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Abstract— This paper considers real-time control and
learning problems for finite-dimensional linear systems un-
der binary-valued and randomly disturbed output observa-
tions, which arise in various fields such as the informa-
tion industry and control engineering. This has long been
regarded as an open problem because the exact values
of the traditional regression vectors used in the construc-
tion of adaptive algorithms are unavailable, as one only
has binary-valued output information. To overcome this
difficulty, we consider the adaptive estimation problem of
the corresponding infinite-impulse-response (IIR) dynami-
cal systems and apply the double array martingale theory
that has not been previously used in adaptive control. This
enables us to establish global convergence results for both
the adaptive prediction regret and the parameter estimation
error, without resorting to such stringent data conditions as
persistent excitation and bounded system signals that have
been used in almost all existing related literature. Based
on this, an adaptive control law will be designed that can
effectively combine adaptive learning and feedback control.
Finally, we are able to show that for any given bounded
reference signal, the closed-loop adaptive control system
is globally stable and the long-run average output tracking
error tends to zero as time goes to infinity. To the best of
the authors’ knowledge, this appears to be the first adaptive
control result for general linear systems with general binary
sensors and arbitrarily given bounded reference signals.

Index Terms— Stochastic systems, adaptive control,
binary-valued observations, double array martingales,
adaptive identification, convergence analysis.

I. INTRODUCTION

Binary output observation data, which refers to system
output observations that can only take the values 0 or 1, is
prevalent in practical systems. One example comes from the
signal detection problem in wireless communication [1], [2],
where signals are limited to 1-bit via a low-precision analog-
to-digital converter, due to constraints in energy consumption
and hardware complexity. Another example is the binary
classification problem in machine learning [3], where labels
provide only discrete class information, rather than precise or
continuous values. Furthermore, binary observations are also
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widely encountered in neural systems [4], [5], and can be
produced by binary sensors in engineering applications, such
as gas content sensors in the gas and oil industry [6], and
shift-by-wire switch sensors in automotive applications [7].

Given their importance, extensive theoretical research has
been devoted to estimation problems under such binary or
quantized observations for various classes of systems, in-
cluding linear systems [8], block-oriented nonlinear systems
[15], and hybrid systems [18]. Various parameter identification
methods have been proposed for estimating unknown param-
eters using binary/quantized observation information, includ-
ing the empirical measure approaches [8], maximum likeli-
hood algorithms [9], set-membership methods [10], stochastic
approximation-type algorithms [11], [13], and stochastic New-
ton algorithms [14], [16]. Meanwhile, for the control prob-
lems under binary/quantized observations, numerous studies
devoted to problems such as finite data-rate stabilization of
stochastic linear systems [19] and hybrid linear systems [20],
and consensus under quantized communications [21], [22],
under the assumption that the model parameters are known
a prior. However, in many practical control scenarios, the
models of systems are uncertain, one may require simultaneous
parameter learning and real-time control. This basic adaptive
control problem has rarely been explored in the existing liter-
ature, because it turns out that such a problem is highly non-
trivial in both controller design and theoretical analysis due to
the non-availability of the exact output observations. This is
the primary motivation for us to initiate an investigation, by
introducing new methods and establishing new results for the
adaptive control of a basic class of finite-dimensional uncertain
linear systems under binary output observations.

For that purpose, one needs to build on some significant
milestones of the existing adaptive control theory. In the
area of adaptive control, a natural approach in the design
of adaptive control is the certainty equivalence principle,
which involves two steps: (1) designing an online estima-
tion algorithm using the observation data to estimate the
unknown parameters, and (2) using these online estimated
parameters to design the adaptive controller in place of the
unknown true parameters. It is well-known that the nonlinear
and complex nature of such closed-loop adaptive systems
makes the corresponding theoretical analysis quite challenging
and thus is regarded as a central issue in adaptive control.
Take the basic adaptive control problem of linear stochastic
systems as an example, motivated by the need to establish
a rigorous theory for the least-squares(LS)-based self-turning
regulators proposed by Åström and Wittenmark [23], a great
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deal of effort had been devoted to the convergence study of
LS with stochastic feedback signals resulting from stochastic
adaptive control ( [24]–[32]). Among the many significant
contributions in this direction, we mention that Lai and Wei
[27] established the asymptotic analysis of LS under the
weakest possible excitation condition on the system stochastic
signals, by using stochastic Lyapunov function methods and
martingale convergence theorems. The convergence rates of
either adaptive tracking control [29] or adaptive LQG control
[33] were established by resorting to certain kinds of external
excitation signals for open-loop stable systems. The complete
convergence theories of both the adaptive tracking control and
adaptive LQG control were established later in [31], [32], and
[34]. These turn out to be foundations for the study of adaptive
control under binary-valued observations in the current paper.

The aforementioned work all focuses on adaptive control
problems under traditional continuous-valued output observa-
tions, which cannot be directly applied to the current binary-
valued case. In fact, even the adaptive parameter estima-
tion theory under binary-valued output observations has not
been fully established for general linear systems, let alone
the investigation of the related adaptive control problems.
This is primarily due to the following two reasons. Firstly,
the regression vectors traditionally used for the design of
adaptive learning algorithms are not available in the current
scenario due to the availability of binary-valued observation
information only. Consequently, almost all theoretical results
on parameter estimation under binary output observations are
limited to finite-impulse-response (FIR) systems with no poles
in the linear models. Secondly, due to the nonlinearity of
the current binary observation function, almost all existing
adaptive estimation theories require stringent data conditions,
such as independent and stationary conditions, deterministic
persistent excitation (PE) conditions, and boundedness signal
conditions, which are difficult or even impossible to verify
for the closed-loop control system signals. For these reasons,
only a few works have been devoted to adaptive control theory
under quantized/binary-valued observations. Guo et al. [35]
considered the adaptive tracking problem for FIR systems
with a scalar unknown parameter. Zhao et al. [36] further
investigated adaptive tracking of FIR systems under binary-
valued observations for periodic tracking signals with full-
rank conditions. In these two scenarios, it is possible to verify
the PE and boundedness conditions required for parameter
identification. However, such verification is challenging for
infinite-impulse-response (IIR) systems and general reference
signals. Furthermore, Zhao et al. [37] studied the adaptive
regulation problem by using a stochastic approximation-based
control algorithm, where the tracking signal is a fixed set-
point and the binary observation thresholds are specifically
designed and depend on the given fixed set-point. In summary,
the adaptive control theory for general linear systems with
both general binary sensors and time-varying reference signals
remains a challenging research problem.

Partly motivated by the above open problem, we have
established an adaptive estimation theory under binary-valued
output observations and non-PE data conditions in our recent
works [14], [17], but these results cannot be used to directly

solve the above-mentioned basic adaptive control problems,
mainly due to the following two reasons: 1) the regression
vector contains non-available exact output signals, and 2) the
boundedness assumption of the input signals imposed in [14] is
hard to verify for closed-loop control systems. To sidestep the
difficulty of using the traditional regression vectors, we use the
transfer function to transform the current system description
into an IIR system description. Then, due to the infinite dimen-
sionality of the unknown parameter in the current IIR system,
the standard martingale limit theorems—used for analyzing
least-squares algorithms for estimating finite-dimensional pa-
rameters—cannot be directly applied. Instead, we adopt the
double array martingale theory developed by one of the authors
in [38], originally proposed for the adaptive estimation of
the ARX(∞) model, to analyze the convergence properties
of martingale difference sequences with growing dimension.
By integrating this approach with a time-varying projection
operator in the algorithm design, we establish a convergence
theory for parameter estimation that does not rely on PE or
boundedness assumptions on the system signals, which are
required in most of the existing identification literature (see,
e.g., [8]–[17], [39]). Furthermore, beyond the existing related
work in [14], [17], [38], [39], which focuses solely on adaptive
estimation, we develop an adaptive control law by using a
switching strategy that depends on a certain level of signal
excitation, and show that the resulting closed-loop system
signals satisfy the unbounded growth condition required for
adaptive estimation. All the above will make it possible for
us to establish the stability and optimality of the closed-
loop adaptive tracking control systems under binary-valued
output observations. To the best of the authors’ knowledge,
this appears to be the first such result for adaptive control
under binary output observations for general tracking signals.

The remainder of this paper is organized as follows. Section
II formulates the problem and states the basic assumptions.
Section III gives the main results of this paper, including
the proposed estimation algorithms, the adaptive control laws,
and the main theorems. Section IV provides the proofs of the
main results. Numerical examples are provided in Section V.
Finally, we conclude the paper with some remarks.

Notations: By ∥ · ∥, we denote the Euclidean norm of
vectors or matrices. The minimum eigenvalues of a matrix
M is denoted by λmin {M}. Besides, by det(M) we mean
the determinant of the matrix M . Moreover, the sequence
{xk,Fk} is said to be adapted if, for each k ≥ 0, the random
variable xk is Fk−measurable, where Fk is a σ−algebra.
Furthermore, for two real sequences {xn, n ≥ 1} and {yn, n ≥
1}, the notation xn = o(yn), n → ∞ means that xn/yn → 0
as n→ ∞. Also, xn = O(yn), n→ ∞, means that there exist
positive constants C > 0 and n0 ∈ N such that |xn|/|yn| ≤ C
for all n > n0.

II. PROBLEM FORMULATION

Consider the following finite-dimensional linear systems
with binary-valued output observations:{

A(z)yn+1 = B(z)un

sn+1 = I (yn+1 + wn+1 > cn)
, n ≥ 0, (1)
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where yn, un, sn and wn are the system output, input, output
observation and noise, respectively (without loss of generality,
we assume yn = un = 0,∀n < 0). A(z) and B(z) are
polynomials in the backward-shift operator z:

A(z) =1 + a1z + · · ·+ apz
p, p ≥ 0,

B(z) =b1 + b2z + · · ·+ bqz
q−1, q ≥ 1.

