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Nonasymptotic Results for Finite-Memory
WLS Filters

Maciej NiedZwiecki and Lei Guo, Member, IEEE

Abstract—The paper presents what we believe to be the first
nonasymptotic analysis of properties of weighted least squares (WLS)
adaptive filters used for identification of time-varying systems. We show
that the problem of mean-square boundedness of WLS estimates is
closely related to the problem of invertibility—in the mean sense—of
the corresponding regression matrix. We discuss necessary and sufficient
conditions for such invertibility to hold. Based on that, a number of
results are derived paralleling those already obtained for least mean-
square (LMS) filters and the problem of “‘statistical robustness’ of the
WLS estimator is briefly mentioned.

I. INTRODUCTION

CONSIDER the following time-varying stochastic system

() = a7(8)(1) + n(t) (1)

where ¢(f) = [u(1)," -+, u(£)]7 is the measurable input vec-
tor, a(?) = [ay(?)," -, a,(0)]" is the unknown (time-depen-
dent) parameter vector and {n(f)} denotes the unobservable
(scalar) measurement noise. We will assume that

Al: The noise process {n(f)} is a sequence of zero-mean
independent and identically distributed random variables and
E[n’(1)] = po.

A2: The input process {¢(f)}, independent of {n(#)}, is a
sequence of identically distributed m-dependent random vectors
(i.e., 3m such that V¢ sequences {¢(i), i <t} and {o(i),
i =t + m} are independent) and E[¢(£)$7(£)] = Ry > 0.

A3: Time-varying parameters form a sequence {a(?)}, inde-
pendent of {¢(#)} and {n(¢)}, which is bounded in the mean
square sense, i.e.,

Ele] sa<o e

Assumption about m-dependence of the input sequence is not
critical and will be relaxed to include weaker mixing (asymptotic
independence) and covariance conditions later on.

Note, that in the case where

ui(1) = u(r - 1), (2)

(1) specializes to the dynamic finite impulse response (FIR)
model widely used in adaptive filtering, e.g., for the purpose of
adaptive equalization of communication channels.

If parameters in (1) vary sufficiently slowly with time, the
method of weighted least squares (WLS) can be used for the
purpose of tracking of a(f). Let {w(?)} denote the nonnegative

i=1,,r

Manuscript received March 2, 1989; revised May 20, 1990. Paper
recommended by Past Associate Editor, B. Sridhar.

M. NiedZwiecki is with the Institute of Computer Science, Technical
University of Gdansk, ul. Majakowskiego 11/12, Gdarsk, Poland.

L. Guo is with the Institute of Systems Science, Academia Sinica, Beijing
100080, People’s Republic of China.

IEEE Log Number 9041415.

and nonincreasing weighting sequence, such that
o
> w(t) =1 3)
t=0

(the normalization constraint (3) is not essential for our analysis
and was introduced for the sake of notational convenience).
Assuming, for convenience, that the infinite observation history
is available at the instant ¢, the WLS estimator can be defined in
the following way

a(1)

arg;nin zé) w(i)[y(t - i) - oTo(t - i)]2

(£ wirste-nee-)
(5 #05- note - ) =E1050) (@

with obvious definitions of ﬁ(t) and §(t).

In practice, the requirement that the WLS estimator should be
recursively computable limits our choice of w(¢) to several
standard windows. If, for example, the exponential window is
used (w(¢) = (1 — NN, 0 < A < 1) one can replace (4) by the
following recursive algorithm [1]:

a(t) =a(t- 1)+ D(0)o(t) e(2)
e(6) = y(1) - a"(t - 1)o(2) (5)

where the matrix D(f) can be updated using the well-known
formula

D(t - 1)¢(t)e7(£)D(t - 1)
A+ oT(6)D(t - 1)¢(1)

D(t)=l)\ D(t—1) -

(6)

Similar (but basically two-step) algorithms can be derived for
the sliding rectangular window (w(¢#) = 1/N for t < N and
=0 for t = N) (see e.g., [1]). Various fast versions of the
WLS algorithm are also available but they usually require
“‘safety jacketing’’ because of possible numerical ill-condition-
ing (see [2]).

