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Abstract—This paper investigates adaptive identifica-
tion and prediction problems for stochastic dynamical sys-
tems with saturated output observations, which arise from
various fields in engineering and social systems, but up
to now still lack comprehensive theoretical studies includ-
ing guarantees for the estimation performance needed in
practical applications. With this impetus, the paper has
made the following main contributions: (i) To introduce
an adaptive two-step quasi-Newton algorithm to improve
the performance of the identification, which is applicable
to a typical class of nonlinear stochastic systems with
outputs observed under possibly varying saturation. (ii)
To establish the global convergence of both the param-
eter estimators and adaptive predictors and to prove the
asymptotic normality, under the weakest possible non-
persistent excitation condition, which can be applied to
stochastic feedback systems with general non-stationary
and correlated system signals or data. (iii) To establish use-
ful probabilistic estimation error bounds for any given finite
length of data, using either martingale inequalities or Monte
Carlo experiments. A numerical example is also provided
to illustrate the performance of the proposed identification
algorithm.

Index Terms— Asymptotic normality, convergence, non-
PE condition, stochastic systems, saturated observations.

[. INTRODUCTION

Identifying the input-output relationship and predicting the
future behavior of dynamical systems based on observation
data are fundamental problems in various fields including
control systems, signal processes, machine learning, etc. This
paper considers identification and prediction problems for
stochastic dynamical systems with saturated output observa-
tion data. Here, by saturated output observations, we mean
that the observations for the output are produced through
the following mechanism: at each time, the noise-corrupted
output can be observed precisely only when its value lies in
a certain range, however, when the output value exceeds this
range, its observation becomes saturated, leading to imprecise
information. The relationship between the system output and
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its observation is illustrated in Fig.1, where vg41 and ygi1
represent the system output and its observation respectively,
the interval [lj,uy] is the precise observation range, when the
system output exceeds this range, the only possible observation
is a constant, either L;, or Uj. Note that if we take L = [, =
0, ur = U = o0, then the saturation function will become the
ReLu function widely used in machine learning; and if we take
Ly =1l = ux = 0, Ug = 1, the saturation function will turn
to be a binary-valued function widely used in classification
problems( [1], [2]).

+1]
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Fig. 1. Saturated output observations.

Saturated output observations in stochastic dynamical sys-
tems exist widely in various fields including engineering ( [3]
[4]), economics ( [5]- [7]), and social systems [8]. We only
mention several examples in three different application areas.
The first example is from control engineering ( [3]), where
Yy represents the sensor observation of the system output,
which can be considered as a saturated output observation
since it becomes saturated if the output is too large to exceed
the observation range of the available sensors. The second
example is from economics ( [5]), where vy, is interpreted as
an index of the consumer’s intensity of desire to purchase
a durable, y; is the true purchase which can be regarded
as a saturated observation, since the intensity vy can be
observed only if it exceeds a certain threshold where the true
purchase takes place; The third example is from sentencing
( [8]), where y;, is the pronounced penalty and can also be
regarded as a saturated observation since it is constrained
within the statutory range of penalty according to the related
basic criminal facts.

Since the emergence of saturation changes the structure of
the original systems and may degrade system performance,
providing a theoretical analysis for the performance guarantee
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of the identification algorithm is one of the most important
issues addressed in this paper. Compared with the unsaturated
case of observations, the key challenge of the current saturated
case is the inherent nonlinearity in the observations of the
underlying stochastic dynamical systems. In the past several
decades, various identification methods with saturated obser-
vations have been studied intensively with both asymptotic
and non-asymptotic results, on which we give a brief review
separately in the following:

First, most of the existing theoretical results are asymptotic
in nature, where the number of observations needs to increase
unboundedly or at least to be sufficiently large. For example,
the least absolute deviation methods were considered in [18],
and the strong consistency and asymptotic normality of the
estimators were proven for independent signals satisfying the
usual persistent excitation (PE) condition where the condition
number of the information matrix is bounded. Besides, the
maximum likelihood (ML) method was considered in [19],
where consistency and asymptotic efficiency were established
for independent or non-random signals satisfying a stronger
PE condition. Moreover, a two-stage procedure based on ML
was proposed in [16] to deal with two coupled models with
saturated observations. Furthermore, the empirical measure ap-
proach was employed in [20]- [22], where strong consistency
and asymptotic efficiency were established under periodic
signals with binary-valued observations. Such observations
were also considered in [23], where a strongly consistent
recursive projection algorithm was given under a condition
stronger than the usual PE condition.

Second, there are also a number of non-asymptotic es-
timation results in the literature. Despite the importance
of the asymptotic estimation results as mentioned above,
non-asymptotic results appear to be more practical, because
one usually only has a finite number of data available for
identification in practice. However, obtaining non-asymptotic
identification results, which are usually given under high
probability, is quite challenging especially when the structure
comes to nonlinear. Most of the existing results are established
under assumptions that the system data are independently and
identically distributed (i.i.d), e.g., the analysis of the stochastic
gradient descent methods in [27], [28]. For the dependent data
case, an online Newton method was proposed in [29], where
a probabilistic error bound was given for linear stochastic
dynamical systems where the usual PE condition is satisfied.

In summary, almost all of the existing identification results
for stochastic dynamical systems with saturated observations
need at least the usual PE condition on the system data, and
actually, most need i.i.d assumptions. Though these idealized
conditions are convenient for theoretical investigation, they are
hardly satisfied or verified for general stochastic dynamical
systems with feedback signals (see, e.g. [17]). This inevitably
brings challenges for establishing an identification theory on
either asymptotic or non-asymptotic results with saturated
observations under more general (non-PE) signal conditions.

Fortunately, there is a great deal of research on adaptive
identification for linear or nonlinear stochastic dynamical sys-
tems with uncensored or unsaturated observations in the area
of adaptive control, where the system data used can include

those generated from stochastic feedback control systems.
By adaptive identification, we mean that the identification
algorithm is constructed recursively, where the parameter
estimates are updated online based on both the current estimate
and the new observation, and thus the iteration instance
depends on the time of the data observed. In comparison with
offline algorithms such as those widely used in statistics and
machine learning where the iteration instance is the number
of search steps in numerical optimization ( [24], [25]), the
adaptive algorithm has at least two advantages: one is that the
algorithm can be updated conveniently when new data come
in without restoring the old data, and another is that general
non-stationary and correlated data can be handled conveniently
due to the structure of the adaptive algorithm. In fact, extensive
investigations have been conducted in adaptive identification
in the area of control systems for the design of adaptive control
laws, where the system data are generated from feedback sys-
tems that are far from stationary and hard to be analyzed [31].
Many adaptive identification methods have been introduced in
the existing literature where the convergence has also been
analyzed under certain non-PE conditions (see e.g. [9]- [15]).
Among these methods, we mention that Shadab et al. [11] con-
sidered the first-order gradient estimator for linear regression
models with some finite-time parameter estimation techniques,
where the PE condition is replaced with a condition enforced
to the determinant of an extended regressor matrix. Ljung [12]
established a convergence theory via the celebrated ordinary
differential equation (ODE) method which can be applied to
a wide class of adaptive algorithms, where the conditions for
regressors are replaced by some stability conditions for the
corresponding ODE. Lai and Wei [15] considered the classical
least squares algorithm for linear stochastic regression models,
and established successfully the strong consistency under the
weakest possible non-PE condition. Of course, these results are
established for the traditional non-saturated observation case.
The first paper that establishes the strong consistency of esti-
mators for stochastic regression models under general non-PE
conditions for a special class of saturated observations (binary-
valued observations) appears to be [26], where a single-
step adaptive quasi-Newton-type algorithm was proposed and
analyzed. The non-PE condition used in [26] is similar to
the weakest possible signal condition for a stochastic linear
regression model with uncensored observations (see [15]),
which can be applied to non-stationary stochastic dynamical
systems with feedback control. However, there are still some
unresolved fundamental problems, for instance, a) How should
a globally convergent estimation algorithm be designed for
stochastic systems under general saturated observations and
non-PE conditions? b) What is the asymptotic distribution of
the estimation error under non-PE conditions? c) How to get
a useful and computable probabilistic estimation error bound
under non-PE conditions when the length of data is finite?
The main purpose of this paper is to solve these prob-
lems by introducing an adaptive two-step quasi-Newton-type
identification algorithm, refining the stochastic Lyapunov func-
tion approach, and applying some martingale inequalities and
convergence theorems. Besides, the Monte Carlo method is
also found quite useful in computing the estimation error
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bound. The key feature of the current adaptive two-step quasi-
Newton (TSQN) identification algorithm compared to the
adaptive single-step quasi-Newton method is that the TSQN
algorithm has improved performance under non-PE conditions.
The main reasons behind this fact are as follows: (i) The scalar
adaptation gain of the single-step quasi-Newton method is
constructed by using only the fixed given a priori information
about the parameter set, whereas the scalar adaptation gain
of the current TSQN algorithm is designed by using the
online information to have it improved adaptively. (ii) A
regularization factor is also introduced in the TSQN algorithm,
which can be taken as a “noise variance” estimate to improve
the adaptation algorithm further. To be specific, the main
contributions of this paper can be summarized as follows:

e A new two-step quasi-Newton-type adaptive identifi-
cation algorithm is proposed for stochastic dynamical
systems with saturated observations. The first step is
to produce consistent parameter estimates based on the
available “worst case” information, which is then used
to construct the adaptation gains in the second step for
improving the performance of the adaptive identification.

