 [26]: If the system ẋ = Ax+Bu is controllable,

then under the control u = −BTW−1(0, T0)x, the closed-loop
system is stable, where W (0, T0) =

∫ T0

0
e−AtB(e−AtB)Tdt

and T0 > 0 is any given constant.

Lemma 4 [13]: For the processes (vi(t), t ≥ 0), i = 1, 2
and the sequences {γk, k ∈ N} defined in (23), we have

lim sup
N→∞

1

N

N∑
k=1

∫ k+1

k

γ2
k|vi(t)− vi(k)|2dt = 0 a.s.

Lemma 5 [28]: With each triple (A,S,Q) ∈ (Cn×n)3

satisfying S = SH and Q = QH to be piecewise continuous
and locally bounded matrix functions A,S,Q : D → Cn×n
on some interval D ∈ R, we associate the matrix function

E =

(
Q AH

A −S

)
: D→ C2n×2n,

and the ARE

AHP + PA+Q− PSP = 0, (27)

where AH denotes the conjugate transpose of A. Assume that
for some E = E0 there is a stabilizing solution P0 for which
(27) is fulfilled. Then there exists r(E0) > 0 such that for
E ranging ||E − E0|| < r(E0), there is a unique analytic
function E 7→ P (E) such that A − SP (E) is stable and
P (E) is a Hermitian matrix solution to the equation (27)
satisfying P (E0) = P0.

Lemma 6 [29]: Let the processes (x(t) ∈ Rn, t ≥ 0) and
(V (t) ∈ Rn×n, t ≥ 0) satisfy

lim sup
T→∞

1

T

∫ T

0

|x(t)|2dt <∞ a.s. (28)

and

lim
t→∞

V (t) = 0 a.s. (29)

then, the following equality is true:

lim
t→∞

1

T

∫ T

0

xT(t)V (t)x(t)dt = 0 a.s. (30)

A. Proof of Theorem 1:

By Lemma 2 1) and 2), there are random matrices A(∞)
and Bi(∞) such that

lim
t→∞

A(t) = A(∞) a.s.

lim
t→∞

Bi(t) = Bi(∞), i = 1, 2 a.s.

and that (A(∞), B(∞)) is controllable where

B(∞) = [B1(∞), B2(∞)].

For simplicity of the remaining descriptions, we denote

Φ(t) = A(t) +B1(t)L1(t) +B2(t)L2(t). (31)

where L1(t) and L2(t) are defined in (23).
We now proceed to verify that Φ(t) is uniformly stable and

convergent. By the definition (23) and Lemma 3, we only need
to consider the case where t is sufficiently large. For this, we
consider the following two cases separately:

Case (1): If the ARE

AT(∞)P (∞)+P (∞)A(∞)−P (∞)B1(∞)R−1
1 BT

1 (∞)P (∞)

+Q+ P (∞)B2(∞)R−1
2 BT

2 (∞)P (∞) = 0 (32)

has a Hermitian matrix solution P (∞) such that both
Acl
(
P (∞)

)
and Acl

(
P1(∞)

)
defined by (19)-(20) are stable,

then by Lemma 5, there exist solutions P (k) defined in (18)
for all large enough k such that

lim
k→∞

P (k) = P (∞) a.s.

and that both Acl
(
P (k)

)
and Acl

(
P1(k)

)
(by continuity) are

stable, which means that when k ∈ N is large enough, L1(t)
and L2(t) will take the following form for t ∈ (k, k + 1]:

L1(t) = −R−1
1 BT

1 (k)P1(k), L2(t) = R−1
2 BT

2 (k)P1(k).

Hence, Φ(t) is uniformly stable and convergent.
Case (2): In the case where the ARE (32) does not admit any

Hermitian matrix solution P (∞) such that both Acl
(
P (∞)

)
and Acl

(
P1(∞)

)
are stable, by the definition (23) and Lemma

5, L1(t) and L2(t) will take the following form for all
sufficiently large k:

[LT
1 (t), LT

2 (t)]T = −BT(k)W−1
k , for t ∈ (k, k + 1].