Unlike in traditional precise observation scenarios, the system
output cannot be obtained; instead, only two values can be
observed. I (·) is the indicator function, and {cn, n ≥ 1}
denotes a given threshold sequence.

The problem considered here is, at any time instant n ≥ 0,
to design a feedback control un based only on the past binary-
valued output observations {s0, s1, · · · , sn} and the known
reference signal y∗n+1, such that the limit superior of the
averaged tracking error between the unknown system output
yn+1 and the reference signal y∗n+1, defined as

Jn+1 =
1

n+ 1

n∑
i=0

(
yi+1 − y∗i+1

)2
, n ≥ 0,

is minimized, i.e., lim sup
n→∞

Jn+1 achieves its minimum.

To proceed with further discussions, we need the following
assumptions.

Assumption 1: Both A(z) and B(z) are stable polynomials,
that is A(z) ̸= 0, B(z) ̸= 0,∀|z| ≤ 1.

Assumption 2: The reference signal {y∗k+1,Fk} is a known
bounded adapted sequence (where {Fk} is a sequence of
nondecreasing σ−algebras).

Assumption 3: The input sequence {uk,Fk} is an adapted
sequence. The threshold {ck,Fk} is a known bounded adapted
sequence, with ∥ck∥ ≤ C, where C is a positive constant.

Assumption 4: The noise wk is Fk−measurable. For any
k ≥ 1, the noise wk is independent of Fk−1, and its probability
density function, denoted by fk(·), is known and satisfies

inf
k≥1,x∈X

{fk(x)} > 0, (2)

for any bounded set X ⊂ R.
Remark 1: The observation thresholds cn considered in this

paper are assumed to be given rather than freely designable.
Such settings arise in many practical applications. For exam-
ple, in the automotive emission control problem, the thresholds
cn are determined by the inherent limitations of the exhaust gas
oxygen sensor ( [6]); in the one-bit signal detection problem,
the thresholds cn are specified by the quantization function of
the given one-bit ADCs ( [1], [2]). If the thresholds are des-
ignable, it can provide advantages for estimation under binary-
valued output observations, particularly, the noise condition
in Assumption 4 could potentially be relaxed (see, e.g., [12],
[44]), and the step size in Algorithm 1 could also be adjusted
to improve convergence performance by suitably choosing the
thresholds.

Remark 2: It is easy to verify that condition (2) is satisfied
if the noise sequence {wk, k ≥ 1} follows an i.i.d. Gaussian
distribution, as assumed in previous studies (see, e.g., [9],
[13]). Condition (2) ensures that, at time k+1, for any given
observation threshold ck and system output yk+1, the output
observation sk+1 does not take a single value with probability

one. This guarantees the identifiability of the parameter θ.
Assumption 4 has been widely used in previous theoretical
studies on adaptive identification under binary-valued output
observations with given thresholds (see, e.g., [8], [14], [17]).

Since un is Fn−measurable, the best prediction for yn+1

given Fn in the mean square sense is

E [yn+1 | Fn] = φ⊤
n ϑ, (3)

where ϑ is the unknown parameter defined by

ϑ = [−a1, · · · ,−ap, b1, · · · , bq]⊤ ,

and φn is the corresponding regressor

φn = [yn, · · · , yn−p+1, un, · · · , un−q+1]
⊤
. (4)

Moreover, since y∗n+1 is Fn−measurable, the control input un
that satisifies

y∗n+1 = E [yn+1 | Fn] = φ⊤
n ϑ. (5)

is also Fn−measurable. Therefore, the minimum value of
lim sup
n→∞

Jn over all adapted control sequences {un,Fn, n ≥
1} is 0, and the corresponding optimal adapted control un
satisfies (5) for all n ≥ 0. In traditional scenarios where the
parameter ϑ is unknown but the outputs {yk} are available,
a natural approach is first to provide an estimate ϑ̂k for the
unknown parameter ϑ at each time instant k based on the
past measurements {yi, φi−1, 1 ≤ i ≤ k}, and then design the
adaptive control by solving the equation

y∗k+1 = φ⊤
k ϑ̂k. (6)

However, in the current scenario where the system outputs
{yk} are unavailable, since the regression vector {φk} cannot
be obtained, it turns out to be impossible to estimate the
unknown parameter ϑ using {φk} directly and to design the
adaptive control law by solving equation (6) directly. To
overcome this difficulty, we consider the transfer function:

G(z) = A−1(z)B(z) =

∞∑
i=1

Giz
i−1.

Under Assumption 1, the following condition holds for any
0 < ρ < 1:

G1 = b1, ∥Gi∥ = O
(
ρi
)
, i > 1. (7)

The system can then be transformed into an IIR system as
follows:

yn+1 =

∞∑
i=1

Giun−i+1. (8)

For the system described by (8), we introduce the parameter
vector

θ = [G1, G2, · · · ]⊤ ∈ R∞,

and the corresponding regression vector

ϕn = [un, un−1, · · · , ]⊤ ∈ R∞,

so that (1) can be rewritten as{
yn+1 = ϕ⊤n θ

sn+1 = I (yn+1 + wn+1 > cn)
, n ≥ 0. (9)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2025.3631410

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



4

Then, according to (9), the equation (5) that the optimal
feedback control satisfies can be rewritten in the following
form:

y∗n+1 = E [yn+1 | Fn] = ϕ⊤n θ. (10)

Based on (10), the optimal control sequence {u0n} can then
be explicitly expressed as

u0n =
1

G1

(
y∗n+1 −

∞∑
i=2

Giu
0
n−i+1

)
. (11)

Since the parameters {Gi} in the optimal control u0n are
unknown, a natural problem is how to design an estimation
algorithm for this infinite-dimensional parameter vector by
using binary-valued output observations only, which is needed
in the design of an adaptive feedback control law. This issue
will be discussed in the subsequent sections.

III. MAIN RESULTS

In this section, we first introduce an adaptive estimation
algorithm for the unknown parameter vector θ. Compared to
existing algorithms, a notable characteristic of the proposed
algorithm is that its asymptotic properties can be established
without requiring the PE condition or any boundedness con-
ditions on the regression vectors. Furthermore, based on this
estimation algorithm, we design a switching adaptive control
and establish its global stability and asymptotic optimality.

A. Adaptive parameter estimation
To estimate the parameter vector in the current large model,

we introduce sequences of vectors with progressively increas-
ing dimensions. Specifically, define the dimension sequence
{pn, n ≥ 1} as

pn = ⌊(log n)a⌋, a > 1, (12)

where ⌊x⌋ denotes the integer part of x. Accordingly, we
define a sequence of parameter vectors {θ(n), n ≥ 1} with
dimensions growing at a rate determined by pn:

θ(n) = [G1, G2, · · · , Gpn
]
⊤
,

where {Gi, i ≥ 1} is defined in (8), and also define the
sequence of regression vectors {ϕk(n), 1 ≤ k ≤ n} as:

ϕk(n) = [uk, uk−1, · · · , uk−pn+1]
⊤
. (13)

To constrain the growth rate of parameter estimates, we
introduce a projection operator into the algorithm. First, define
the function g(t) : [0,∞) → R as:

g(t) = inf
k≥1

inf
∥x∥≤t+C

fk+1(x), t ≥ 0. (14)

Under Assumption 4, it follows that the function g(t) is non-
increasing and strictly positive for all t ≥ 0. We then define
the inverse function h(·) of g(·) as:

h(t) = inf {s ≥ 0 : g(s) = t} , 0 < t ≤ g(0), (15)

which is also non-increasing.
For each 1 ≤ k ≤ n, define the projection region as:

Dk(n) = {x ∈ Rpn : ∥x∥1 ≤ dk} , (16)

where ∥ · ∥1 denotes the L1 norm, and the upper bound dk is
given by

dk =

√
h

(
g(0)

αk

)
, (17)

with {αk, k ≥ 1} being any positive, increasing sequence
satisfying

αk → ∞, α2
k = o

(√
k
)
, a.s., k → ∞. (18)

The adaptive parameter estimates are given by Algorithm 1.

Algorithm 1
For each n ≥ 1, the parameter estimate θn(n) is recursively
updated as follows.
Inputs: The dimension pn defined in (12); the initial value
θ0(n) ∈ Rpn and P0(n) ∈ Rpn×pn with P0(n) > 0; the
observed data {(sk+1, ck, ϕk(n))}n−1

k=0 , where ϕk(n) is defined
in (13); the constants {dk, 0 ≤ k ≤ n − 1} and C, as
specified in (17) and Assumption 3; and the projection region
{Dk(n), 0 ≤ k ≤ n− 1} defined in (16).
Output: The final parameter estimate θn(n) ∈ Rpn .

Procedure: For each n ≥ 1, compute the sequence
{θk(n)}nk=0 recursively for 0 ≤ k ≤ n− 1 as follows:

θk+1(n) = Π
Dk(n)

P−1
k+1(n)

{θk(n) + ak(n)βkPk(n)ϕk(n)ek+1(n)} ,

ek+1(n) = sk+1 − 1 + Fk+1(ck − ϕ⊤k (n)θk(n)),

Pk+1(n) = Pk(n)− β2
kak(n)Pk(n)ϕk(n)ϕ

⊤
k (n)Pk(n),

ak(n) =
1

1 + β2
kϕ

⊤
k (n)Pk(n)ϕk(n)

,

βk = inf
|x|≤dk max

1≤i≤k
|ui|+C

{fk+1(x)},

(19)
where Fk+1(·) and fk+1(·) are the probability distribution
function and probability density function of the noise wk+1,
respectively; Π

Dk(n)

P−1
k+1

{·} denotes the projection operator de-
fined via a time-varying Frobenius norm as follows:

Π
Dk(n)

P−1
k+1(n)

{x} = argmin
ω∈Dk(n)

(x− ω)⊤P−1
k+1(n)(x− ω),∀x ∈ Rpn .