o Asymptotic results on the proposed new identification
algorithm, including strong consistency and asymptotic
normality, are established for stochastic dynamical sys-
tems with saturated observations under quite general
non-PE conditions. The optimality of adaptive prediction
or regrets is also established without resorting to any
excitation conditions. This paper appears to be the first for
adapted identification of stochastic systems with guaran-
teed performance under both saturated observations and
general non-PE conditions.

o Non-asymptotic error bounds for both parameter esti-
mation and output prediction are also provided, when
only a finite length of data is available, for stochastic
dynamical systems with saturated observations and no
PE conditions. Such bounds can be applied to sentencing
computation problems based on practical judicial data [8].

The remainder of this paper is organized as follows. Section
II gives the problem formulation; The main results are stated in
Section III; Section IV presents the proofs of the main results.
A numerical example is provided in Section V. Finally, we
conclude the paper with some remarks in Section VI

Il. PROBLEM FORMULATION

Let us consider the following piecewise linear regression
model:

Yri1 = Sk(pp 0+ exy1), k=0,1,---, (1

where 6 € R™(m > 1) is an unknown parameter vector to
be estimated; yr11 € R, ¢ € R™, ex41 € R represent the
system output observation, stochastic regressor, and random
noise at time k, respectively. Besides, Si(:) : R — R is a non-
decreasing time-varying saturation function defined as follows:

Ly x <l
Sk(x) = r <z<u, , k=0,1,---, (2
Up x> uy

where [lj,ux] is the given precise observable range, Lj and
Uy, are the only observations when the output value exceeds
this range.

A. Notations and Assumptions

Notations. By || - ||, we denote the Euclidean norm of
vectors or matrices. The spectrum of a matrix M is denoted by
{A\i {M}}, where the maximum and minimum eigenvalues are
denoted by Apan {M} and A,;n {M} respectively. Besides,
let tr(M) denote the trace of the matrix M, and by |M| we
mean the determinant of the matrix M. Moreover, { F, k > 0}
is the sequence of o—algebra together with that of conditional
mathematical expectation operator E[- | Fj], in the sequel we
may employ the abbreviation Ey, [-] to E [- | F%]. Furthermore,
a random variable X belongs to £y if E||X||? < oo, and a
random sequence {Xj,k > 0} is called L2 sequence if X},
belongs to Lo for all £ > 0.

We need the following basic assumptions:

Assumption 1: The stochastic regressor {¢x, Fr} is a
bounded and adapted sequence, where {Fj, k > 0} is a non-
decreasing sequence of o—algebras. Besides, the true param-
eter # is an interior point of a known convex compact set
D CR™.

By Assumption 1, we can find an almost surely bounded
sequence { My, k > 0} such that

sup |é) x| < My, a.s. 3)
xeD

Assumption 2: The  thresholds  {lx, Fr},  {uk,Fr}
{Lk,Fr} and {Uy,F} are known adapted stochastic
sequences, satisfying for any k& > 0,

lh—c<Lp <l <up <Up <up+ec, as., “)

where c is a L, non-negative random variable, and

sup l < o0,
k>0
Remark 1: We note that the inequalities L; < [ <

up < Uy are determined by the non-decreasing nature of the
saturation function used to characterize the saturated output
observations as illustrated in Fig. 1, and that Assumption 2
will be automatically satisfied if { L} and {U}} are bounded
stochastic sequences. The conditions (4) and (5) are general
assumptions that are used to guarantee the boundedness of the
variances of the output prediction errors in the paper.

Assumption 3: The noise {ey,Fir} is an Lo martingale
difference sequence and there exists a constant 17 > 0, such
that

inf up > —o0o0, a.s. 5)
E>0

inf Ey [|ek+1|2] >0, supE, [|ek+1|2+”] < 00, a.s. (6)
k>0 k>0

Besides, the conditional expectation function Gy (), defined
by Gi(x) = E [Sk(x + er41)], is known and differentiable
with derivative denoted by G7,(-). Further, there exist a random

variable M > sup M}, such that
k>0
0< inf Giz)<

G s (7
|| <M k>0 W(x) < oo, as. (7)

sup
|| <M ,k>0

|G.(z) = GLW)| < plz —yl, as., Vx|, |yl <M, (8)
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where p is a non-negative variable, M, is defined in (3).
Remark 2: Tt is worth to mention that under condition (6),
the function G (-) in Assumption 3 is well-defined for any
k > 0, and can be calculated given the conditional probability
distribution of the noise ex1. In Appendix I, we have provided
three typical examples to illustrate how to concretely calculate
the function Gy, (+), which includes the classical linear stochas-
tic regression models, models with binary-valued sensors, and
censored regression models. Moreover, Assumption 3 can be
easily verified if the noise {ex+1, kK > 0} is i.i.d Gaussian and
if ’ir;%(Uk — L) > 0, a.s. Besides, when [, = —co and uy, =

oo, the system (1)-(2) will degenerate to linear stochastic
regression models, and Assumption 3 will degenerate to the
standard noise assumption for the strong consistency of the
classical least squares ( [15]) since G (z) = .

For simplicity of notation, denote

sup Gj(x) =Gg- )

inf Gj(z) = 9,
|| <M,

|z| <My,

Under Assumption 3, {gj, k > 0} and {g, , k¥ > 0} have upper
bound and positive lower bound respectively, i.e.

inf g, >0,

it (10)

sup g;, < 00,
k>0

a.s.

B. Algorithm

Because of its “optimality” and fast convergence rate, the
classical LS algorithm is one of the most basic and widely
used ones in the adaptive estimation and adaptive control of
linear stochastic systems. Inspired by the analysis of the LS
recursive algorithm, we have introduced an adaptive quasi-
Newton-type algorithm to estimate the parameters in linear
stochastic regression models with binary-valued observations
in [26]. However, we find that a direct extension of the
quasi-Newton algorithm introduced in [26] from binary-valued
observation to saturated observation does not give satisfactory
performance, which motivates us to introduce a two-step quasi-
Newton-type identification algorithm as described shortly.

At first, we introduce a suitable projection operator, to
ensure the boundedness of the estimates while keeping other
nice properties. For the linear space R, we define a norm
|| - llq associated with a positive definite matrix Q as [|z[|?, =
Q. A projection operator based on || - ||o is defined as
follows:

Definition 1: For the convex compact set D defined in
Assumption 1, the projection operator IIg(x)(-) is defined as

Y

We then introduce our new adaptive two-step quasi-Newton
(TSQN) identification algorithm, where the gain matrix is
constructed by using the gradient information of the quadratic
loss function.

Remark 3: As described above, our identification algorithm
is defined by two successive steps, between which the main
difference is the construction of the adaptation gains. In the
first step, the scalar adaptation gain [3, is constructed by using
the bounds g, and g defined in (9), in a similar way as
that constructed in the identification algorithm of [26]. Though

IIg(x) = argmin ||z — y|lg, VzeR™.
yeD

Algorithm 1 Adaptive Two-Step Quasi-Newton (TSQN) Al-
gorithm

Step 1. Recursively calculate the preliminary estimate 0y
for k > 0:

Ori1 = Hp];ll{ék + ar B Pedrlye+1 — Gr(dy Ok},

Pyy1 = Py — arB; Prody Pr,

B = min <gk,
1

1+ B2o) Proy’

where g, and g, are defined as in (9), Ip-1 is the pro-
J +1

1) (12)
1+ 29,64 Puor )’

ap =

jection operator defined as in Definition 1, Gj(-) is defined
in Assumption 3, the initial values 0y and Py can be chosen
arbitrarily in D and with Py > 0, respectively.