If the data-dependent adaptation matrix D(?) in (5) is re-
placed by a small adaptation gain x one arrives at the so-called
least mean-square (LMS) algorithm

a(r) =&t — 1) + po(t)e(t). W)

Although computationally less demanding than the WLS algo-
rithm, the LMS algorithm may suffer from a very slow initial
convergence-a disadvantageous effect if rapid adaptation is re-
quired. Despite this difference, both algorithms have very simi-
lar parameter tracking properties (see e.g., [3]).
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While the statistical properties of LMS filters seem to be
well-explored and documented, the situation is less clear for the
WLS filters. So far, all the analyses were based on asymptotic
arguments, i.e., strictly speaking, they dealt with the case where
the effective length of the window tended to infinity.

Almost no precise results seem to exist for strictly finite-length
windows—the recent paper of Macchi and Eweda [19] being the
only noticeable exception.! However, even the results presented
in [19] rely critically on the assumption about invertibility of a
certain stochastic regression matrix [19, Assumption A2] which
is postulated but is very difficult to verify.

In this paper, we present what we believe to be the first
nonasymptotic analysis of properties of the WLS estimator based
on realistic and verifiable assumptions. We show that the prob-
lem of the mean-square boundedness of &(#) is closely related to
the problem of mvembxhty—m the mean sense—of the regres-
sion matrix R(t) in (4). We discuss conditions under which
such invertibility is guaranteed if sufficiently strong mixing
(asymptotic independence) and/or covariance conditions are im-
posed on {¢(?)}. Based on that, a number of results can be
derived paralleling those obtained for LMS estimators by Mac-
chi and Eweda [4], [5] and the problem of *‘statistical robust-
ness’’ of the WLS estimator can be properly addressed.

II. REVIEW oF KNOWN RESULTS

From among a large number of results on stability and
tracking bounds for the LMS algorithm, we would like to point
to a sequence of insightful papers by Macchi and Eweda [4]-[7]
(see also [20] and [21]).

Assuming that the input sequence is stationary and m-depen-
dent the authors were able to show that, for sufficiently small but
nonzero gain p

E[[la(1) - «()[] = C(u) < . (8)
In the constant parameter case (a(f) = a,), we have [6]
C(n) = Cp )

that is, the bound on random fluctuations in steady state de-
creases with the stepsize in a linear way.
If system parameters vary with time, the choice of p becomes
a trade-off between the steady-state accuracy and tracking ability
of the estimation algorithm. Assuming, for example, that {a(f)}
evolves according to the random walk model, it is possible to
show that [6]
&
C(p)=Cp+— (10)
u
which illustrates the need for the compromise mentioned previ-
ously.
Denote by ¢ the equivalent width of the window {w(?)}
(equivalent number of observations)

L=u§;w«0 (11)

deciding upon the ‘‘memory”’ of the WLS filter [8]. One can
argue that the quantity 1/ determines the adaptation gain of the
WLS algorithm, i.e., it plays exactly the same role as the
stepsize p in the LMS filter.

"This paper was brought to our attention during the revision process.
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Basically, two different approaches were used to analyse
properties of WLS estimators:

o the approach based on Taylor series approximations (for
any weighting sequence) (see e.g., [8]-[11])

e the approach based on ODE approximations (for exponen-
tial weighting) (see e.g., [12]-[15])

In both cases, the derived results hold only asymptotically,
that is for « = co. Almost no results seem to exist if ¢ is finite
and fixed. For example, for the constant parameter case only a
considerably weaker version of (8), (9) is available. According
to Eweda and Macchi [7], for arbitrarily small ¢ > 0, the
estimation error || &(f) — a2 has an upper bound proportional
to 1/. with probability 1 — e.

The finite mean-square tracking bound established subse-

quently in [19] rests on an implicit assumption that there exist an

integer N, and a constant 0 < ¢ < o such that v N = N, V ¢

<ec. (12)

E [xm(Nz ¢(z—f)¢’(z—i))]8

It turns out, however, that verification of assumptions similar to
(12) is far from being obvious and constitutes the very core of
the tracking assessment problem. We will consider thls issue in
more detail in Section IV.