Remark 3: Algorithm 1 is inspired by the estimation algo-
rithms for the ARX(∞) model in [38] and [39]. Its recur-
sive form is similar to the recursive least squares algorithm
for linear stochastic models, with the main difference being
the design of the update term ek+1(n), which utilizes only
binary observation information sk+1. Moreover, our estima-
tion Algorithm 1 can be further simplified computationally
by using a similar idea of recursively expanding dimension
in [43]. Furthermore, compared to the estimation algorithm
with binary-valued observations in [39], the current algorithm
differs in two key aspects: Firstly, due to the time-varying
design of the projection spaces, our method does not require
prior knowledge of the bounded convex set containing the
parameter θ, which is not easily obtainable for the current
model. Secondly, in designing the scalar gain βk, it does not
rely on the prior assumption of an upper bound of the system
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input, which is crucial for establishing adaptive control theory
later on.

Based on the adaptive estimates of the unknown parameter,
we define the following adaptive predictor for the output at
each time step k ≥ 1:

ŷk+1 = ϕk(k)
⊤θk(k),

where θk(k) is given by Algorithm 1. Here, the difference
between the real output yk+1 and the adaptive predictor ŷk+1

is referred to as regret Rk, which is defined as follows:

Rk =
[
yk+1 − ϕk(k)

⊤θk(k)
]2
. (20)

The asymptotic properties of the regrets are crucial for the
theoretical analysis of adaptive control, which will be formally
addressed in the following theorem.

Theorem 1: Under Assumptions 1-4, suppose for some δ̄ >
0,

un = O(min{dn, n1+δ̄}), a.s., n→ ∞, (21)

where dn is defined in (17). Then the following properties
hold:

• The sample paths of the accumulated regrets have the
following asymptotic upper bound as n→ ∞:

n∑
k=0

Rk = O
(
α2
np

2
n log n

)
, a.s., (22)

where pn, αn, and Rn are defined as in (12), (18), and
(20), respectively.

• The parameter estimates given by Algorithm 1 have the
following asymptotic upper bound as n→ ∞:

∥θ(n)− θn(n)∥2 = O

(
α2
npn log n

λmin(n)

)
, a.s., (23)

where λmin(n) is defined by

λmin(n) = λmin

{
P−1
0 +

n∑
k=0

ϕk(n)ϕ
⊤
k (n)

}
. (24)

The proof is provided in Appendix A.
The results of the accumulated regrets in (22) do not require

any excitation condition, but a certain growth rate condition
(21) on the system signals is required, which will be verified
for the closed-loop adaptive systems in the proof of Theorem
2 in the next section.

Remark 4: If A(z) and B(z) have no common factor and
[ap, bq] ̸= 0, it is well known that the linear equations
connecting {ai, bj , 1 ≤ i ≤ p, 1 ≤ j ≤ q} with {Gi, i ≥ 1}
are as follows:

bi =

i∧p∑
j=0

ajGi−j , ∀1 ≤ i ≤ q,

where ∧ represents the minimum value, and

[a1, · · · , ap]⊤ = −
(
LL⊤)−1

L [Gq+1, · · · , Gq+p]
⊤
, (25)

where

L =


Gq Gq+1 · · · Gq+p−1

Gq−1 Gq · · · Gq+p−2

· · · · · · · · · · · ·
Gq−p+1 Gq−p+2 · · · Gq

 ,

and Gi
△
= 0 for i < 0 ( [42]). Replacing {Gi, i ≥ 1} in (25)

with their estimates {θn(n), n ≥ 1} generated by Algorithm
1, we can obtain the estimates {ϑn, n ≥ 1} for the unknown
parameter ϑ. From (23), if the following condition holds:

α2
npn log n = o (λmin(n)) , a.s., (26)

as n→ ∞, then the estimates ϑn are strongly consistent, i.e.,
lim
n→∞

∥ϑ−ϑn∥ = 0, a.s. The input condition in (26) is weaker
than the traditional persistent excitation (PE) condition ( [25],
[38]), which requires n = O (λmin(n)) , a.s. This relaxed
condition enables us to establish the adaptive control results
presented in the next section.

B. Adaptive tracking control
1) Main ideas: Although we have relaxed the boundedness

conditions on the system inputs in the asymptotic analysis of
the parameter estimation algorithms, Theorem 1 still imposes
a growth rate constraint on the system inputs. Unfortunately,
guaranteeing such a constraint theoretically appears to be quite
hard for a control law designed directly using the certainty
equivalence principle, i.e.,

u0n =
1

G1n

(
y∗n+1 −

∞∑
i=2

Ginu
0
n−i+1

)
, (27)

which prompts us to make some modifications to the controller
design.

To motivate the ideas for improving the controller design,
we first considered the case where the parameter θ is known.
Since G(z) is stable, it is easy to verify that the input sequence
{un, n ≥ 0} generated by (11) is a bounded sequence.
Furthermore, if the parameter estimation θn(n) is located
within a certain “stable neighborhood” of the true parameter θ,
it can also be proven that the input sequence remains bounded.
See Lemma 2 below for details.

Based on the above analysis, for the case where the param-
eter is unknown, if the input value un given by (27) grows
too fast, it indicates that we may not have sufficient signal
information to drive the parameter estimates into a certain
neighborhood of the true parameter, and in this case, online
parameter learning may be called for. On the other hand,
according to Theorem 1, if the minimum eigenvalue of the
information matrix, i.e., λmin(n), is sufficiently large, then
there is adequate signal information to ensure the parameter
estimates enter into a “stable neighborhood”, leading to the
stability of the adaptive control. These two levels of signal
information for estimation inspire a switching adaptive control
between adaptive learning and feedback in the initial phase,
but it will be proven that after some finite time, the adaptive
controller will rarely be switched to the learning phase.

We now proceed to introduce the specific design of adaptive
control.

2) Adaptive controller: Firstly, to deal with the potential
occurrence of b1n = 0 in (27), we make the necessary
modification to the estimates produced by Algorithm 1. Let

θ̂n(n) = θn(n) + (an(n)Pn(n))
1
2 ēin

=
[
Ĝ1n, Ĝ2n, · · · , Ĝpnn

]
,

(28)
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where {in} is a sequence of integers defined by

in = argmax
0≤i≤pn

∣∣∣G1n + ē⊤1 (n)P
1
2
n (n)ēi(n)

∣∣∣ ,
with ē0(n) = 0, and ēi(n), 1 ≤ i ≤ pn representing the
ith column of the pn × pn identity matrix. Following the
proof ideas of Theorem 6.3 in [32], it can be shown that the
estimates θ̂n(n) still satisfy the same asymptotic properties as
the original estimates θn(n) in Theorem 1. Consequently, the
modified adaptive control law is given by

usn =
1

Ĝ1n

(
y∗n+1 − Ĝ2nun−1 · · · − Ĝpnnun−pn+1

)
. (29)

To make the adaptive system have some guaranteed level
of excitation, we now introduce an arbitrary i.i.d. sequence
{vt, t ≥ 0} ⊆ R, which is independent of {wt} and satisfies
the following properties:

E[vk] = 0, E[v2k] = 1, |vk| ≤ v̄, (30)

where v̄ is a constant. Let us partition the time axis by a
sequence of stopping times

0 = τ1 < σ1 < τ2 < σ2 < · · ·

at which the adaptive controller ut will be switched, i.e.,

ut =

{
ust , if t belongs to some[τk, σk)
vt, if t belongs to some[σk, τk+1)

, (31)

where

σk = sup
{
t > τk : |usj | ≤ min{dj , jb}+ |us0| , ∀j ∈ [τk, t)

}
(32)

τk+1 = inf

{
t > σk : λmin(t) ≥ α2

tpt log
1+ϵ t ,

max
t−pt≤j≤t−1

{|uj |, |ust |} ≤ min{
√
dt, t

b
2 }
}
,

(33)

where b and ϵ are fixed constants with b ∈ (0, 14 ) and ϵ > 0.
If the set {·} is empty, we define sup{·} as ∞.

We now make a brief explanation about the switching
adaptive control (31). By (31)-(33), it is easy to see that from
the random time τk, the adaptive control ut is taken as ust as
far as t < σk, where σk is the first time when the growth
rate of |ust | is greater than min{dt, tb} + |us0|; then from the
random time σk, the adaptive control is taken as vt, until both
the growth rate of the the minimum eigenvalue λmin(t) is
larger than α2

tpt log
1+ϵ t and the growth rate of the maximum

magnitude of the control inputs uj over the past time interval
[t− pt, t− 1], along with the current ideal control input ust , is
less than min{

√
dt, t

b
2 }. Moreover, according to (31)-(33), it

can easily been seen that for any t ≥ 0, the growth rate of the
adaptive control ut is constrained within the following bound:

|ut| ≤ min
{
dt, t

b
}
, t ≥ 0. (34)

Remark 5: In the development of the adaptive control the-
ory below, we show that when the control law switches
to the learning mode, the system signals will accumulate
sufficient excitation to switch back to the control mode within
a reasonable period. Moreover, we prove that, up to time n,
the total time spent in the learning mode is at most O(nδpn)

as n → ∞, where 1
2 < δ < 1. Therefore, the time spent in

the learning mode is significantly less than that spent in the
control mode, since the ratio of the two tends to 0 as n→ ∞.

Theorem 2: Let Assumptions 1-4 be satisfied. Then the
control system (1) under adaptive control law (31)-(33) is
globally asymptotically optimal. That is, for any y0 ∈ R,
lim

n→∞
Jn = 0, a.s. Moreover, the adaptive tracking error

satisfies the following convergence rate as n→ ∞:
n∑

k=1

(y∗k − yk)
2 = O

(
nδpn

)
, a.s. (35)

for any δ ∈
(
1
2 + 2b, 1

)
, where pn and b are defined in (12)

and (32), (33), respectively.
Remark 6: Although Theorem 2 implies that the averaged

tracking error (or regret in this case) converges to zero,
we believe that there still exists room for improving the
convergence rate in the current binary-valued observation case.
In the traditional full output observation case, the averaged
output regrets can achieve a faster convergence rate than that
in Theorem 2 if the noise has conditional moments higher than
four (see Theorem 1 in [31]), and can even achieve the best
possible convergence rate O( logn

n ), see [29], [32].