Step 2. Recursively define the accelerated estimate ék+1 based
on ék_H for k& > 0:

011 :Hpk:rll{ék + a B Pedr[yr+1 — Gr(of 01)]},
Pyi1 =Py, — ax B Proroy, P,
:Gk(dﬂgk) — Gi(o} )

T alh e, el )
e
+ Gk 06) 475, 5750}
1
ag

e+ B Ped

where {p} can be any positive random process adapted to

{Fr} with 0 < inf pp < suppuy < oo, the initial values
k=0 k>0

éo and Py can be chosen arbitrarily in D and with Py > 0,
respectively.

the strong consistency of the preliminary estimate 0, in the
first step may be established following a similar argument
as in [26], its convergence speed appears to be not good
enough, and its asymptotic normality also appears to be hard
to establish, because the scalar adaptation gain j3j is simply
constructed by using the “worst case” information 95 and gj,.
To overcome these shortcomings, the second step estimation is
introduced with the following two features: (i) To improve the
performance of the estimation algorithm, the scalar adaptation
gain [, is defined in an adaptive way by using the preliminary
estimates 0, generated in the first step, and (ii) To ensure the
asymptotic normality of the estimation errors under non-PE
condition, the regularization factor puj is taken as a “noise
variance” estimate constructed by using the online estimates
(see Theorem 3). Simulations in Section 5 also demonstrate
that the convergence speed of the parameter estimates given
in the second step outperforms that of the first step.

[1l. MAIN RESULTS

In this section, we give some asymptotic results of the
TSQN identification algorithm. To be specific, we will estab-
lish asymptotic upper bounds for both the parameter estimation
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errors and the adaptive prediction errors in Subsection III-
A, study the asymptotic normality of the TSQN algorithm in
Subsection III-B, and give high probabilistic error bounds for
any given finite number of data in Subsection III-C.

A. Asymptotic error bounds

Theorem 1: Under Assumptions 1-3, the estimate ék given
by the TSQN Algorithm has the following upper bound almost

surely as k — oo:
log Anaz (k)
0] ( oo () , Q.S

where ék+1 =0 - ék+1, Amin (k) and Apax(k) are the mini-
k

[1041)1? = (14)

mum and maximum eigenvalues of the matrix > ¢;p; + Py *
i=0
respectively.

Remark 4: From Theorem 1, it is easy to see that the
algorithm will converge to the true parameter almost surely

if
log Anaz (k)
/\min (k)

This condition does not need the independence and stationarity
conditions on the system regressors and is hence applicable to
stochastic feedback control systems, and is known to be the
weakest possible convergence condition of the classical least
squares in the linear case (see [15], [9]), which is much weaker
than the traditional PE condition, i.e. Apmax(k) = O(Amin(k)).
Furthermore, since the true parameter is the interior of D, by
the strong consistency of the parameter estimates, it is easy
to see that after some finite time, the projection operator will
become not necessary in the computation process.

Corollary 1: Under conditions of Theorem 1, if the excita-
tion condition (15) is strengthened to k = O(Anpin(k)). then
the convergence rate of the TSQN algorithm can be improved
to the following iterated logarithm rate:

=o(1), a.s. (15)

i 2 log log k
16e11]2 = 0 (55

We note that the convergence rate (16) is known to be
the best rate of convergence of the classical least squares
in the linear case. It is worth noting that we do not know
how to establish such a best possible convergence rate for the
preliminary estimate given in the first step.

Given the parameter estimate 0y by the above TSQN
algorithm, one can define an adaptive predictor for the output
observation as follows:

i1 = Gr(dn O).

Usually, the difference between the best predictor and the
adaptive predictor along the sample path, can be measured
by the regret defined as follows:

(16)

, @.S.

Ri = (B [yks1] — Gkt1)> (17)

The following theorem gives an asymptotic result for the regret
Ry.

Theorem 2: Let Assumptions 1-3 hold. Then the sample
paths of the accumulated regrets will have the following upper

bound:
k

3" Ry = 0(10g Amax (), ..

The convergéﬁée of the accumulated regrets in Theorem 2
does not require any excitation condition to hold, and thus can
be easily applied to closed-loop control systems. We remark
that the order log k is known to be the best possible order in
the linear case (see [34]).

(18)

B. Asymptotic normality

In this subsection, we study the asymptotic distribution
properties of the estimation under a general non-PE condition
and show that our algorithm is asymptotically efficient in some
typical cases.

For this, let us now take the regulation factor sequence {y }
in the second step of the TSQN algorithm as

= k(S k), (19)
and the function o (-) is defined by
or(z) = Ep [|Sk(z + exy1) — Gr(2)?], as. (20)

Under Assumptions 1-3, it is not difficult to obtain that the
function oy(-) is Lipschitz continuous and has the following
properties:

suppr < sup  |op(x)] < o0, a.s. (21)
k>0 2| <My, k>0
inf py > inf  |op(x)] >0, a.s. (22)

E>0 2| < My, k>0

The proof of (21)-(22) are provided in Appendix IT — A.
We are now in a position to present a theorem on asymptotic
normality of the parameter estimate 0}, under a general non-PE
condition.
Theorem 3: Let the Assumptions 1-3 be satisfied. Assume
that {4y, k > 0} satisfies as k — oo,

log k
Amin (k)

where Apin(k) is the same as that in Theorem 1. Besides,
assume that for each k£ > 0, there exists a non-random positive
definite matrix A, such that as k — oo,

=o(1), a.s., (23)

A Qi 1, (24)
where Qk+1 Z (©; (‘2799))) ¢ip; + Py ', and “2” means

the convergence in probablhty. Then the estimate 6, given by
the TSQN algorithm has the following asymptotically normal
property as k — co:

—1s 4
Qk_ﬁlekJrl — N(07 I)7 (25)
~ A d .
where 61 = 6 — 011, and “—” means the convergence in
distribution.
Remark 5: Notice that if {¢y} is a deterministic sequence,
1

then Aj, can be simply chosen as @, *. Moreover, if

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on September 13,2023 at 13:43:05 UTC from IEEE Xplore. Restrictions apply.
© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3314654

{%qﬁ .4 } is a random sequence with either ergodic

property or ¢-mixing property, then under some mild regu-
larity conditions, it is not difﬁcult to show that Ay, can be

taken as {35, [ ¢79 ¢1¢T]}2

Remark 6: If we take lk = —o0 and up = oo, then
the system (1)-(2) will degenerate to the standard linear
stochastic regression model, and the matrix ;1 will be the
Fisher information matrix provided that {¢} is a deterministic
sequence and {ey} is independent with Gaussian distribution.
Thus, in this case, our TSQN algorithm is asymptotically
efficient [35]. Moreover, the next corollary shows that in the
typical binary-valued observation case, our algorithm is also
asymptotically efficient.

Corollary 2: Let the conditions of Theorem 3 hold and
Ly =l = uy, where the nonlinear models degenerate to
linear regression models with binary-valued observations. If
{¢x} is a deterministic sequence and {ej} is an independent
sequence, then our TSQN algorithm has the following asymp-
totically normal property as k — oco:

120 % N0, 1), (26)

where [Ij, is the Fisher information matrix given data

{Wig1,0:), 0<i <k}
In fact, the fisher information matrix [, in this case can be
calculated as follows:

82 IOgP(yhmf N ayk+1)] _ Qfl
062 T wWk+1

In the next Remark, we provide a concrete construction of
the asymptotic confidence ellipsoid for 6 by Theorem 3.
Remark 7: Asymptotic confidence ellipsoid. Let Q,, 11 =

(Z (©; (2790 ))) $i¢; )1, from Lemma 2 in Section IV and
i=1
Theorem 1, it is not difficult to obtain that

27)

Iy = —E[

107 2,Q2 ]l = 1,a.s. (28)

Thus, by (28) and Theorem 3, we have

lim P{IQy 210 ]? < X2 0} = PLAL < X2} = 1—a,
where X2 is the standard X2—distribution with degrees of
freedom m, m is the dimension of the parameter 6, and
X2  is the a—quantile of X’2. Therefore, the 1 — o asymp-
totlcally correct confidence elhpsmds for 6 take the form

{6 : HQn+1 n+1||2 = R ( [36], [35]). Moreover, since

T
€] Buall < 11 @il Q018 [, where ¢ is the
column of the identity matrix, we can get a more detailed 1 —«
asymptotically correct confidence intervals for the components
of the estimation error vector as follows:

W = (éfﬁ)l SJ)AX% o fzJJ)rl lelxﬁ%a
» X (30)
where ng}rl is the j'" diagonal element of Q1.

C. Non-asymptotic analysis

Though an asymptotic bound can be given based on Theo-
rem 3 as discussed in Remark 7 which, however, requires that

the number of data samples is sufficiently large. As a result, the
asymptotic bound is hard to apply in real situations where one
only has a finite number of data samples. In this subsection, we
will provide some upper bounds for the estimation errors with
high probability when the number of data samples is given
and finite.