Then, by Lemma 3, we can easily see that Φ(t) is uniformly
stable and convergent.

To summarize, we know that Φ(t) is uniformly stable and
converges to a stable matrix a.s. Hence, by Lyapunov equation,
there exist some uniformly bounded positive definite matrices
K(t) such that

ΦT(t)K(t) +K(t)Φ(t) = −I. (33)

Next, we proceed to verify that

N∑
k=0

|x(k)|2 = O(N) + o(r(N)) a.s. (34)
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where r(t) is defined in (14). Note that for t ∈ (k, k+ 1] and
k ∈ N, under adaptive strategies (23) the system (1) will be

dx(t) = (Ax(t) +B1u
∗
1(t) +B2u

∗
2(t))dt+Ddw(t) (35)

= (Φ(t)x(t) + δ(t) + γk(v(t)− v(k)))dt+Ddw(t),

where δ(t) = (θ− θ̂(t))Tϕ(t) and v(t) = B1v1(t) +B2v2(t).
Then, it follows that

x(k + 1) = eΦ(k)x(k) +

∫ k+1

k

e(k+1−t)Φ(k)Ddw(t)

+

∫ k+1

k

e(k+1−t)Φ(k)(δ(t) + γk(v(t)− v(k)))dt.

Since Φ(k) is uniformly stable and convergent, by Cauchy-
Schwarz inequality, it is easy to get

|x(k + 1)|2 ≤ m|x(k)|2 +m1(

∫ k+1

k

e(k+1−t)Φ(k)Ddw(t))2

+m2(

∫ k+1

k

|δ(t)|2dt+

∫ k+1

k

γ2
k|v(t)− v(k)|2dt),

where 0 < m < 1 and m1,m2 > 0 are some fixed constants.
Then, it is easy to see that

1

N
(1−m)

N∑
k=1

|x(k)|2

= O(
1

N

N∑
k=1

(

∫ k+1

k

e(k+1−t)Φ(k)Ddw(t))2)+

O(
1

N

∫ N

1

|δ(t)|2dt) +O(
1

N

N∑
k=1

∫ k+1

k

γ2
k|v(t)− v(k)|2dt)

= O(1) + o(
1

N
r(N)),

where the first part can use Lemma 1 (Etemadi) of 5.2 in [27],
the second part is the direct result of Lemma 2(3) and the third
part can be estimated by the consequence of Lemma 4.

Finally, we proceed to prove Theorem 1. Applying the
Ito’s formula to 〈K(t)x(t), x(t)〉 where 〈·, ·〉 represents the
inner product, and noting that K(t) defined in (33) is actually
constant in any interval t ∈ (i, i+ 1] and any i ∈ N, it follows
that

d〈K(t)x(t), x(t)〉 = tr(K(t)DDT)dt+ 2〈K(t)x(t), Ddw(t)〉

+2〈K(t)x(t),Φ(t)x(t) + δ(t) + γi(v(t)− v(i))〉dt,

which in conjunction with equation (33) gives

d〈K(t)x(t), x(t)〉+ |x(t)|2dt = tr(K(t)DDT)dt+

2〈K(t)x(t), Ddw(t)〉+ 2〈K(t)x(t), δ(t) +γi(v(t)− v(i))〉dt.
(36)

For the second part on the right-hand-side, by the bound-
edness of K(t), it follows from Lemma 12.3 of [11] that

|
∫ t

0

〈K(t)x(t), Ddw(t)〉| = O
(
[

∫ t

0

|x(t)|2dt] 1
2 +ε
)
, (37)

for any ε ∈ (0, 1/2).