III. “‘IpeaLizep’” WLS ESTIMATOR
Since under A2, we have

R(t) = i w(i)o(t - i)o7(s - i)

- Ry (13)

where convergence takes place either in the mean-square sense
or with probability one [9], for suﬂicxenﬂy large ¢ one can
attempt to replace the regression matrix R(f) in (4) by its
expectation. The resulting ‘‘idealized’”” WLS estimator

&(t) = R;'S(2) (14)
is analytically easy to handle. Moreover, provided that the

difference
E[J a(r) - &(0)[] (15)

is sufficiently small one can infer about properties of the WLS
estimator &(¢) by analyzing properties of its ‘‘idealized’’ coun-
terpart—that was the line of thinking in {9}, {10]. One of the
points behind studying properties of (15) is that, via the inequal-
ity

E[|a(1) - a()[] = 2E[] &(1) - &))"
+2E[|&() - ()] (16)

boundedness of (15) implies boundedness of the mean-square
tracking error (under A1-A3 boundedness of the second term on
the right-hand side of (16) can be shown quite easily).

Not surprisingly, the problem of boundedness of (15) can be
related to the problem of invertibility, in the mean sense, of the
matrix R(t) In particular, we have the followmg

Lemma 1: Under assumptions A1-A3 we !xave

E[|a(t) - &[] = o(r{E[a()]})  (17)

where A(f) = R™'(1) — R; .
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Proof:
Aa(t) = &(1) - &(1) = A(1)8(¢) = ;’x(i)u(i)
where

x(i)

I

vw(i) a() (e - 1),  v(i)
Vw(i) [67(t = i)a(t = i) + n(t - i)].
Using the Schwartz inequality, one gets

sllaa(ol] = 5| £ 15 F|] £ 0]

Observe that

| 101 - o] £ <0570}

= {E[A(1) R(2) A(1)]} = w {E[A(1)]}.

Similarly
E[é vz(i)] < EZOE["O‘(' - ")||2]

-E[tr {w(i)o(t - i)oT(r - 1)}] + 0
s Atr{Ry} + po = 0(1).
IV. INVERTIBILITY OF THE REGRESSION MATRIX
A. Preliminary Considerations

According to Lemma 1, proving boundedness of the mean-
square tracking error amounts to finding conditions under which

E[ﬁ_l(t)] < oo,

i.e., under which the stochastic regression matrix Ryi is invert-
1ble in the mean sense. Let {w’(?)}:
for t <N

wir) = {8 for t = N. (18)

denote a rectangular window ‘“inscribed’” in { w(#)}, see Fig. 1.
Since R(t) = cR(t) where

R(1) = g'o 8(1 — )oT(t - i)

the overbounding technique can be used, i.e., the boundedness
results for general windows are implied by the corresponding
results for the ‘‘inscribed’” rectangular windows. However,
even under uniform weighting the problem of invertibility of the
stochastic regression matrix is conspicuously absent from the
statistical literature.
Observe that
(R-Y(1)), + (adi R(1))
Y det R(1)

and hence, using the Holder inequality, one get (k > 1)
1

E[(R_](t))ij] < [E[(det R(t))‘k”;

.[E[(adj R(t)),-’;%”T. (19)

Aylt)

|
|
|

o t

v

Fig. 1. Rectangular windows ‘‘inscribed’’ in { w(i)}
Imposing some moment conditions on wi(¢), i=1,"--,r,
namely
A4: 3e > 0 such that
E[(u,-(t))z(r_l)+E] <o, Vt,i=1,-,r

and choosing k sufficiently large so that 2(r — 1)/(k — 1) <¢,
one can guarantee boundedness of the second factor on the
right-hand side of (19). Therefore to prove invertibility of R(¢)
in the mean it suffices to find conditions under which the
determinant of R(¢) is invertible in kth-moment

E[ (det R(?))

< (20)

for sufficiently large k.

B. Need for Additional Constraints
Quite obviously, in order to satisfy (20) one needs

P(detR(£) =0) =0 (21)

which can not be guaranteed by imposing only moment condi-
tions on{$(?)}, such as

E[e(1)¢™(2)] >0  wvr. (22)

We will clarify this point by means of the following example:

Example: Consider the case where (2) holds and {u(?)} is an
i.i.d. sequence taking only two values: +1 and — 1 with proba-
bilities p O <p < 1) and 1 — p, respectively. Then it is
straightforward to show that for any finite N (21) is not fulfilled
even though (22) is. B

Quite clearly, additional constraint is needed to rule out cases
such as the one above. The following result, which can be
thought of as a refinement of (21), will be very useful for our
further purposes. ’