1) Lyapunov function-based confidence interval: In this sub-
section, we give a Lyapunov function-based confidence inter-
val based on the analysis of a Lyapunov function used in the
proof of Lemma 1. For convenience, let the initial values in
the TSQN algorithm satisfy log |P; | = log|P; '] > 1 and
introduce the following notations to be used throughout the
sequel:

— Gi(o} 0).

Theorem 4: Under Assumptions 1-3, assume that {w? 1)
is an Lo sequence. Then for any given N > 1 and any 0 <
a < % 1 < j < m, each component éj(\j,l_l of §N+1 satisfies
the following inequality with probability at least 1 — 2a:

Wh41 = Yk+1 31

10912 <PY) (o log | Pyt | + 2\1;0 +T+c), (32
and with probability at least 1 — 2«, we have
Ry <260 (o log |PN—1H| + \ilC + T+ co), (33)
where
C =2(ficy, + T +1)**7 + [(1 + 6v7%) (0 + T + % + 1),
T =V +oplog|Py | + (btréfs)&b + 180})(01[ — a),
T =V, + jiop log | Py Y| + @tr(;’fob)uab + 107i0s(1 = 04)7
(34)

and P(J)1 is the j** diagonal component of P, i, v =

—=2
sup M5B o = 35 gR(6000)% b0 = sup {w +
0<k<N "Ek"E 0<k<N

Biop Pegrt, ® = Sup py;  BE ok, @ = Sup B2l dwll?

61y P2”¢k”2
U= sup mmit—"- 0p,= SU IE w , Op =
OSkEN Bimaz{ag,ar}’ b OSkEN :uk k [ k:JrJ b

. —2 2 2 21 -

sup gy °Ep [(wiyy —Ex [wi,])?], 5= sup e + 1,
0<k<N 0<k<N

. min{Py '} Amin{Py '}

Ay = inf { £ SRR

N= o<k<N{(log\ Hll)“*’ (logIPkle“’}

In contrast to Remark 7 where the number of data samples
is sufficiently large, the above Theorem 4 can provide a
concrete confidence interval for any given finite number of
data samples. Next, we provide an alternative confidence
interval by using the Monte Carlo method, which turns out to
have some advantages also in the case of finite data samples.

2) Monte Carlo-based confidence interval: In this subsec-
tion, we give a Monte Carlo-based confidence interval by
designing a Monte Carlo experiment.

Consider the nonlinear stochastic system defined by (1)-(2)
and the adaptive nonlinear TSQN algorithm defined by (12)-
(13). Suppose that the unknown system parameter 6 € D is
a random vector with uniform distribution U, that the system
noise {e;}" ; is an ii.d sequence which is independent of
6 with dlstrlbutlon F', and that both the saturation functions
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{S;(-)}_, and system regressors {¢;}" ; are deterministic
sequence, where n is a given fixed data length. It is easy to see
that the vector X = (7, ey, -+ ,e,) has a joint distribution
P=UxF".

To construct the Monte Carlo-based confidence interval,
let {X1,Xo, -+, Xk} be K samples taken from the joint
distribution P, and generate the corresponding n-dimensional
observation set {Y1,Y2,---,Yx} by the model (1)-(2) to-
gether with the given data of regressors {¢;}” ;. Then com-
pute the estimation error {éfi)l, 97(1]7)2, - ,éflJ)K} by the TSQN
algorithm for any 7 = 1,2--. ,m. It is easy to see that there
is a measurable function H; : R"*™ — R and a probabilistic
distribution function F'), such that the jth component of the
parameter estimation error 6Y) can be expressed as follows

n,t

forany1<i<Kand j=1,2--- m:

0Y) = H;(X;) ~ FU). (35)

Let the empirical distribution function of the generated sam-
ples for the ;" component be

K
F;((J)(x) = EZI{HJ(X”SI}’ Yo [ fi7 7= 1, , M.
i=1

Under the above-mentioned assumptions and notations, we
have the following proposition on the confidence interval with
finite data length:

Proposition 1: For any positive « and t with o +¢ < 1,
and any 7 =1,2,--- ,m, the 4" component of the estimation
error 9~7(1j ) generated by the TSQN algorithm belongs to the
following confidence interval with probability at least 1 —a—t:

In2—1Int

o
1— =
2K

4) In2—1Int
)’ ZK( 9 +

09 e (S -
| ~(36)
where z%)(a) is the o quantiles of the distribution Fég ).

It is obvious that the confidence interval of the estimation
error given in Proposition 1 will decrease asymptotically, as
the number of random samplings K used in Proposition 1
increases. We remark that there are at least two advantages of
Proposition 1, one is that it is applicable to the case where
the data length n is given and finite, and another is that the
confidence interval may be better than that given in Theorem
4 in some applications.

IV. PROOFS OF THE MAIN RESULTS
A. Proof of Theorem 1 and Theorem 2.

For convenience, we denote
Vr = Gr(o) 0) — Gy Ok),
Ui = Grleg 0) — Gr(y Or).

To prove Theorem 1 and Theorem 2, we need to establish the
following lemma first.

Lemma 1: Let Assumptions 1-3 be satisfied. Then the
parameter estimate 0y given by TSQN Algorithm has the
following property as k — oo:

(37
(38)

k
Op 1 Pl Oksr + Y ai} = O (log Amax(k)) . (39)

=0

YL

where 0}, is defined as 0 — 0y, 1 is defined as in (38)

Proof: Following the analysis ideas of the classical least-
squares for linear stochastic regression models (see e.g., [14],
[15], [31]), we consider the following stochastic Lyapunov
function:

Vitr = 001 Pl O (40)
By (13), we know that
Pl =Pt + . Browoy - 41)

Hence, multiplying aj¢, Py from the left hand side and
noticing the definition of aj, we know that

ak¢szP];+11
=axdy, (I + 1 BRProdwdy ) =y o1 -
Also by (38) and the definition of Sj in (13), we know that
Gi(940) — Gi(94 01)

(42)

=G(of0) — Grl(o) O) + Gr(dn Ok) — Grl(o) ) (43)
= + By (Or — Ok) = P + By (0 — O — O)
Hence,
Uk — Bron O = Pr, — By On. (44)

Moreover, by Lemma 4 in Appendix II, (40), (42), and (44),
we know that

<[6x — ar B Prdr (P + wis1)] T Py
[0k — arBiPedr (i + wei1)]
=Vi + 11, B (64 01)* — 2akﬁk¢zpkpk_+llék¢k
+ aiﬁiaﬁZPkP,:ijwﬁwﬁ - 2ak5k¢kTPkPk_+119kwk+1
+ 203 Bidn. PPy Pedntbrwn
+ 55ai¢;PkP,;:1Pk¢kwi+1
=Vie = i "R + i (Y = Bui Ox)?
+ iy tarBrdn Peditbi + 20y (U — Bredf O w1
— 201 " Ppwig1 + 20 L akBrdn Pedrrii
+ 11, " ar Bedn Pedrtbrwiiq
=Vi. — ap0p + i, (Pr — /Bk¢kT-§k)2 — 205K WE11
+20 " (v — By Ok )Wt + M;lakﬁg¢gpk¢kw;2€(.z157)

Vi1

where wyy1 is defined in (31). Summing up both sides of
(45) from 0 to n and using (44), we have

Vi1 <Vo — Z ari + Zu;l(zﬁk — Broi 0r)?

k=0 k=0

= 2apwiin + Y 2 (n — B 0wt
k=0

= k=0

+ Z g tarBion Prdrwiy,, a.s.
k=0
(46)
We now analyze the RHS of (46) term by term.
First, by (144) in Appendix II-A, we have

sup By [|Sk(z + exs1)*] < 00, a.s. 47)

|z| <My, k>0
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Since ¢, 0 is Fj,—measurable and |¢; 8] < My, a.s. by (3),
we can easily have sup Ej, [|wy41]*"] < oo, a.s. Thus, by
k>0

Lemma 5 in Appendix II, we know that

> 20w = oY axtp) + O(1), a.s., ¥y >0,
k=1 k=1

(48)
where we have used the fact that sup{ax} < sup{y,'} <
k>0 k>0

00, a.s. Similarly, we have

S 2017 [k — Broi (0 — ) wiia

k=1

=o(> " [ — By (9 — 0)]%) + O(1),

For the last term on the RHS of (46), let us take X}, = Brdx
in Lemma 6 in Appendix II, we get

(49)

a.s.

Zakﬁzdgf’kqﬁk = O(log Amax(n)), a.s.

(50)

Moreover, from Lyapunov inequality, we have for any § €
(2, min(n, 4))

sup Eg kaH Ex [wiﬂ} ’%} < 00, @.S. (51)

k>0

[SIEY

Denote A, = (31, (akﬂkqﬁk Pkgbk) )%, by Lemma 5 in
5
2°

Appendix IT with o = §, we get

n
> 1y tanBRoy Prdr(wiyy — Ex [wiiy])
k=0

=0 (An log%+7(Ai + e))
=o(log Amax(n)) + O(1),
Hence, from (50) and (52)

> ot

pi tan By Peon (wiiyy — By [wii,])
. (53)

+supIEk wkﬂ <Z My ak5k¢k Pk‘bk)

k2 k=0
=0(log Amax(n)) as.