By Lemma 2(3), it follows that∫ t

0

|δ(s)|2ds = o(r(t)) +O(1). (38)

Then, integrating the equation (36) over the interval (0, T ),
and using (37)-(38), Lemma 4 and the Cauchy-Schwarz in-
equality, it follows that

bTc−1∑
i=0

(
〈K(i)x(i+ 1), x(i+ 1)〉 − 〈K(i)x(i), x(i)〉

)
+〈K(bT c)x(T ), x(T )〉 − 〈K(bT c)x(bT c), x(bT c)〉

+

∫ T

0

|x(t)|2dt =

∫ T

0

tr(K(t)DDT)dt+

O
(
(

∫ T

0

|x(t)|2dt) 1
2 +ε
)

+ (

∫ T

0

|x(t)|2dt) 1
2 · o(T 1

2 )+

(

∫ T

0

|x(t)|2dt) 1
2 (o(r(T )) +O(1))

1
2 , (39)

where bT c denotes the integer part of T .
Since K(t) is uniformly bounded, we have
bTc−1∑
i=0

(
〈K(i)x(i+ 1), x(i+ 1)〉 − 〈K(i)x(i), x(i)〉

)
+〈K(bT c)x(T ), x(T )〉 − 〈K(bT c)x(bT c), x(bT c)〉

= O(

bTc∑
i=0

|x(i)|2) + 〈K(bT c)x(T ), x(T )〉. (40)

By Lemma 4 and the convergence of [L1(t), L2(t)], it
follows that

r(T ) = ‖P−1(0)‖+
∫ T

0

|ϕ(s)|2ds = O(

∫ T

0

|x(t)|2dt). (41)

Finally, by (34) and (40)-(41), the equality (39) will be

〈K(bT c)x(T ), x(T )〉+

∫ T

0

|x(t)|2dt

= O(T ) + o(

∫ T

0

|x(t)|2dt) +

∫ T

0

tr(K(t)DDT)dt, (42)

which implies the desired result of Theorem 1 1).
In order to prove the strong consistency of the WLS

estimates, we need to verify the excitation condition on φ(t)
needed for the convergence θ̃(t)→ 0.

By Lemma 1(1), it follows that

‖θ(t)− θ‖2 ≤ ‖Q(t)‖‖Q− 1
2 (t)(θ(t)− θ)‖2 = O(‖Q(t)‖).

From (16)-(17), we need only to verify that Q(k)→ 0.
By the definition (13), it is easy to see that

Q(k) =
(
Q−1(0) +

∫ k

0

a(s)ϕ(s)ϕT(s)ds
)−1

≤
(
Q−1(0) + a(k)

∫ k

0

ϕ(s)ϕT(s)ds
)−1

≤
(
Q−1(0) +

M

log1+δ k

∫ k

0

ϕ(s)ϕT(s)ds
)−1

= O

(
log1+δ k

λmin(
∫ k

0
ϕ(s)ϕT(s)ds)

)
(43)
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where we have used the fact that r(k) = O(k) (see (41) and
Theorem 1 1)), M > 0 is a constant and λmin(·) denotes the
minimum eigenvalue.

Next, we only need to verify that there exists some c > 0
such that for all sufficiently large k,

λmin(

∫ k

0

ϕ(s)ϕT(s)ds) ≥ c
√
k. (44)

Since (A,B) is controllable and [L1(t), L2(t)] is conver-
gent, the desired excitation condition (44) can be proved using
the similar arguments as in the proof of Theorem 2 [13] (see
(61) in [13]), details will not be repeated here. Hence, the
proof is completed.

B. Proof of Theorem 2:
First, we verify that the adaptive strategy pair (u∗1(t), u∗2(t))

is admissible. By Theorem 1 1), we only need to verify that

lim
T→∞

|x(T )|2

T
= 0 a.s. (45)

By Theorem 1 2), it follows that

lim
t→∞

A(t) = A a.s.

lim
t→∞

Bi(t) = Bi, i = 1, 2 a.s.