IV. PROOF OF MAIN RESULTS

In this section, we present the proof of Theorem 2. To
facilitate the analysis, we first establish two key lemmas.

Define

ψt(n) = [vt, vt−1, · · · , vt−pn ]
⊤
, 1 ≤ t ≤ n,

where the sequence {vt} is defined as in (30). Then, by using
the double array martingale theory, we obtain the following
lemma concerning the minimum eigenvalue of the information
matrix.

Lemma 1: For each 1
2 < η < 1, there exists constants

c(η) > 0 and N(η) ≥ 1 such that for each n ≥ N(η),

λmin

{
n∑

t=n−nη

ψt(n)ψ
⊤
t (n)

}
≥ c(η)nη.

Given a power series Q(z) = 1 +
∞∑
i=1

qiz
i satisfying

∞∑
i=1

|qi| <∞, Q(z) ̸= 0, ∀|z| ≤ 1, (36)

The following lemma holds:
Lemma 2: Let the power series Q(z) satisfy condition (36).

Then there exists a positive constant ∆, depending only on
Q(z), such that for any ξ̄ > 0, there exist positive constants
c1(ξ̄) and c2(ξ̄), depending only on Q(z) and ξ̄, for which the
following property (referred to as the uniform stability bound)
holds: For any given integers n0 and N , if the sequences
{µn, n ≥ 1} ⊂ R and {ξn, n ≥ 1} ⊂ R satisfy
(i). max

n0≤n≤N
|ξn| ≤ ξ̄;

(ii). There exists a sequence of polynomials {Qn(z), n0 ≤

n ≤ N}, where each Qn(z) = 1 +
pn−1∑
i=1

qn,iz
i, such
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that max
n0≤n≤N

∞∑
i=1

|qi − qn,i|2 ≤ ∆ and Qn(z)µn = ξn for

all n0 ≤ n ≤ N, where z denotes the backwards-shift
operator,

then we have

|µN | ≤ c1 max
n0−pn0+1≤i≤n0−1

|µi|+ c2. (37)

We now present the proof of Theorem 2.
Proof of Theorems 2. For convenience, we first introduce

the following notations:

U(z) = 1 +

∞∑
i=2

Gi

G1
zi−1,

Un(z) = 1 +

pn∑
i=2

Ĝn,i

Ĝn,1

zi−1, n ≥ 1,

ζn =

[
y∗n+1

Ĝn,1

, 0, · · ·

]⊤
, n ≥ 1.

(38)

To prove Theorem 2, we consider the following three cases:
(1) σk < ∞, τk+1 = ∞ for some k = k0; (2) τk < ∞,
σk = ∞ for some k = k1; (3) τk < ∞, σk < ∞ for all
k ≥ 1.
Case (1). We now prove that Case (1) cannot occur. Assume
that τk+1 = ∞ for some k = k0. Then by (31), we have

ui = vi, for all i ≥ σk0
. (39)

Define N1 = inf{n ≥ 1 : j − j3/4 − pj + 1 ≥ σk0
,∀j ∈

[n,∞)}. By (39) and the definition of ϕt(n) in (13), for all
n ≥ N1 and t ∈ [n− n3/4, n], it follows that

ϕt(n) = [vt, vt−1, · · · , vt−pn+1]
⊤
. (40)

Thus, from (24), (40) and Lemma 1, for all n ≥
max(N1, N( 34 )), we obtain

λmin(n) ≥ λmin


n∑

t=n−n3/4

ϕt(n)ϕ
⊤
t (n)

 ≥ c

(
3

4

)
n3/4.

(41)
Let N2 = inf{n ≥ 1 : c̄j3/4 ≥ pjα

2
j log j,∀j ∈ [n,∞)}. By

(24) and (41), we have for all n ≥ max(N1, N2, N( 34 )),

λmin(n) ≥ λmin


n∑

t=n−n3/4

ϕt(n)ϕ
⊤
t (n)

 ≥ pnα
2
n log n.

Since τk0+1 = ∞, by the definition of τk0+1 and inequality
(41), we have for all n ≥ max(N1, N2, N( 34 )),

max
n−pn≤i≤n−1

(|usn|, |un−i|) > min
(√

dn, n
b
2

)
. (42)

We now show that inequality (42) cannot hold for all n ≥
max(N1, N2, N( 34 )).

We first show that the parameter estimate θ̂n(n) converges
to the true parameter vector θ(n), that is,

∥θ̂n(n)− θ(n)∥ = o(1), n→ ∞. (43)

From (23) in Theorem 1 and (41), we obtain for all n ≥
max(N1, N2, N( 34 )),

∥θn(n)− θ(n)∥2 = O
(
n−3/4pnα

2
n log n

)
, n→ ∞. (44)

Moreover, from (113) in the proof of Theorem 1, we have

α−2
n n3/4 = O

(
λmin{P−1

n (n)}
)
, n→ ∞. (45)

Then, by (18) and (45), it follows that

∥Pn(n)∥ = o(1), n→ ∞. (46)

Hence, from (28) and (46), we obtain

∥θ̂n(n)− θn(n)∥ = O
(
∥Pn(n)∥

1
2

)
= o(1), n→ ∞. (47)

Combining (44) and (47) yields (43).
Next, we show that (42) cannot hold for all n ≥

max(N1, N2, N( 34 )). By Assumption 1, U(z) defined in (38)
satisfies condition (36). Moreover, from (43) and Assumption
2, there exists a positive constant ζ0 such that |ζn| ≤ ζ0 for all
n ≥ 1. Then by Lemma 2, there exists a constant ∆0 > 0 such
that there exist positive constants c1(ζ0) and c2(ζ0), depending
only on U(z) and ζ0, for which the uniform stability bound
property holds. From (43) and (7), we have as n→ ∞,

∞∑
i=2

∣∣∣∣∣ Ĝn,i

Ĝn,1

− Gi

G1

∣∣∣∣∣
2

=

pn∑
i=2

∣∣∣∣∣ Ĝn,i

Ĝn,1

− Gi

G1

∣∣∣∣∣
2

+

∞∑
i=pn+1

∣∣∣∣Gi

G1

∣∣∣∣2
=o (1) +O

(
ρ2pn

)
= o(1).

(48)
Therefore, there exists N3 > 0 such that for all n ≥ N3,

∞∑
i=2

∣∣∣∣∣ Ĝn,i

Ĝn,1

− Gi

G1

∣∣∣∣∣
2

≤ ∆0. (49)

Fixed any j ≥ N3, let n0 = N = j in Lemma 2, and define
the modified sequence {u(j)n , n ≥ 1} as

u(j)n =

{
un, n ̸= j,

usn, n = j.
(50)

Then by (29), we have Uj(z)u
(j)
n = ζn. Together with (49),

this implies that sequences {u(j)n , n ≥ 1} and {ζn, n ≥ 1}
satisfy the conditions (i) and (ii) in Lemma 2, and thus

|u(j)j | ≤ c1(ζ0) max
j−pj+1≤i≤j−1

|ui|+ c2(ζ0).

By (50) and (39), for all n ≥ max(N1, N2, N3, N( 34 )), we
obtain

|usj | ≤ c1(ζ0) max
j−pj+1≤i≤j−1

|vi|+ c2(ζ0) ≤ c1(ζ0)v̄ + c2(ζ0),

(51)
where v̄ is the uniform upper bound on |vi| defined
in (30). Since j is arbitrary, (51) holds for all j ≥
max(N1, N2, N3, N( 34 )). Furthermore, from (17), we have
lim

n→∞
min

(√
dn, n

b
2

)
= ∞. Thus, for sufficiently large n,

we have max
1≤i≤pn

(|usn|, |un−i|) ≤ min
(√

dn, n
b
2

)
, which

contradicts (42). Therefore, case (1) cannot occur.
Case (2). If σk1

= ∞ for some k1 ≥ 1, then for all t ≥ τk1
,

we have ut = ust . Therefore, for all t ≥ τk1 , by (29) and (28),
it follows that

y∗t+1 =[ust , ut−1, · · · , ut−pt+1]
⊤θ̂t(t)

=ϕ⊤t (t)
[
θt(t) + a

1
2
t (t)P

1
2
t (t)ēit

]
.

(52)
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Thus, we obtain

n−1∑
t=0

[
yt+1 − y∗t+1

]2
≤

τk1
−1∑

t=0

[
yt+1 − y∗t+1

]2
+ 2

n−1∑
t=τk1

[
yt+1 − ϕ⊤t (t)θt(t)

]2
+ 2

n−1∑
t=τk1

at(t)
[
ϕ⊤t (t)P

1
2
t (t)ēit

]2
.

(53)

For the second term on the right-hand side (RHS)
of (53), we apply (22) in Theorem 1 to obtain
n−1∑
t=τk1

[
yt+1 − θ⊤t (t)ϕt(t)

]2
= O

(
α2
np

2
n log n

)
. For the third

term on the RHS of (53), by (106)-(107), we have

n−1∑
t=τk1

at(t)
[
ϕ⊤t (t)P

1
2
t (t)ēit

]2
≤

n−1∑
t=τk1

at(t)ϕ
⊤
t (t)Pt(t)ϕt(t)

=O
(
log
(
detP−1

n+1

))
= O (pn log n) , n→ ∞.