The analysis of the third term on the RHS of (46) is a key
feature for analyzing the TQSN algorithm since in the single-
step algorithm this term does not exist by the construction of
the scalar adaptation gain. Now let

ey
O30k !

(52)

a.s. Vy > 0.

3

2T 2
akﬂk@c Pk¢kwk+1

ol
1+
o

<

=~
Il

G = I, (54)

o720y T Ikt (o] =0}’
y (9), we then have

0< Ck: S gk;a 0< Bk S glm a.s. (55)

Hence, we can obtain that

it (i — ﬂmZ@:k)Q

NIE

x>
I
—

(56)

n

1 (G = B2 (080)% = 0> (6101)),

1 k=1

-

>
Il

where we have used the fact that |(, — Bk| < supg, < oo.
k>0

We now prove

n

S (64 0k)? = O(log Amax(n)). (57)
k=1
For this, we consider the Lyapunov function
Vi1 = ézjﬂpklllékﬂ, (58)
Similarly to (45), we have the following property:
Vg1 <Vo — Z(ﬂ_kézéf?kijk — @k Bi oL Puodridy)
k=0
+ > arBiog PedrBr [w]]
k=0
(/Bk¢k O — arBEoroL Pruor)wis
k=0
n _ —
+ Z @kﬂi¢gpk¢k(wi+1 — Eg [wi-u] ), a.s.
k=0
B (59
By the definition of B, we have |Bro)0p —

arB2re) Pedr| < || Besides, following the similar
analysis for the noise term as in (48)-(53), we will have

Visr + Z(Bkézjmlﬁk — axBiop Pronii)
k=0
=0(log Amax(n)), a.s.

Also by the definition of 3j in (12) and 1)}, in (37), we have

U2 > g2 (61 00)2 = BR(01 0n)?, as.

(60)

(61)
and . ~ ~ - ~
(BrOF. dribr — @By Pecriby)
1 - e 1 -
Z§&kﬁk¢29wk > 5&;.36;%((15;%)2, a.s.
Moreover, Since {3;} and {¢;} are bounded, we obtain that
v
1+ B2¢) Pygy,

Note that {8} has a positive lower bounded almost surely,
(57) can be obtained by (60) (62) and (63) .
Finally, combining (46), (48), (49), (53), (56) and (57),
we get the desired result (39). |
Proof of Theorem 1 and Theorem 2: For the proof of
Theorem 1, by (40) and (41), we have

(62)

1nf {ak} > inf{

inf }>0, as.

(63)

Voi1 > codmin{ Y okdf + Py Hbnial®, a5, (64)

k=0
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where ¢y = min{1, gg%(u;lgi)}, which is positive by (10).

Hence, Theorem 1 follows immediately from Lemma 1 and
€o > 0.

For the proof of Theorem 2, from the definition of v in
(38), we have

where lg%gk > 0 by (10). Besides, Since {ux}, {0k} and
{¢1} are bounded, we obtain that

(65)

inf ap, = inf —————— >0, a.s. 66
k=20 k20 pg + ﬁk¢k Pk (66)
Thus Theorem 2 also follows from Lemma 1. [ |

B. Proof of Theorem 3.

Lemma 2: Let {X;,i=1,2,---} be a sequence of random
variables in RP(p > 1), and {a;,7 = 1,2, -} be a sequence
of random variables in R. Also, let A,, = Z?:l XiXZ-T + Xo.
If

_1
Amaz{An 2} — 0, (67)

a; =+ 1, a.s.

then .
_1 _1
A2 XX a} + X0)An? =1, as. (68)
i=1
Proof: For every m > 1, n > m, we obtain that
1ATH O X XTa? 4 Xo) AT 1

i=1

=407 XXy (af — 1) An?||

i=1
L& 1
<N AR (Y- XiX[laf — 1) An
i=1
la? — 1|, a.s.,

ZXXT -
(69)

Let n — oo and m — oo, since a; — 1 almost surely, we
have the RHS of (69) converges to 0 almost surely. Lemma 2

+ || An? sup

m+1<i<n

thus be proven. ]
Lemma 3: Under Assumptions 1-3 and condition (15), let
sk = Ok + axBe Pudrlyns1 — Gr(o4 0], (70)

and let A, = {sx & D}. Then
Plw:w € Ay, i.0.} =0, 71)

where i.0. means the related event occurs infinitely often.

Proof: From Assumption 1, there exists a ball centered at
6 with radius r > 0, such that B(6,r) C int(D), the interior
of the set D. Since by Remark 4 the estimate O is strongly
consistent, there exists a random integer N such that for any
k>N,

0, € B(0,r) Cint(D), a.s. (72)
Now, let
1 max
H={w: lim 08 Amax (F) _ (73)

k—o0 )\min(k) N 0}

For any wg € H, we prove that wy ¢ {w : w € Ag,i.0.} by
contradiction. If wg € {w : w € Ay, i.0.}, then there exists a
ko > N, such that s, ¢ D. Thus 0k0+1 = HP L {sko} ¢

int(D), which contradicts with (72). Hence wq §Z {w tw E
Ag,i.0.}, and thus H C {w : w € A, i.0.}°, which means
P{w:we Ay, io}=0. [ |
We now give the proof of Theorem 3. 5
) Iil:goof of Theorem 3: Let p; NIk q
\/% Then by (41) we have P11 = (31, p2id] +
Po)™, Quir = (X, ¢?did] + Py )™t We first prove
that g /pi — 1, a.s. For this, we need only to show
LACHTS)] —+k— — 1, a.s. Notice that
ACHD))

D))
”ffk(ébzék) ok (9] Or) — o (0] )
L)

ACHD)
Let T}, = Sk(ﬁbk Qk + 6k+1) Sk(d)k 0+ 6k+1) and B, =

{w: ¢l 0, > @16}, we have Ip, is Fj,—measurable. By
Assumptlon 2, it is not difficult to obtain that

= o),

— 1, a.s. andG,

1= (74)

||7 a.s.

0 < |Tr| < 2¢+ |64 Ox| < 2(c+ My) a.s. (75)

Moreover, by the fact that S (-) is monotonically increasing
and Assumption 3, we have

Ei [|Tk|*] < 2(c+ My)Ey [|Tk|]
<2(c+ My) [Eg [TiIp,] + Ey [~Tilp]]
=2(c + My)[Gr(9] O1) — Gr(d )] I,

. (76)
+2(c+ M) [Gr(94 0) — Gr(dy Ok)| I e
=2(c+ My)|Gi(o) k) — Gk(% )|(Is, + I5g)
<2(c+ My)gylox Okl = 0164 k), a.s.
Thus by Theorem 1 and the condition (23), we have
Ex [|Tk| ] =o0(1), as. (77)

Furthermore, by (144) in Appendix II-A, we have

B [[Sk(67 05 + exsr) + Su(6 0+ ex)’] = O(1), as
(78)
Hence, by Cauchy-Schwarz inequality, (77) and (78), we have

(60 Ok + exs1) — SE(OL 0+ extr)]
Sk(dp 01 + ery1) — Sk(dp 0 + €k+1)|2} '

B [[Sk(6f Ok + exin) + k(670 + ea) ]
=o(1), a.s.