Under Assumptions A1) and A2), the ARE (3) admits a
unique stabilizing solution P (see Proposition 1). By Lemma
5, we know that when k is large enough, there a.s. exists
a Hermitian matrix solution P (k) to the ARE (18) such
that Acl

(
P (k)

)
is stable. Consequently, for the real part and

imaginary part of such P (k), we have

lim
k→∞

P1(k) = P1(∞) = P and lim
k→∞

P2(k) = 0 a.s. (46)

Hence, for any sample point w, there exists some sufficiently
large Tw > 0 such that Φ(t) , A + B1L1(t) + B2L2(t) is
stable for any t ≥ Tw, where [L1(t), L2(t)] is defined in (23).

For the system (1) with adaptive strategies (23), we have

dx(t) = (Ax(t) +B1u
∗
1(t) +B2u

∗
2(t))dt+Ddw(t) (47)

=
(
Φ(t)x(t) + γbtc(v(t)− v(btc))

)
dt+Ddw(t),

where v(t) = B1v1(t) + B2v2(t) and btc denotes the integer
part of t. Integrating the equation (47) over interval [Tw, t], it
follows that

x(t) = Ψ(t, Tw)x(Tw) +

∫ t

Tw

Ψ(t, τ)γbτc(v(τ)− v(bτc))dτ

+

∫ t

Tw

Ψ(t, τ)Ddw(τ),

where dΨ(t, s) = Φ(t)Ψ(t, s)dt with Ψ(s, s) = In, for s ≥ 0.
Since Φ(t) is stable and convergent for any t ≥ Tw, there

exist α, β > 0 such that ‖Ψ(t, Tw)‖ ≤ βe−αt for t ≥ Tw
(see Theorem 2.4.1 [30]). Therefore, by the Cauchy-Schwarz
inequality, it is easy to get

|x(t)|2 = O
(
|Ψ(t, Tw)x(Tw)|2

)
+O

(
|
∫ t

Tw

Ψ(t, τ)Ddw(τ)|2
)

+O
( ∫ t

Tw

γ2
bτc|v(τ)− v(bτc)|2dτ

)
= o(t), (48)

where the second part can be estimated by Lemma 12.3 of
[11] and the third part is a direct consequence of Lemma 4.
Hence, we can see that (48) implies the desired result (45).

Next, we proceed to show that

J(u∗1, u
∗
2) = tr(DTPD). (49)

From (47), applying the Ito’s formula to 〈Px(t), x(t)〉,
where P is the stabilizing solution to the ARE (3), it follows
that

d〈Px(t), x(t)〉 = 2〈Px(t),Φ(t)x(t) + γbtc(v(t)− v(btc))〉dt

+tr(PDDT)dt+ 2〈Px(t), Ddw(t)〉, (50)

by integrating (50) over the interval [0, T ], we have

〈Px(T ), x(T )〉 − 〈Px(0), x(0)〉 =

2

∫ T

0

〈Px(t),Φ(t)x(t)〉dt+2

∫ T

0

〈Px(t), γbtc(v(t)−v(btc))〉dt

+Ttr(PDDT) + 2

∫ T

0

〈Px(t), Ddw(t)〉. (51)

We now analyze the right-hand-side of (51) term by term.
First, by the Cauchy-Schwarz inequality, it follows that( ∫ T

0

〈Px(t), γbtc(v(t)− v(btc))〉dt
)2

≤ (

∫ T

0

|Px(t)|2dt)(
∫ T

0

γ2
btc|v(t)− v(btc)|2dt). (52)

Similar to (38), it follows that for any ε ∈ (0, 1/2),∣∣∣∣∫ t

0

〈Px(t), Ddw(t)〉
∣∣∣∣ = O

(
(

∫ t

0

|x(t)|2dt) 1
2 +ε
)
. (53)

By (52)-(53), Theorem 1 1) and Lemma 4, (51) implies that

lim sup
T→∞

1

T

∫ T

0

〈−2Px(t),Φ(t)x(t)〉dt = tr(PDDT). (54)