Therefore, we conclude that in Case (2),

n−1∑
t=0

[
yt+1 − y∗t+1

]2
= O

(
α2
np

2
n log n

)
, n→ ∞. (54)

Case (3). By the definition of τk and σk, the sequences
{τk, k ≥ 1} and {σk, k ≥ 1} are are strictly increasing and
satisfy τk → ∞, σk → ∞ as k → ∞. For each n ≥ 0, without
loss of generality, we assume that

0 = τ1 < σ1 · · · < τjn ≤ n < σjn < · · · ,

where jn is a monotonically increasing sequence of integers.
Then we have

n−1∑
t=0

[
yt+1 − y∗t+1

]2
=

σ1−1∑
t=τ1

+

σ2−1∑
t=τ2

+ · · ·+
n∑

t=τjn

[yt+1 − y∗t+1

]2
+

τ2−1∑
t=σ1

+ · · ·+
τjn−1∑

t=σjn−1

[yt+1 − y∗t+1

]2
.

(55)

For each t ∈ [τk, σk), by (52), we have[
yt+1 − y∗t+1

]2
=
[
yt+1 − θt(t)

⊤ϕt(t)− a
1
2
t (t)ē

⊤
itP

1
2
t (t)ϕt(t)

]2
By an argument similar to that in (54), it follows thatσ1−1∑

t=τ1

+ · · ·
n∑

t=τjn

[yt+1 − y∗t+1

]2
= O

(
α2
np

2
n log n

)
.

(56)
We now analyze the second term on the RHS of (55). To

this end, we first show that

jn = O (pn) , n→ ∞. (57)

For each k ≥ 1, define the event

Ek =

{
λmin (j)

α2
jpj log j

≥ λmin (τk)

α2
τk
pτk log

1+ ϵ
2 τk

,∀j ∈ [τk, σk]

}
,

Then we can write

jn ≤
jn∑
k=1

I(Ec
k) +

jn∑
k=1

I(Ek). (58)

For the first term of the RHS of (58), we observe that
jn∑
k=2

I(Ec
k) ≤

jn∑
k=2

I(pσk
> pτk) +

jn∑
k=2

I(Ec
k)I(pσk

= pτk).

(59)
Note that

jn∑
k=2

I(pσk
> pτk) ≤

jn∑
k=2

(pτk+1
− pτk) ≤ pn.

Furthermore, by the definition of λmin(n) in (24), when
pσk

= pτk , it follows that λmin(n) ≥ λmin(τk), n ∈ [τk, σk].
Therefore,
jn∑
k=2

I(Ec
k)I(pσk

= pτk) ≤
jn∑
k=2

I
(
log1+

ϵ
2 τk < log σk

)
=O

(
jn∑
k=2

I (eτk < τk+1)

)
= O(log n).

(60)
Combining (59)-(60), we obtain

jn∑
k=1

I(Ec
k) = O (pn) . (61)

We now analyze the second term in (58). We claim that

I(Ek) → 0, k → ∞. (62)

Suppose, to the contrary, that (62) does not hold. Then there
exists a subsequence {ki, i ≥ 1} with ki → ∞, such that

I(Eki
) = 1, ∀i ≥ 1.

Then for all n ∈ [τki
, σki

], we have by the definition of Eki

and τki
:

λmin (n)

α2
npn log n

≥ λmin (τki
)

α2
τki
pτki

log1+
ϵ
2 (τki)

≥ log
ϵ
2 τki

. (63)

Using (23) and (63), we obtain

max
n∈[τki

,σki
]
∥θn(n)− θ(n)∥2 = O

(
log−

ϵ
2 τki

)
= o(1), i→ ∞.

(64)
Moreover, from (63) and (113), it follows that

λmin{P−1
n (n)} ≥ g(0)pn log n log

− ϵ
2 τki

, n ∈ [τki
, σki

],

which implies

max
n∈[τki

,σki
]
∥P−1

n (n)∥ = o(1), i→ ∞. (65)

Combining (64), (91) and (28) gives

max
n∈[τki

,σki
]
∥θ̂n(n)− θ(n)∥2 = o(1), i→ ∞. (66)
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By Assumption 2 and (66), there exists a positive constant ζ̄0
such that sup

i≥1
max

n∈[τki
,σki

]
|ζn| ≤ ζ̄0. Then by Lemma 2, there

exist constants c1(ζ̄0) > 0 and c2(ζ̄0) > 0, depending only on
U(z) and ζ̄0, such that the uniform stability bound property
holds. Furthermore, by the same reasoning as in (48)-(49),
there exists j0 > 0 such that for all j ≥ j0,

sup
n∈[τkj

,σkj
]

∞∑
i=2

∣∣∣∣∣ Ĝn,i

Ĝn,1

− Gi

G1

∣∣∣∣∣
2

≤ ∆0. (67)

For each j ≥ j0, let n0 = τkj
and N = σkj

in Lemma 2, and
define a modified sequence {ū(j)n , n ≥ 1} by

ū(j)n =

{
un, n /∈ [τkj , σkj ],

usn, n ∈ [τkj , σkj ].

By (29), we have Un(z)u
(j)
n = ξn for all τki

≤ n ≤ σki
.

Hence, combining with (67), the sequences {ū(j)n , n ≥ 1} and
{ζn, n ≥ 1} satisfy conditions (i) and (ii) in Lemma 2, and
thus

|usσki
| = |ū(j)σki

| ≤ c̄1(ζ̄0) max
τki

−pτki
≤i≤τki

−1
|ui|+ c̄2(ζ̄0).

(68)
By the definition of τki

, we have

max
τki

−pτki
≤i≤τki

−1
|ui| ≤min

{√
dτki

, τ
b
2

ki

}
. (69)

Therefore, from (68) and (69), we conclude that for sufficiently
large ki, ∣∣∣usσki

∣∣∣ ≤ min
{
dσki

, σb
ki

}
+ |us0| . (70)

However, by the definition of σk, we also have for each k ≥ 1,∣∣usσk

∣∣ > min
{
dσk

, σb
k

}
+ |us0| , (71)

which contradicts (70). Hence, we conclude that

jn∑
k=1

I(Ek) = O(1), n→ ∞. (72)

Finally, combining (58), (61), and (72), we obtain the desired
bound in (57).

Next, we show that for any 1
2 < η̄ < 1, the following holds:

max
1≤i≤jn

|τi+1 − σi| = O(nη̄), n→ ∞. (73)

Let si = σi + 3ση̄
i . Since σi → ∞ as i → ∞, we have for

sufficiently large i that si − sη̄i − psi > σi. Define

I0 = inf{i ≥ 1 : sj − sη̄j − psj + 1 ≥ σj , j ∈ [i,∞)} (74)

We now show that τi+1 ≤ si for sufficiently large i. Suppose,
to the contrary, that this does not hold. Then there exists a
subsequence {ni, i ≥ 1} with ni → ∞ such that

τni+1 > sni . (75)

From (75) and (31), we have ut = vt for all t ∈ [σni , sni ].
Then, using (74) and (13), for all i ≥ I0 and sni

− sη̄ni
≤

t ≤ sni
, we get ϕt(sni

) =
[
vt, · · · , vt−psni

+1

]⊤
. Applying

Lemma 1 yields

λmin


sni∑

t=sni
−sη̄ni

ϕt(sni
)ϕ⊤t (sni

)

 ≥ c(η̄)sη̄ni
. (76)

Hence, following a similar analysis to that in (44)-(47), we
obtain

∥θ̂sni
(sni

)− θ(sni
)∥2 = o(1), i→ ∞. (77)

From (77), there exists ζ̃ > 0 such that |ζsni
| ≤ ζ̃, i ≥ 1.

Then, using the same argument as in (48)-(51), we obtain for
sufficiently large i:

|ussni
| ≤ c1(ζ̃)v̄ + c2(ζ̃).

Consequently, for such sufficiently large i, we have

max
sni

−psni
≤j≤sni

−1
{|uj |, |ussni

|} ≤ (1 + c1(ζ̃))v̄ + c2(ζ̃)

≤ min
{√

dsni
,
√
sbni

}
.

(78)
where we have used the fact that min

{√
dsni

,
√
sbni

}
→

∞ as i → ∞. However, inequalities (76) and (78) jointly
contradict assumption (75). Therefore, for sufficiently large i,
we have

|τi+1 − σi| ≤ |si − σi| ≤ 3ση̄
i ≤ 3nη̄,

which establishes (73).
Furthermore, from (8) and (34), we have[
y∗t+1 − yt+1

]2
= O

(
max
1≤i≤t

u2i

)
= O

(
t2b
)
, t→ ∞. (79)

Finally, combining (57), (73) and (79), we obtainτ2−1∑
t=σ1

+ · · ·+
τjn−1∑

t=σjn−1

[yt+1 − y∗t+1

]2
= O

(
nδpn

)
. (80)

where δ ∈
(
1
2 + 2b, 1

)
. The desired bound (35) then follows

from (56) and (80).

V. NUMERICAL SIMULATION

In this section, we present a simulation example to illustrate
the theoretical results obtained in the previous sections.

Consider the following stochastic dynamic system under
binary-valued output observations:{

A(z)yk+1 = B(z)uk

sk+1 = I (yk+1 + wk+1 ≥ ck)
, k ≥ 0, (81)

where A(z) = 1 − 0.1z + 0.5z2, B(z) = 1 + 0.5z − 0.4z2.
The noise sequence {wk, k ≥ 1} is i.i.d. with standard normal
distribution N (0, 1). To estimate the parameter vector θ using
Algorithm 1, we set the initial value as θ0(n) = [0, · · · , 0]⊤
and P0(n) = I for each n ≥ 1.

The reference signals {y∗k} are generated by the following
logistic map, which is in part a discrete-time demographic
model:

y∗k+1 = ry∗k(1− y∗k), k ≥ 0, (82)
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Fig. 1: r = 1.5: Adaptive tracking control for fixed reference
signals. a) Specially designed binary observation thresholds b)
General binary observation thresholds.

where the initial value is set to y∗0 = 0.7. It is well known
that when different values of r are selected within the range
of (0, 4), the system signal {y∗k, k ≥ 0} exhibits different
behaviours: 1) When r ∈ (0, 3], y∗k converges to a constant
value; 2) When r is within (3, r∗) where r∗ = 3.56994 · · · ,
y∗k exhibit a periodic behaviour; 3) When r belongs to the
interval [r∗, 4), the maps enter the chaotic region [45]. Below,
we validate the tracking performance of the proposed adaptive
controller for reference signals generated with r taken from
three different intervals.