2
[Euisi( |

<Ex “ (79)

Therefore, by the definition of o (-), we have
|0k (04 0k) — o1 (61 0))|
<|Ex[SE (04 Ok + ext1) — SP(1 0+ exta)]]
+1GR (@4 0k) = GR(800)] = 0(1), as.
Hence by (22), (74) and (8

(80)

0), we obtain

81)
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Besides, from Lagrange mean value theorem and the definition
of Bi, we can easily have

1By — Gi(10)] < pmax(|éf x|, |67 0x))

where p is the Lipschitz constant of GJ(-) as defined in
Assumption 3. Thus by (23), (39) and (60), we have

(82)

G(650) G(650)
pmax(|og 0|, |6, 0k]) logh .
< s =0O( m) =o(1). a.s.
(83)

From (81) and (83), we finally have ¢;/p; — 1 almost surely.
Hence by (23) and Lemma 2, we obtain that

_1 1
Qp1Per1Qyp — 1, as. (84)

Moreover, from (70) and (42), we have

0 — s, =0 — O — ar.Bx Puti[yri1 — Gr(¢4 01)]
=01, — aBrPrdr(Vr + wis1)
=(I =y BebrPry106by )0k — 1y B Pe1 drwis1,

(85)
where wy1 is defined in (31), and
Yk
Sk = o0 A igrir0) + GO0 yr5—0y  (86)
Furthermore, from (13), we have
Ok+1 =skl{s,eny + HP;;:1 {sk}- Iis gny 87)

=5, — (sx — HP,:jl{sk})I{SkéD}‘
Thus, we obtain that
§k+1 =0 — sk + (sk — HP{fl{Sk})I{Sng}

=(I — p1y, ' Br&r Prs16wds )0k — 117, B Pt is1
+(sk =Tp 1 {sk DI {siepy

=(I — py  BEPev 16608 )0r — 7, Br P19k wr 41
— i Bl = Bi) Pes1$r.94 O
+ (55 = po1 {sk}) s, e0)

=P 1P 0k — Prvpy ' Br(Ex — Br)dron O

— Py, Brdrwiir + (sk — Hp]xl{sk})f{skgw}-
(88)
From (88), we have

P/:-‘y-llék""l
=P 0 — 13, Brdrwi i1
+ P (se — 1

— 115 Br (& — Br) oy O
Pz;-ll {Sk})I{Sk€D}

k k
=Py ', — Zﬂflﬁiqﬁiwiﬂ - Zﬂflﬁi(fz — Bi)pioi 0;

=0 =0

— I—IP’;:1 {Si})I{sigD}-
(89)
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Therefore, multiplying Qk 1Pry1 from the left, we have

k
1 ~ 1 ~ 1
-1 -1 —1 -1 —1
Qi 10k+1 =Q. 2 P By 0o — Q)0 Pra E py  Bidiwii
i=0

k
— Qi Pevr Yy Bi(& — Bi)did] 0,

= O

+ Qk+1pk+1 Z i (
1=0

Up-1 {si) (sigpy-

(90)
We now proceed to show that the main term on the RHS
of (90) is the second term and other terms can be neglected
asymptotically. First, by (84) and the fact that || P, +1|| -0
almost surely by (23), we have
Q421 Pera Py o]l < HQ;H +1||||P(fl9~0|| — 0, a.s.
on
Next, by Lemma 3, for any w € H, we have I{S g¢py # 0
for only finite number of 4. Therefore, || ZZ o P (si
Hp-1{si})I1s,gpyll is finite almost surely as & tends to
i+1

infinity. Hence

2P

HQk+1Pk+1 Z z+1

=0

PN Z ]

— 0, a.s.,

P;ll{si})I{SiQD}H

<y —p- {sih sz

92)
Moreover, from Lagrange mean value theorem, for any k& > 0,
there exist 1, € R and ki € R, where ¢}, is between QSEO and

&y Or, ki, is between ¢ 0y, and ¢ 0y, such that &, = G (1)
and Sy = G}, (kg). Therefore, we obtain that
&k = Bil = |Gl (er) = G (kr)| < plue — kil
< pluk — 65 6] + ploy 0 — wy (93)

<2p- max(|q§;§k|, |¢;—ék‘>7

where p is the lipschitz constant as defined in Assumption 3.
Thus, we have

k
Q1 Pt Zﬂflﬂi(f — Bi) iy i
=0
=0(|Qy /1 Pe | +1||Z||<z> i[)?) (94)
O(||Q;;+1 +1|| +1||ZH¢T9 %)

where we have used the fact that 1, *3;]|¢; | are bounded from
above. By (57), (39) and the condition (23), we conclude that
the RHS of the (94) tends to 0 almost surely. Similar to the
reasons explained in the proof of Lemma 1, the analysis of
the third term on the RHS of (90) is an essential feature of
the current two-step identification algorithm.
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Now, it only remains to consider the second term of the
RHS of (90). By (84) and (24), we have

-1 _1 EET!
Quir Pos1Diir = (Qp 21 Pri1Qy 7)) (QF 1 A1) B 1.

(95)
Hence by (95), we need only to show that
- d
AEL Z 1y Bipiwiyr > N(0,1). (96)
i=0

We now prove that for any non-random m x 1 vector v,

k
_ _ d
UTAkil E 1y Bigiwiy1 — N (0, [|v]?),
i=0

o7

thus by Cramer-Wold device, (96) holds.

To prove (97), let x,; = UTA,;l_lui_lﬂiqS,; and x?m =
wi il {||rgsl| < 1}. Thus, z;, is F;—measurable and
Ei{z} ;wi+1} = 0. Besides, by Assumption 3 and (144), we
can easily have x;_’iwiﬂ is an Lo sequence . Moreover, by
(23) and (24), it is not difficult to obtain max {|zy;|} — 0.

1<i<k k—o0

Hence, we have P{ max |zy ;| > 1} — 0, which means
1<i<k ' k=00

P{xy,; # x ;, for somel <i <k} Py 0. (98)
’ c— 00

Furthermore, by definitions of w;11 in (31) and o;(+) in (20),
and the fact that gb;G is JFj—measurable, we have E[w? 1 |
Fi] = oi(¢; 0). Therefore,

k
ZE[(UTAﬁlﬂz‘_lﬂifbinl)z | Fi

1=0

k
=N 0T AL 2B 0i(o] 0)dio] Apltiv
=0

G'(9{0))°

k
N o107 ) A G R PRIt Tope Tt
i=0 U'Z(QS,L 9)

99)
where the last step is from Lemma 2 and (24), and where
— __Bioi(6]0)

S TG 6T which converges to 1 almost surely by

(74) and (83). By (98) and (99), we then have

k

Y El(@hwien)? | F) 2 ol
o k—o0

(100)

Using (100) and Assumption 3, for any € > 0, it can be shown
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that

k
D B (@ wis1)* Ijag w56}

=1

o [T Wit |

k
< Z Ei{(} ;wit1) T}
=1

k
|wiga |7
= ZEi{|x;c,i|2+an}

(101)
i=1
k / 24
|2, i "Ei{[wita [T}
=Y E{(z) ;wit1)*}—=
i:Zl {( k, +1) } e”]Ei{|wi_,_1|2}
k
_ I m . ! . 2 p
—O(ggklwk,ﬁ ZOEz{(xk,iwzH) 3] e 0,
1=
Hence by Lemma 7, we have
~ d
> ap wivr > N, [[0]?). (102)
i=0

Thus by (98) and (102), (97) holds. To conclude, combining

(90), (91), (92), (94) and (96), we finally obtain the result

(25). ]
Proof of Theorem 4: Let

Vi1 = — 2apPpwi1 + 205 (Y — Brop k) Wit (103)
+ g, RO Prdr (wiyy — Er[wi ).
If {3 Y, Fn} is a Lo—martingale, by Lemma 8 with © =
k=0

1
180’},

and y = 1801,%, where o = Sklp u;lEkHwkH\QL
0<k<N

we can easily obtain that with at least probability 1 —

- 2 B[V ]2 1-—
> Vi < Zimo BellVinn[T] g, 1= oo o iy
=0 180b «

(104)
If {3 Yy, Fn} is not a Lo—martingale, let 2, = u;l(qﬁk —
k=0

Bedp Ok) — artb, ), = ' axBiép Prgr. For j=1,2,---
let zjk = wpl{jay|<iys Tj = Tplyjay)<yy and Vi, =
LjkWk+1 +x;-’k (wl2c+1 - Ek[wlerl]) . Thus, {ZZZO Yj/Jc» Fn}
is an Lo—martingale for j = 1,2, --. Hence, (104) can also
be obtained from the fact that {z;} and {z}} are bounded
sequence almost surely and ]151010 Plzjp # xp or 2, #
x}., for some k > 0} = 0.
Notice that

E[Yir1|* | Fi] < appy dRBellwp|’]
+ 943 (Yk — B Or) "B lJwir1]?)