Now, let us denote V = Q+PB1R
−1
1 BT

1 P−PB2R
−1
2 BT

2 P.
By Lemma 6 and the ARE (3), it follows that

tr(PDDT) = lim sup
T→∞

1

T

∫ T

0

〈−2Px(t),Φ(t)x(t)〉dt

= lim sup
T→∞

1

T

∫ T

0

〈−2Px(t),Φ(∞)x(t)〉dt

= lim sup
T→∞

1

T

∫ T

0

〈V x(t), x(t)〉dt. (55)

Therefore, we have

J(u∗1, u
∗
2)

= lim sup
T→∞

1

T

∫ T

0

(
xTQx+ u∗T1 R1u

∗
1 − u∗T2 R2u

∗
2

)
dt

= lim sup
T→∞

1

T

∫ T

0

〈V x(t), x(t)〉dt = tr(DTPD), (56)

where Theorem 1 1), Lemma 4 and Lemma 6 are used.
It remains to prove that (u∗1, u

∗
2) constitutes a Nash equi-

librium. Because of symmetry, we only prove J(u∗1, u
∗
2) ≤

J(u1, u
∗
2) for any admissible strategy pair (u1, u

∗
2).
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For the system (1) with any admissible strategy pair
(u1, u

∗
2), it follows that

dx(t) = (Ax(t) +B1u1(t) +B2u
∗
2(t))dt+Ddw(t)

=
(
Ã(t)x(t) +B1u1(t) + γbtcB2(v2(t)− v2(btc))

)
dt

+Ddw(t), (57)

where Ã(t) = A + B2L2(t). Applying the Ito’s formula to
〈Px(t), x(t)〉, it follows that

d〈Px(t), x(t)〉 = tr(PDDT)dt+ 2〈Px(t), Ddw(t)〉+

2〈Px(t), Ã(t)x(t) +B1u1(t) + γbtcB2(v2(t)− v2(btc))〉dt.

Furthermore, repeating the similar method as in the proof
of (54), it is easy to see that

lim sup
T→∞

1

T

∫ T

0

〈−2Px(t), Ã(t)x(t) +B1u1(t)〉dt

= tr(PDDT).

Finally, it is not hard to verify that

J(u1, u
∗
2) = lim sup

T→∞

1

T

∫ T

0

(
xTQx+ uT1R1u1 − u∗T2 R2u

∗
2

)
dt

= lim sup
T→∞

1

T

∫ T

0

(
〈−2Px(t), (A+B2R

−1
2 BT

2 P )x(t)〉

+ 〈R1(u1(t) +R−1
1 BT

1 Px(t)), u1(t) +R−1
1 BT

1 Px(t)〉
+ 〈−2Px(t), B1u1(t)〉

)
dt

≥ lim sup
T→∞

1

T

∫ T

0

〈−2Px(t), Ã(t)x(t) +B1u1(t)〉dt

= tr(PDDT) = J(u∗1, u
∗
2).

Hence, Theorem 2 is true.

IV. CONCLUSIONS

In this paper, we have established an adaptive theory on
linear quadratic zero-sum stochastic differential games when
the players know neither the system parameters nor their
opponents’ strategies. This has been a longstanding problem,
partly because the simpler adaptive linear quadratic stochastic
control problem is already complicated enough. To study
adaptive game problems, one need to introduce a suitable
information structure for the game in the face of system
uncertainties, that will inevitably lead to more complicated
framework and problems than those in the traditional adap-
tive control. Under the information structure introduced in
this paper, we have established a theory on global stability
and asymptotic performance for adaptive strategies that are
designed based on the well-known philosophy of “exploitation
and exploration”. However, many interesting problems still
remain to be investigated in this direction. For examples, how
to design and analyze the adaptive strategies when the system
parameters are time-varying and unknown to the players?
What will happen if the players are heterogeneous in the sense
that different players may have asymmetric information? How
to regulate the adaptive Nash equilibrium if there is a global
regulator over the two players?
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[11] H. F. Chen and L. Guo, Identification and Stochastic Adaptive Control,
Boston, MA: Birkhäuser, 1991.
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