Case 1: Consider the case where r = 1.5; in this scenario,
the reference signals generated by (82) quickly converge to
the value 1

3 . Fig. 1 compares the tracking performance of our
adaptive controller (31)-(33) with the stochastic approxima-
tion (SA)-based controller proposed in [37] for this type of
reference signal, under both specifically designed binary ob-
servation thresholds ck and general observation thresholds ck.
a) When the binary observation thresholds ck are specifically
designed to match the reference value of 1

3 , both controllers
are able to track the reference signal, and our method achieves
a faster convergence speed. b) When the binary observation
threshold ck can be set arbitrarily, we may take it as 0.8 for
illustration. It can be observed that the system output under
the SA-based controller in [37] stabilizes at the observation
threshold of 0.8, failing to track the reference signal, while
the system output under our adaptive controller ensures that
the adaptive tracking error asymptotically converges to zero.

Case 2: Consider the case where r = 3.44. In this sit-
uation, the reference signals generated by (82) will exhibit
periodic oscillations between four values. In the experiment,
the observation thresholds are set to ck = 0, and the adaptive

0 500 1000 1500 2000 2500 3000
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(a) Trajectories of reference signals and system outputs
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1.8

Track error

(b) Tracking error

Fig. 2: r = 3.44: Adaptive tracking control for periodic
reference signals.

controller uk is provided by (31)-(33). Fig. 2 (a)-(b) presents
the tracking results: the upper subfigure shows the trajectories
of the system outputs and the reference signals, from which we
can see that the system outputs are able to track the variations
in the reference signals; The lower subfigure clearly illustrates
that the tracking error converges to zero.

Case 3: Consider the case where r = 3.8, which lies
within the range where the logistic map may exhibit chaotic
dynamics. In this scenario, the reference signal generated from
(82) likely exhibits chaotic behavior. Fig. 3 (a)-(b) show the
trajectories of the reference signals, the system outputs under
the adaptive controller (31)-(33), as well as the tracking error.
It can be seen that for these complicated reference signals, the
adaptive tracking error can still converge to zero.

VI. CONCLUDING REMARKS

In this paper, we have established an adaptive control theory
for finite-dimensional linear systems with any given bounded
reference signals under binary-valued output observations. As
explained in the paper, one of the difficulties in establishing
such a theory lies in the fact that the regression vectors
containing the lagged output signals to be used in the con-
struction of the traditional adaptive algorithms are not fully
available. Another difficulty is how to sidestep or verify both
the boundedness and the excitation conditions required in the
convergence analysis of adaptive estimation algorithms in the
existing related literature. To overcome these difficulties, we
have used both the ideas of large model estimation and the
theory of double array martingales in the design and analysis
of adaptive algorithms, which makes it possible for us to
establish for the first time an adaptive identification theory for
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Fig. 3: r = 3.8: Adaptive tracking control for chaotic reference
signals.

linear systems with binary-valued output observations under
non-PE conditions and possibly unbounded system signals.
This further allows us to establish the global stability and
asymptotic optimality of the closed-loop adaptive systems. We
remark that several extensions of the current work are possible,
including more general forms of nonlinear output observations
(e.g., multi-level quantized output observations and saturated
output observations), and linearly parameterized nonlinear
dynamical systems with binary-valued output observations.
However, there are many interesting problems that need to be
further investigated. At the moment, we do not know whether
or not it is possible to establish such a theory without using
the IIR-based design ideas and analysis techniques introduced
in this paper. It would also be challenging to consider more
complicated stochastic dynamical systems, including multi-
layer networks and other basic control problems such as
linear-quadratic-adaptive control under binary-valued output
observations.

APPENDIX

Lemma 3: ( [41]). Let Σk ∈ Rp×p, k ≥ 0. For any given
0 < M1 < 1 and 0 < M2 <∞, there exists C(p,M1,M2) >
0, M > 0 and 0 < ρ̄ < 1, depending only on p, M1, and M2,
such that if (i) max

n1≤k≤n2

ρ(Σk) ≤ M1; (ii) max
n1≤k≤n2

∥Σk∥ ≤
M2; (iii) sup

n1≤k≤n2−1
∥Σk+1 − Σk∥ ≤ C(p,M1,M2), then

∥∥∥∥∥
j∏

k=i

Σk

∥∥∥∥∥ ≤Mρ̄j−i,∀n1 ≤ j ≤ i ≤ n2.

Lemma 4: ( [38]). Let {fk(n)}, 1 ≤ k ≤ n be a Fk-
measurable random vector sequence in Rpn , pn ≥ 1, and

Mk(n) = I +
k∑

j=1

fj(n)f
⊤
j (n), 1 ≤ k ≤ n. Then as n→ ∞,

n∑
k=1

f⊤k (n)M−1
k (n)fk(n) = O

(
log+{det (Mn(n))}+ 1

)
(83)

where log+{·} denotes the positive part of log{·}.
Lemma 5: ( [38]). Suppose that {wn,Fn} is a martingale

difference sequence satisfying sup
n

E[|wn+1|2 | Fn] <∞, and

sup
n

E[|wn+1|4(log+ |wn|)2+δ] <∞, a.s., (84)

and {xn,Fn} is any adapted random sequence satisfying
n∑

i=1

∥x∥2 = O(nb), E∥xn∥4{log+(∥xn∥)}2+δ = O(n2(b−1)),

(85)
where δ > 0, b ≥ 1 are some constants. Then as n→ ∞:

max
1≤t≤n

max
1≤i≤n

∥∥∥∥∥∥
i∑

j=1

xj−twj

∥∥∥∥∥∥ = O
(
n

b
2 {log n} 1

2

)
a.s.,∀η > 0.

(86)
Lemma 6: ( [40]) Let {wt,Ft} be a martingale difference

sequence satisfying

sup
t≥0

E
[
∥wt+1∥2 | Ft

]
<∞, ∥wt∥ = o(φ(t)), a.s., (87)

where φ(·) is a deterministic positive, non-decreasing function
and satisfies sup

k≥0
φ(ek+1)/φ(ek) <∞. Let {ft(k)}, with t ≥

0 and k = 1, 2, · · · , be a random sequence such that for each
fixed t ≥ 0, ft(k) is Ft−measurable for all k ≥ 1. Then for
pn = O (⌊loga n⌋) , a > 1, the following property holds:

max
1≤k≤pn

max
1≤i≤n

∥∥∥∥∥
i∑

t=1

ft(k)wt+1

∥∥∥∥∥ = O(rnφ(n) log log n), a.s., n→ ∞,

(88)
where

ri = max
1≤k≤pn

ri(k), ri(k) =

[
i∑

t=1

∥ft(k)∥2 + 1

] 1
2

, r0(k) = 1.

(89)

A. Proof of Theorem 1, Lemma 1, Lemma 2
Proof of Theorem 1. We first introduce the following nota-

tions:

ψk(n) = Fk+1

(
ck − ϕ⊤k θ

)
− Fk+1

(
ck − ϕ⊤k (n)θk(n)

)
,

γk+1 = sk+1 − Fk+1

(
ck − ϕ⊤k θ

)
,

δk(n) = ϕ⊤k θ − ϕ⊤k (n)θ(n),

θ̃k(n) = θ(n)− θk(n),
(90)

where Fk+1(·) denotes the probability distribution function of
the noise wk+1. It is clear from (90) that

|ψk(n)| ≤ 1, |γk| ≤ 1 1 ≤ k ≤ n. (91)

By (9), we have E [sk+1 | Fk] = Fk+1

(
ck − ϕ⊤k θ

)
. Hence, it

follows from (90) that E [γk+1 | Fk] = 0, implying that the
sequence {γk,Fk} forms a martingale difference sequence.
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Next, we consider the following stochastic Lyapunov func-
tion: Vk(n) = θ̃⊤k (n)P

−1
k (n)θ̃k(n), n ≥ 1, 1 ≤ k ≤ n. By

Assumption 4 and the definition of h(·) in (15), we have
lim
t→0

h(t) = ∞. Thus, from the definition of dk in (17)-(18), it
follows that lim

k→∞
dk = ∞. Thus, there exists a positive integer

N0, such that for all n ≥ N0,

θ ∈ DN0(n), n ≥ N0. (92)

Therefore, by (19), (92) and properties of the projection
operator (see e.g., Lemma 1 in [14]), we have for each k ≥ N0

that

Vk(n) ≤
[
θ̃k−1(n)− ak−1(n)βk−1Pk−1(n)ϕk−1(n)ek(n)

]⊤
·

P−1
k (n)

[
θ̃⊤k−1(n)− ak−1(n)βk−1Pk−1(n)ϕk−1(n)ek(n)

]
.