_ 2
+ 9 2 (anBr o), Prooy)*Ey, [(wiﬂ — Eg[lwi11]%]) } ; a.s.
(105)
Besides, following the similar proof idea of Remark 3.2 in
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[31], we have

n

> (axBidd Prdr)? Zak Bedn ) (P — Pry1)(Bror)
k=0 k=0
<O tr(Pp — Prpa) < Otr(Ry),
= (106)
where ® = sup {p;'B8?||¢x]?}. Thus, by (46), (104),
0<k<N

(105), (106) and Lemma 6, we know that the following holds
with probability at least 1 — a:

Vg1 + 5 Zawk<ablog| i T+ 3 3, VO<n<N.

k 0
(107)

where I' = Vo + oy log [Py 1| + 2% 4185, 122 57, =

sup fly, *Ex [(wk+1 Ey [wk+1]) ]de
0<k<N

Su=>_ 1 (b — Brog 1), (108)
k=0
To analyze the term S,, above, we consider the Lyapunov
function V;, = 0_,;'—]5,; 9. Using the similar analysis above
and the Lyapunov function analysis as in (58)-(62), we can
obtain that with probability at least 1 — o, for 0 < n < N,

Vn+1+ Zak,@k ¢k9k) <H0b10g| +1|‘|'F
k 0

(109)

where I' = Vy + fioylog | By | + 2% 4 0,10,
For simplicity, denoEe T, = Vi1 + 3 2opeo @i, and T, =
Vi1 + 2370 anBE (o) 0k)?. Besides, let

By ={w: T, > jioylog|P, +1|+FVO<n<N}

Ey={w:T, >oplog|P |+ T+ Sn,VO<n<N}
(110)

From (108) and (109), for any w € E¥, we have

9),
Z (68 0k)? < 69T,

(MU blog | P,

(111)
+1|+F)

sup “_’“ ﬁQ .
0<k<N
we obtain for any 0 <n < N

where v = Therefore, for any w € Ef N E3,

T, <oplog|P, }i| + 6vjioylog |P, |+ T + 64T
(112)
<(op + 6via*oy) log [P Ly | + T + 64T,
where we have used the fact that log | P, !, | < filog [P, ].
Moreover, by (44), (93) and (108), we also have
*SN <co + Z max( |¢;9k|4 |65 01 |*)
N N B B ~ - .
<co + U (10x 1% ax B0k Okl + 10k 1> arBil61 Ok ),
k=1
(113)

6y P2 llonll®

90) and ¥ = 0<S}€1£)N Frmarlaran}”

We now analyze the RHS of (113). Indeed, for any w € EY,
we have for any 1 < k < N and given 7 > 0,

where ¢y = 2453 (4

fioplog| Py | +T +1
An (log | Pl [)2+7
(114)
}. Let

fioylog |Pt + T <

16412 < k_
Amin{Pk 1}

l"nl'n{l5 } lI)ln{P }
0<k<N (log | P, )2+ (log | P 1 )2+
Zk Oakﬁk(¢ ¥)%,n=0,1,---, we have 1 iDn+1<
,ucrb log\ Jrl|—|—I‘—|—1 forany w € E€ and 0 < n < N. Thus,

we obtain

where Ay = inf

N

U |16k )1%anBE1 61 Okl
k=1

fioylog| Py [ +T +1
>\N(10g|15;§1 >+

N
1 1
<4V Z(ZDI@ - ZDkfl)

(115)
\IJ ot Dk +1
(,uab + T+ 1) / dt
Z Di 141 t1+‘r
) _
——(fiop + T+ 1)*77.
N
Similarly, by (112), we have for any w € E{ N ES,
N ~ ~
U [0kl ax B3| 64 Ok
k=0 ) (116)
20 . T .
<[+ 69 (o + T + e L.

Hence, by (107), (113), (115) and (116), for any w € EfNES,
and 0 < n < N, we have

N

20C
Vi1 + = Zakwk<ablog| L+ S D (117)
k 0 )\

From (107) and (109), we have P(E;) < a and P(E2) < o
Thus,

P(ESNES) >1—2a. (118)

Therefore, (33) can be obtained from (117) and (118). Fur-

thermore, we have

T5% pU)

18EL17 =Ne] Péyy - Prifuall® < Py - Vi, s
(119)
hence (32) is obtained from (117), (118) and (119). [ |

Proof of Proposition 1: For any given positive o and ¢

with o +t < 1, denote v = \/% and let

~ . N «
By ={09) € [ (5 —v). (1 -5+l
By ={0) € [:V(5), s0(1- )]},
) N« . N«
By ={F (2 (5 —v) = FOE(5 =) > —o)n
. . o . ; (0%
{F G0 -5 +0) - FOC 0 - 5 +v) <v)

(120)
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For every w € FEs3, we have

o o N
FOEZ (G —v) < PG —v) +v=73,
FOEPA -5 +v) > FP (1= S +v) o
:1—%’
(121)

which means

20 25 -v), 21— <A -5 +v).

(122)
Hence, we have
(E2NE3) C Ey. (123)
From the definition of F5, we have
P(ES) < a. (124)
We now prove that
P(ES) < t. (125)

Since E[F(2)] = Bl S, In,(x)<ay] = FO(x) for
any x € R, by Hoffeding’s inequality, we have

PIFP (G =) = FOGCR(G —v) < v} <

PIFQ (01 = S +0) = FOGCR - S +v) 20} <
(126)
Thus (125) holds true. By (123), (124) and (125), we finally

have P(F;) > 1 — « — t, which proves Proposition 1. [ |

Dol + 1o =

V. NUMERICAL SIMULATION

In this section, we show that the parameter estimate in
the second step of our TSQN algorithm outperforms that
in the first step by an empirical analysis of the sentencing
problem. Notably, the pronounced penalties are constrained
within the statutory range of penalty according to the related
basic criminal facts, they can be regarded as saturated output
observations. The data source is taken from the China Judge-
ments Online, where the data set was constructed according
to judgment documents of the crime of intentional injury from
2011 to 2021. For more details about the modeling and the
data explanation, see [8].

Firstly, we compare the adaptive prediction performance of
the preliminary estimates @, in the first step with that in the
second step of the TSQN algorithm, based on the dataset of
sentencing for serious injury cases of intentional injury, where
the prediction accuracy is defined by Predection — acc(t) =
1— % Zthl |yt|y:?‘9t| . From Fig 2, one can see that the prediction
accuracy in the second step outperforms significantly that in
the first step.

Secondly, we compare the confidence intervals of the esti-
mates obtained respectively by the first step and second step
of the TSQN algorithm with finite data length. The confidence
intervals are constructed through 10000 Monte Carlo simula-
tions in accordance with Proposition 1. Our simulations reveal
that the confidence interval of the estimates obtained in the
second step is significantly smaller than that obtained in the
first step. Fig 3 shows the results of the first five components

of the parameter vector, with 61 corresponding to the feature
“Admitting guilt & accepting punishments”, 65 corresponding
to the feature “Accessary criminal”, 03 corresponding to the
feature “Armed”, 64 corresponding to the feature “Criminal
record”, €5 corresponding to the feature “Aged 75 and over”.
Similar results can be obtained for other components of the
parameter vector, for details, see [8].

Adapted prediction
T T

0.94

0.92

0.9

0.88

Prediction accuracy

0.86 |- b

0.84 I I I I I I I I I
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Time (s)

Fig. 2. Comparison of adaptive prediction accuracy.

0.3

Estimates of 6;

— & —biupp
— % =0, 100
—5-0

—a—f

i upp

i,low

0;,i=1,2,3,4,5

Fig. 3. Comparison of parameter estimates. 8; pp and ; 1ow: the
upper and lower bounds of the 90% confidence interval of the estimates

produced by the first step; 0; wpp and 6; 104 the upper and lower
bounds of the 90% confidence interval of the estimates produced by the
second step; Shaded area: estimates within 90% confidence interval.

VI. CONCLUSION

Motivated by various application backgrounds, we have
in this paper studied the problem of adaptive identification
and prediction problems of stochastic dynamical systems with
saturated observations. To improve the performance of the
estimation algorithm designed naturally by using an adaptive
single-step quasi-Newton method, we have proposed a new
adaptive two-step quasi-Newton algorithm to estimate the
unknown parameters. It is shown that the strong consistency
and the asymptotic normality of the estimate can be established
under general non-PE conditions as the data length increases
to infinity. When the data length is given and finite, it is also
shown that the estimation performance can also be guaranteed
with high probability by using either the Lyapunov function-
based method or the Monte Carlo-based method, which ap-
pears to be more suitable for application problems where only
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data set with finite length is available. The numerical example
also demonstrates that the performance of the proposed TSQN
algorithm is better than the single-step quasi-Newton algorithm
even under non-PE conditions of the data. The proposed
new TSQN algorithm has also been used successfully in
sentencing computation problems with real finite data set in
[8] as outlined in Section V. For future investigations, there
are still several interesting problems that need to be solved
in theory, for example, how to establish global convergence
or estimation error bounds for adaptive estimation algorithms
of more complicated stochastic regression models including
multi-layer neural networks, and how to solve adaptive control
problems with saturated observations for stochastic dynamical
control systems, etc.

APPENDIX |

In this appendix, we give three examples for the calculation
of the functions G(-) and o (-).

Example 1: Let us consider the case where [, =
and up = oo for any k£ > 1, then the model degenerate
to the classical linear regression model, and in this case,
we have G(z) = Ei[S(z + exy1)] = z, and op(x) =
Ey, [|S(z + epy1) — G(@)]?] = Elejyy | Fil-

Example 2: Let us consider the case where L, = [ =
ur = 0,U = 1, then the saturated function will turn to be a
binary-valued function, which is widely used in classification
problem. Let the noise e is JFi—measurable with the con-
ditional probability distribution function Fj(-), then we have
Gk(l') =1- Fk(—:v) and O'k({,E) = Fk(—l‘)[l — Fk(—l‘)}

Example 3: Let us consider the case where L = [ <
up = Uy for any k > 1, the noise sequence {ep} is
independent and normally distributed with e, ~ N(0,02).
Let the conditional probability distribution function and the
conditional probability density function of e be F(-) and
f(-), respectively. Then the function Gy (-) and oy (-) can be
calculated as follows:

Gk(:c) =ur + (lk — :L')F(lk — :L') — (uk — x)F(uk - 1’)
+0?[f(lk — ) = flur — @),
=(up — Gg(x))? + 0*F(up — )

+[(Gr(x) — 2)? = (ur — Gi(2))*]F (ug, — @)

— [l = Gr(2))? = (Gi(2) — 2)* = o*|F (s — @)

o?[(Iy + = = 2Gy(2)) f (I, — )

— (ug + 2 — 2Gi(2)) f (u — )]

—00

or(x)

(127)

APPENDIX Il

Lemma 4: ( [37]). The projection operator given by Defi-
nition 1 satisfies

Mo(x) —lo)le < lz—yllg Yo,y eR™  (128)
Lemma 5: ( [9]). Let {w,,F,} be a martingale dif-
ference sequence and {f,,F,} an adapted sequence. If
sup,, E[|wn41]|* | Fn] < 00, a.s., for some « € (0, 2], then as
n — oo:

Z fiwip1 = O(
i=0

sn (@) logi'm(sg(a) +e)) a.s.,Vn >0,

(129)

1
where s, (o) = (307 [£i]*)~
Lemma 6: ([15]). Let X7, X5, --- be a sequence of vectors
in R™(m > 1) and let A, = Ao+ Y1, X;X,". Let |A,]
denote the determinant of A,,. Assume that Ag is nonsingular,
then as n — oo
i XA Xy
1+ X[ AL X
Lemma 7: ( [38]) For each n > 1, let {S,; =
1 Xni, Fj, 1 < j <n < oo} bean L, stochastic sequence
on (9, F,p) satisfying

zn:]E(X
k=1

< log|Au| +log| Aol (130)

wk | Fro1) —= 0, (131)
n—oo

n

> [E (X7 | Fi1)

k=1
ZE

for some non-negative constant n?, then we have Sh.n
N(0,7%).

Lemma 8: ( [38]) If {S,, = > p_, Xk, Fn,n > 1} is an
Lo martingale with E[S;] = 0 and F = (0, 2), then for any
positive constants x,y

— (B (X | Fo-1)?] = 0%, (132)

2l (Xl >€) | Fup-1] %@o, e>0, (133)

d
—

n— oo

g 1
P{S, Zx’;E[Xﬂ}'k,l]—i—%some n>1}< Ty

(134)

A. Proof of Remark 1, (21) and (22)

Proof of Remark 1: From (89) in the proof of Theorem
3, we have

k
Ok 1 =Piy1Py 00 — Poy1 Y 11y "Bidiwita

=0
k
1L 1 ~
- k2+l Z Pk2+1//f;1ﬂi(§i - Bz)@ﬂsjez
= O
+ Prta Z 1+1 Pijrll {si})I{Si€Di}7 a.s.

(135)
We now analyze the RHS of (135) term by term. Firstly,
following the similar analysis as in (91) and (92), we have

I 1
| Pei1 Py 0o = O(E), a.s. (136)
1
||Pk+12 (s = Mo (s, O(7), as.
(137)

Secondly, since ||u;'Bi¢:|| is bounded, from a refined
martlngale estimation theorem (see [33], [32]), we have

I Zl o 1y ' Bidiwis1|| = O(v/Eloglogk). Hence the second

term of (135) satisfies

k
log log k
||Pk+1;,u'i_lﬂi¢iwi+1” ) (y/gkg) a.s. (138)
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For the third term of (135), by Cauchy-Schwarz inequality,

we have
— Bi) iy 02

| Z +1Mz 161
k

<trZuZ LB2PE did] PRI it (& — B2 (6] 67

i=0 i=0
=0 (Zu )20, 0;)? > a.s.
(139)

Notice that under condition (15) and Lemma 1, we have

- log k = log k
||9k»||2:0( : ) ||9k||2=0( : > as. (140)

Besides, from (93), we have

(& — B:)2(6] 0:)% < p?max((6] 0:)", (67 6:)).  (141)
Then from (139), (140) and (141), we have
[ Z i B — B @] Ol
(142)

—O(ZPQ max((¢; :)*, (¢ 6:)")) = O(1), a.s.

Hence the third term of (135) satisfies

= 1
||Pk+1 ZPk+1MZ Bi(&i — Bi)@'(ﬁzein =0 ( k) , a.S.

(143)

Therefore, Remark 1 is true by (136), (137), (138) and (143).
|

Proof of (21): Let us prove that for any 0 <t <2+,

sup  Ep[|Sk(z + exs1) — Gi(@)]'] < 00, a.s. (144)

|| < My, k>0

By Assumption 2, for any |z| < M}y, we have |Si(x+ep+1)—
Sk(x)] < |eg+1| + 2¢. Hence,
=0 (Ek [|€k+1|t]) , @.s.

Ep [|Sk(z + exy1) — Sk(2)']
(145)
Ex [|Sk(@) — Gu(@)|'] = Ex |[Ex[Sk() = Se(@ + exsn)]I']
= O(Ek [|€k+1‘t]), a.s.
(146)

Thus by Assumption 3, (145) and (146), (144) is true. Let t =

2 and notice that  sup {Gi(z)} < G M < o0, a.s.,
|| <M, k>0
(21) holds. |
Proof of (22): We first prove that
inf  |Gr(x) — Lg| > 0, a.s. (147)
|| < My, k>0

by contradiction. If (147) were not true, there would exist a set
B with positive probability, such that for any w € B, we have

inf  |Gr(z) — L] = 0 on B. Thus, for any w € B,
|z < Mj, k>0

there would exist a sequence {xg,|ri| < My} such that
Gr(zr)—Ly — 0 as k — oo. Since by (7) the function Gy (z)
is a non-decreasing function of = for any k, and Gy (z) > Ly

for any = € R, we thus have Gy(xr — ¢) — Ly, — 0, where
€ = M —sup{M,}. Therefore, hm 1nf |G’“(x’°)_f’°(”_e)‘ =0,
k>0

which means inf
|z| <M, k>0

with (7). Therefore, (147) is true. Similarly, we will have

G (x) = O on B and thus controdicts

inf  |Gg(z) — Ug] > 0, a.s. Hence, there exists a
|| <My, k>0
variable § > 0, a.s., such that
|Gk(33k) — Uk‘ >4, \Gk(ack) —Lg| >4, a.s. (148)
Besides, let
2
240 €k \2
= 7 149
€k = mln{(gf ) ) 3mkék) }7 ( )
where my = sup 2(147;)M;, e = 1nf ]E i{e7 1}, and
0<5<k
e, = sup [E;j{|ej+1|>T}] 77 . Then from Assumptlon 3, we
0<j<k
have

Ig%{ek} >0, a.s. (150)
Moreover, denote a sequence of minima {xzy,|zg| < My}

such that oy (z) = ‘ ‘inf ok(x), a.s., we can easily know
z| <M

that x;, is F,—measurable, we now show that

1
or(zg) > min{ggi,(SQek}, a.s., (151)

which will give the desirable result (22) by Assumption 3 and
(150). Indeed, let Ay = {w : I < xf + exy1 < ug} and

By = {w : Ex[lag] > ex}. By Cauchy-Schwarz inequality
and (149), we have for any &k > 0,
Exlef 1 Lag Is:]
S 1
< (Ex[lexs1]® +”]) - (Bxllag])™™ - Ing < g@ifzsp a.s.
Exler+11ag IBC]

1 1
< (Ex[lexs1]? ]) - (Ex[Iac])? In: < %Qifsg, a.s.

(152)
Therefore, by (152) we have for any k,

on(zk) = B [|Sk(xr + ent1) — Grlan) ]
>Er [|Sk(xr + exs1) — Grlan)*La, I ]

+ By, [|Sk(zr + ext1) — Gr(an) [ Lag Is, |
>Ei [|ox + ext1 — Grlae)[*La Is: | + 0°Ey, [Lac ] I,
>Eiler 1]Is: — Exler g lacIse] + 62erlp,

+ 2|wx — Gr(zk) [Exlert1Las Ine]

1 1
ZgQiIBE + 6261@IB;C Z min{ggi,é%k},

a.s.

(153)
Therefore, (151) is true and (22) is finally obtained. |
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