(93)
Furthermore, by (19) and the well-known matrix inversion
formula, we have

P−1
k (n) = P−1

k−1(n) + β2
k−1ϕk−1(n)ϕ

⊤
k−1(n), 1 ≤ k ≤ n,

(94)
From this, it follows that 1 ≤ k ≤ n,

θ̃⊤k−1(n)P
−1
k (n)θ̃k−1(n) = θ̃⊤k−1(n)P

−1
k−1(n)θ̃k−1(n)

+β2
k−1θ̃

⊤
k−1(n)ϕk−1(n)ϕ

⊤
k−1(n)θ̃k−1(n),

(95)

and

ak−1(n)P
−1
k (n)Pk−1(n)ϕk−1(n)

=ak−1(n)
(
I + β2

k−1ϕk−1(n)ϕ
⊤
k−1(n)Pk−1(n)

)
ϕk−1(n)

=ak−1(n)ϕk−1(n)
(
1 + β2

k−1ϕ
⊤
k−1(n)Pk−1(n)ϕk−1(n)

)
=ϕk−1(n),

(96)
where the last step follows from the definition of ak−1(n) in
(19). Substituting (95) and (96) into (93), we obtain

Vk(n) ≤Vk−1(n) + β2
k−1θ̃

⊤
k−1(n)ϕk−1(n)ϕ

⊤
k−1(n)θ̃k−1(n)

− 2βk−1θ̃
⊤
k−1(n)ϕk−1(n)ψk−1(n)

+ ak−1(n)β
2
k−1ϕ

⊤
k−1(n)Pk−1(n)ϕk−1(n)ψ

2
k−1(n)

+ 2ak−1(n)β
2
k−1ϕ

⊤
k−1(n)Pk−1(n)ϕk−1(n)γk

− 2βk−1ϕ
⊤
k−1(n)θ̃k−1(n)γk

+ ak−1(n)β
2
k−1ϕ

⊤
k−1(n)Pk−1(n)ϕk−1(n)γ

2
k.

(97)
From the mean-value theorem and the definition of βk in (19),
we have

ψk−1(n) =fk+1(ξk)
(
ϕ⊤k θ − ϕ⊤k (n)θk(n)

)
≥βk

(
ϕ⊤k θ − ϕ⊤k (n)θk(n)

)
,

(98)

where ξk lies between ck − ϕ⊤k θ and ck − ϕ⊤k (n)θk(n), and
satisfies |ξk| ≤ dk max

1≤i≤k
|ui|+ C. It then follows that

βk−1θ̃
⊤
k−1(n)ϕk−1(n)ψk−1(n)

≥β2
k−1θ̃

⊤
k−1(n)ϕk−1(n)

(
θ̃⊤k−1(n)ϕk−1(n) + δk−1(n)

)
≥β2

k−1

(
θ̃⊤k−1(n)ϕk−1(n) + δk−1(n)

)2
− βk−1δk−1(n)ψk−1(n).

(99)

Since |ψk−1(n)| ≤ 1, we also obtain

ak−1(n)β
2
k−1ϕ

⊤
k−1(n)Pk−1(n)ϕk−1(n)ψ

2
k−1(n)

≤ak−1(n)β
2
k−1ϕ

⊤
k−1(n)Pk−1(n)ϕk−1(n).

(100)

Substituting (99) and (100) into (97), and summing up both
sides of (97) from k = N0 to n, we obtain

Vn(n) ≤VN0(n) +

n−1∑
k=N0

β2
k

[
θ̃⊤k (n)ϕk(n)

]2
− 2

n−1∑
k=N0

β2
k

(
θ̃⊤k (n)ϕk(n) + δk(n)

)2
+ 2

n−1∑
k=N0

βkδk(n)ψk(n) +

n−1∑
k=N0

ak(n)β
2
kϕ

⊤
k (n)Pk(n)ϕk(n)

− 2

n−1∑
k=N0

βkϕ
⊤
k (n)θ̃k(n)γk+1

+ 2

n−1∑
k=N0

ak(n)β
2
kψk(n)ϕ

⊤
k (n)Pk(n)ϕk(n)γk+1

+

n−1∑
k=N0

ak(n)β
2
kϕ

⊤
k (n)Pk(n)ϕk(n)γ

2
k+1.

(101)
We next analyze the right-hand side (RHS) of (101) term by
term. For the third term of (101), by the definition of δk(n) in
(90), the decay property of {Gi, i ≥ 1} in (7), and the bound
on {ui, i ≥ 1} in (21), we obtain

n−1∑
k=N0

δ2k(n) =O

(
n−1∑
k=n0

[
ϕ⊤k θ − ϕ⊤k (n)θ(n)

]2)

=O

 n−1∑
k=n0

 ∞∑
i=pn+1

∥Gi∥

2

max
pn≤i≤k

u2k−i


=O

(
n3+2δ̄ρ−pn

)
= O(1), a.s., n→ ∞.

(102)
Applying Young’s inequality, we obtain

n−1∑
k=N0

β2
k θ̃

⊤
k (n)ϕk(n)δk(n)

≤1

8

n−1∑
k=N0

β2
k(n)

[
θ̃⊤k (n)ϕk(n)

]2
+ 4

n−1∑
k=N0

β2
k(n)δ

2
k(n), a.s.

(103)
Substituting (102) and (103) into the third term of (101), we
have

− 2

n−1∑
k=N0

β2
k

(
θ̃⊤k (n)ϕk(n) + δk(n)

)2
=− 3

2

n−1∑
k=N0

β2
k

[
θ̃⊤k (n)ϕk(n)

]2
+O(1), a.s.

(104)

For the fourth term in (101), since |ψk(n)| ≤ 1, it follows
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from (102) and the definition of βk in (19) that

n−1∑
k=N0

βkψk(n)δk(n) = O

√√√√n

n−1∑
k=N0

δ2k(n)

 = O(1), a.s.

(105)
For the fifth term of (101), we apply (94) and the trace
inequality:

log+
(
det
(
P−1
n (n)

))
≤pn log+

(
tr

[
P−1
0 (n) +

n−1∑
k=0

β2
kϕk(n)ϕ

⊤
k (n)

])

=pn log
+

(
tr
[
P−1
0 (n)

]
+

n−1∑
k=0

β2
k

pn+1∑
i=0

u2k−i

)
=O

(
pn log

(
n3+3δ̄

))
= O (pn log n) , a.s.

(106)

Hence, by Lemma 4 and (106), we obtain the bound

n−1∑
k=N0

ak(n)β
2
kϕ

⊤
k (n)Pk(n)ϕk(n)

=O
(
log+{det

(
P−1
n (n)

)
}+ 1

)
= O (pn log n) , a.s.

(107)
Furthermore, we analyze the last three terms in (101) which
are related to the martingale difference sequence {γn,Fn}, by
using the double array martingale limit theory. Since |γk| ≤ 1,
we have |γk| = o(log log(k + e)), a.s. Then by Lemma 6, it
follows that

n−1∑
k=N0

βkϕ
⊤
k (n)θ̃k(n)γk+1

=O

( n−1∑
k=N0

β2
k

[
θ̃⊤k (n)ϕk(n)

]2) 1
2

(log log n)2

 ,

=o

(
n−1∑
k=N0

β2
k

[
θ̃⊤k (n)ϕk(n)

]2)
+ o

(
(log log n)

5
)
, a.s.

(108)
For the seventh term in (101), again by Lemma 6 and (107),
we obtain

n−1∑
k=N0

ak(n)β
2
kψk(n)ϕ

⊤
k (n)Pk(n)ϕk(n)γk+1

=o

(
n−1∑
k=N0

[
ak(n)β

2
k(n)ϕ

⊤
k (n)Pk(n)ϕk(n)

]2)
+ o

(
(log log n)

5
)

=o (pn log n) + o
(
(log log n)

5
)
, a.s.

(109)
For the eighth term of (101), since |γk+1| ≤ 1, it follows from
(107) that

n−1∑
k=N0

ak(n)β
2
kϕ

⊤
k (n)Pk(n)ϕk(n)γ

2
k+1 = O (pn log n) , a.s.

(110)

Substituting (104), (105), (107)-(110) into (101), we finally
obtain

θ̃⊤n (n)P
−1
n (n)θ̃n(n) +

1

2

n−1∑
k=N0

β2
k

[
θ̃⊤k (n)ϕk(n)

]2
= O (pn log n) , a.s.

(111)
Furthermore, by (21) and the definitions of βn, g(·), h(·) in
(19), (14) and (15), respectively, we have for each n ≥ 1:

βn ≥ g

(
dn max

1≤i≤n
|ui|
)

≥ g
(
d2n
)
= g

(
h
(
g(0)α−1

n

))
=
g(0)

αn
.

(112)
Then using (94) and (112), we the following lower bound:

λmin

{
P−1
n (n)

}
≥ λmin

{
P−1
0 +

n∑
t=1

β2
t ϕt(n)ϕ

⊤
t (n)

}

≥
(
g(0)

αn

)2

λmin

{
P−1
0 +

n∑
t=1

ϕt(n)ϕ
⊤
t (n)

}
=

(
g(0)

αn

)2

λmin(n),

(113)
where λmin(n) is defined in (24). Therefore, we have

θ̃⊤n (n)P
−1
n (n)θ̃n(n) ≥λmin

{
P−1
n (n)

}∥∥∥θ̃n(n)∥∥∥2
≥g(0)α−2

n λmin(n)
∥∥∥θ̃n(n)∥∥∥2 . (114)

Combining (111) and (114), we arrive at the result (23).
To prove (22), we draw inspiration from the analysis of the

ARX(∞) approximation in [39]. Let si = ⌊e
i

1+a ⌋ for each
i ≥ 0. Then for all k such that s̄i + 1 ≤ k ≤ s̄i+1, we have

pk = ps̄i+1 . (115)

Since {s̄i, i ≥ 0} is an increasing sequence, for each n ≥ 1,
there exists a positive integer j̄n such that s̄j̄n ≤ n < s̄j̄n+1.
Moreover, it can be verified that j̄n ≤ pn+1.Then, combining
(115) and (111), we obtain

n−1∑
k=N0

β2
k

[
θ̃⊤k (k)ϕk(k)

]2
≤

j̄n∑
i=0

s̄i+1∑
k=s̄i+1

β2
k

[
θ̃⊤k (k)ϕk(k)

]2
=O

 j̄n∑
i=0

psi+1
log psi+1

 = O
(
p2n log n

)
, a.s.

(116)
Therefore, by (112) and (116), it follows that

n−1∑
k=N0

[
θ̃⊤k (k)ϕk(k)

]2
= O

(
α2
np

2
n log n

)
, a.s. (117)

Furthermore, using (102), we have
n∑

k=0

δ2k(k) =

n∑
k=0

λ2pkk2+2δ̄ = O (1) . (118)

Combining this with (117), we finally obtain

n∑
k=0

Rk =

n∑
k=0

[
θ̃⊤k (k)ϕk(k) + δk(k)

]2
= O

(
α2
np

2
n log n

)
, a.s.

(119)
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Proof of Lemma 1: For each n ≥ 1, 1
2 < η < 1, and any

vector Zn = [z1, · · · , zpn
]
⊤ with ∥Zn∥ = 1, we have

Z⊤
n

n∑
t=n−nη

ψt(n)ψ
⊤
t (n)Zn =

n∑
t=n−nη

(z1vt · · · zpn
vt−pn+1)

2

=

n∑
t=n−nη

(
z21v

2
t + · · · zp2

n
v2t−pn+1

)
+ 2

n∑
t=n−nη

∑
0≤s<r≤pn

zs+1zr+1vt−svt−r.

(120)
From Lemma 5, we have

max
1≤s≤pn

max
r<s≤pn

∥∥∥∥∥
n∑

t=n−nη

vt−svt−r

∥∥∥∥∥
= max

1≤s≤pn

max
r<s≤pn

∥∥∥∥∥
n∑

t=1

vt−svt−r −
n−nη∑
t=1

vt−svt−r

∥∥∥∥∥
≤ max

1≤s≤pn

max
r<s≤pn

(∥∥∥∥∥
n∑

t=1

vt−svt−r

∥∥∥∥∥+
∥∥∥∥∥
n−nη∑
t=1

vt−svt−r

∥∥∥∥∥
)

≤C1(η)
√
n log log n,

(121)
where C1(η) does not depend on n. Moreover, we have

n∑
t=n−nδ

(
z21E

[
v2t
]
+ · · · z2pn

E
[
v2t−pn+1

])
≥ nη, (122)

and

max
0≤s≤pn−1

z2s

∥∥∥∥∥
n∑

t=n−nη

(
v2t−s − E

[
v2t−s

])∥∥∥∥∥ ≤ C2(η)
√
n log log n,

(123)
where C2(η) does not depend on n. From (120), (121), (122)
and (123), we obtain

1

nη
λmin

{
n∑

t=n−nη

ψt(n)ψ
⊤
t (n)

}

≥1− (C1(η) + C2(η))pn
√
n log log n

nη
,

(124)

which establishes Lemma 1.
Proof of Lemma 2: For each positive integer k, define

Ak =


−q1 · · · −qk 0
1 · · · 0 0
· · · · · · · · · · · ·
0 · · · 1 0

 . (125)

From condition (36), there exists a positive integer k0 such
that ρ(Ak0

) < 1 and
∞∑

i=k0+1

|qi| <
1

4
− 1

4
ρ(Ak0). (126)

Let T1 = 3
2 ∥Ak0

∥, T2 = 1
4 + 3

4ρ(Ak0
), and denote C̄ =

C(k0, T1, T2), where C(·) is defined in Lemma 3. Define

∆ = min

{
1

4
∥Ak0∥2,

(
1

12
− 1

12
ρ(Ak0)

)2

,
C̄2

4

}
. (127)

Given any ξ̄ > 0, we now show that the uniform stability
bound property holds with constants c1(ξ̄) and c2(ξ̄) depend-
ing only on Q(z) and ξ̄. Specifically, for any positive integers
n0 < N , and for any sequences {µn, n ≥ 1} ⊂ R and
{ξn, n ≥ 1} ⊂ R satisfying conditions (i) and (ii) in Lemma
2, we aim to verify that inequality (37) holds.

We now define a sequence of matrices {An,k0
, n ≥ 1} as

follows:

An,k0
=


−qn,1 · · · −qn,k 0
1 · · · 0 0
· · · · · · · · · · · ·
0 · · · 1 0

 , (128)

By condition (i) in Lemma 2, we have

sup
n0≤n≤N

∥Ak0
−An,k0

∥ ≤ sup
n0≤n≤N

√√√√ k0∑
i=1

|qi − qn,i|2 ≤
√
∆,

(129)
Thus, by the definition of ∆ in (127) and (129), it follows that

sup
n0≤n≤N

∥An,k0
∥ ≤ ∥Ak0

∥+∆ ≤ 3

2
∥Ak0

∥ ,

sup
n0≤n≤N

ρ(An,k0) ≤ ρ(Ak0) + ∆ ≤ 1

4
+

3

4
ρ (Ak0) ,

(130)

and

sup
n0≤n≤N

pn∑
i=k0+1

|qn,i| ≤
∞∑

i=k0+1

|qi|+∆ ≤ 1

3
− 1

3
ρ(Ak0).

(131)
Therefore, by (129)-(130), the choice of ∆ in (127), and
Lemma 3, there exists constants M > 0 and 0 < λ < 1,
depending only on T1, T2 and k0, such that∥∥∥Πn+j

i=nAi,k0

∥∥∥ ≤Mλj , ∀n0 ≤ n ≤ n+ j ≤ N. (132)

For each n ≥ 1, define

µ̄n =

{
µn, n ≥ n0 − pn0 + 1
0, n < n0 − pn0

+ 1
,

and let xn = [µ̄n, µ̄n−1, · · · , µ̄n−k+1]
⊤, ϵn = [ξn, 0, · · · , 0]⊤.

In addition, for each n ≥ 1 and i ≥ 1, define

ḡn,i =

{
qn,i, 1 ≤ i ≤ pn
0, i > pn

,

and

h̄n,i =


−ḡn,n−i 0 · · · 0

0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0

 .
Then by condition (ii) in Lemma 2, we have

xn = An,kxn−1 +

n−k−1∑
i=1

hn,ixi + ϵn, n0 ≤ n ≤ N. (133)

Define the transition matrix

Φ(n+ 1, i) = An+1,kΦ(n, i),Φ(i, i) = I, ∀N ≥ n ≥ i ≥ n0.
(134)
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We now prove that for each N ≥ n ≥ n0 + 1,

xn = Φ(n, n0)xn0
+

n∑
i=n0+1

Φ(n, i)ϵi +

n−k−1∑
i=1

ln,ixi. (135)

where the coefficients {ln,i, 1 ≤ i ≤ n} are defined as

ln,i =


n∑

j=k+i+1

Φ(n, j)hj,i, n0 − k ≤ i ≤ n− k − 1

n∑
j=n0+1

Φ(n, j)hj,i, 1 ≤ i ≤ n0 − k − 1
.

(136)
We proceed by induction. For n = n0 +1, it is easy to verify
that

ln0+1,i = hn0+1,i, 1 ≤ i ≤ n− k − 1, (137)

so (135) holds. Assume that (135) holds for some n ≥ n0+1,
we show that it also holds for n+ 1. By definition, we have

xn+1 = An+1,kxn +

n−k∑
i=1

hn+1,ixi + ϵn+1

=An+1,kΦ(n, n0)xn0
+An+1,k

n∑
i=n0+1

Φ(n, i)ϵi

+An+1,k

n−k−1∑
i=1

ln,ixi +

n−k∑
i=1

hn+1,ixi + ϵn+1

=Φ(n+ 1, n0)xn0
+

n+1∑
i=n0+1

Φ(n+ 1, i)ϵi + hn+1,n−kxn−k

+

n−k−1∑
i=1

(An+1,kln,i + hn+1,i)xi.

(138)
By definition of ln,i in (136), we have ln,n−k−1 = hn,n−k−1.
Besides, for each n0 − k ≤ i ≤ n− k, we compute:

An,kln−1,i + hn,i =An,k

n−1∑
j=k+i+1

Φ(n− 1, j)hj,i + hn,i

=

n−1∑
j=k+i+1

Φ(n, j)hj,i + hn,i = ln,i.

(139)
Similarly, for 1 ≤ i ≤ n0 − k − 1, we have

An,kln−1,i + hn,i =

n∑
j=n0+1

Φ(n, j)hj,i = ln,i. (140)

Therefore, the representation (135) also holds for n + 1,
completing the induction.

According to (132) and (135), for each N ≥ n ≥ n0 + 1,
we have

∥xn∥ ≤Mλn−n0∥xn0∥+
n∑

i=n0+1

λn−i∥ϵi∥+
n−k−1∑
i=1

∥ln,i∥∥xi∥.

(141)

From the definition of ln,i and (131), we obtain

n−k−1∑
i=1

∥ln,i∥

≤
n0−k−1∑

i=1

n∑
j=n0+1

λn−j∥hj,i∥+
n−k−1∑
i=n0−k

n∑
j=k+i+1

λn−j∥hj,i∥

≤
n0−k−1∑

i=1

n∑
j=n0+1

λn−j |gj,j−i|+
n−k−1∑

i=n0−k+1

n∑
j=k+i+1

λn−j |gj,j−i|

≤
n∑

j=n0+1

j−k−1∑
i=1

λn−j |gj,j−i| ≤
n∑

j=n0+1

λn−j

( ∞∑
i=k+1

|qj,i|

)

≤ 1

1− λ
max

n0+1≤j≤n

( ∞∑
i=k+1

|qj,i|

)
≤ 2

3
.

(142)
Define yn = max

1≤i≤n
∥xi∥. Then, combining (141) and (142),

we obtain for each N ≥ n ≥ n0 + 1,

yn ≤2

3
yn−1 +Mλn−n0∥xn0

∥+
n∑

i=n0+1

λn−i∥ϵi∥

≤
(
2

3

)n−n0

yn0
+

M

1− λ
∥xn0

∥+ c2(ξ̄)

≤c1(ξ̄) max
n0−pn0

≤i≤n0

|µi|+ c2(ξ̄).

(143)

where c1(ξ̄), c2(ξ̄) depend only on M,λ and ξ̄, and thus
ultimately only on T1, T2, k0 and ξ̄. Therefore, Lemma 2 is
established.
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