Lemma 2: The determinant of R(f) is invertible in kth
moment provided that 3xy, n >0, L = k + 1 such that ¥x:
Xxo > x > 0 and V¢ it holds

P(det R(t) = x) = qxt. (23)

Proof: Using (23) one gets

E[(det R(1))” ]—/

= k/ x~k=1 P(det R(t) < x) dx
0

x~* dP (det R(?) = x)

xg
= k/ axl=*=ldx + x5% < o,
0
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C. Explicit Invertibility Condition

We will show that the implicit condition (23) can be met if N
in (18) is sufficiently large and
A5: 3y, 8, x5 > 0 such that Vx: x5 > x > 0, and V!¢

“ 21"121 P((BT¢(I))2 < x) < yx®. (24)

In order to simplify the analysis we will derive the main result
under the assumption that {¢(?)} is an i.i.d. sequence and then
we will extend it to more general cases.

Lemma 3 (Key Technical Lemma): Suppose that {¢(?)} is
an i.i.d. sequence with finite second-order moments. Denote

N-1
R(1) = ,go ot — i)o7(¢ - i).

Then E[R™'(¢)] < o for some deterministic integer N < o if
and only if the condition A5 holds.
Proof:
a) Sufficiency: For convenience, take N = rM. We have

M-1
R(t) = ,go Hi(t),  Hy1)

= % 6le-ir = KTt - - K)

since for nonnegative definite matrices 4 and B we have
det (A + B) = det A + det B, it holds

M-1
det R(1) = Y det Hi(1)
j=0
and consequently
M-1
P(det R(1) =x) = P( > det Hy(t) = x)
Jj=0

< [ P(det Hy(1) = x)]™

since the matrices H(t) are mutually independent. We shall
prove, by induction, that under conditions implied by AS, the
following proposition is true.

Proposition: 3¢,, 1, > 0 such that vx: xy > x > 0 and v?

P(det Hy(t) = x)

= P|det

12;:; Pt -)¢7(r - J')] = X) < gx7. (25)

Observe that det Hy(t) = (det W(¢))? where

uy(1)

u(t—r+1)
w(t) = :
u(t-r+1)

u,(2)

and
(1) = £ (=1 ul0)a(6) & 670200

where z(t) is a collection of corresponding minors of the matrix

W(t). Note that
r—1
z;(t) = det ’21 bt —J)ola(t - J)
j=

da(t) = [ui(2), -+ uia (1), wia(t), s u,(1)] .

Rewrite det Hy(f) in the form det Ho(1) = | z(D)|?
(BT(1)o(1))* where B(t) = z(1)/ || z(#)| for all z() # 0. Us-
ing simple calculations based on conditional probabilities, one
gets, for any x < x

P(det Hy(t)=<x)
= P(det Ho(1) = 2| 2(0) = V&)
P 2(0)["= Vx) + P(|det Ho(1)
<x |z <Vx|)P(l (0] < Vx)
= P((87(0e(1)) < Vx|l 2(1) = V&)
+P(|2(0)] < V&)

where it was assumed that for any positive x: P(||z(1)||?
< v/x) > 0 so that the corresponding conditional probability is
well-defined (if not, a simple modification can be introduced).

Owing to the fact that the regression vector ¢(¢) is indepen-
dent of z(f) = f(¢(t — 1),"*+, &(¢ — r + 1)) and that || B(#)|
= 1 we get (cf., AS)

P((87(16(0) = Vx[l2()[] = V&)

< swp P((87(1))" = Vx) = vx*2. (27)
l8l=1
Consider, in turn, the second term on the right-hand side of (26)

Pl s V7) = P £ 220 < V&)

i=1

(26)

< él’(z?(r) <Vx). (28)

Now, suppose that the proposition is true for r — 1, i.e., for
all (r — 1)-dimensional subvectors of ¢(?) there exist constants
£,_y, rp_y such that

P(z%(t) <= x) = P|det

;izi ¢[i](t —j)¢(7;](t _j)] Sx)

<&\ x"r-1 i=1,-,r.

Combining this with (28) one gets

Tr—1

P(lz()I?< Vx) =rf,_ix z

and consequently, using (26), (27) and the bound obtained
previously, one has

8 Tr—1

P(det Hy(t) =x) = 'yxz +rE,_x :

<, x'r
. 4 Tr—1 .
for xe(0,1], 7, = min 22 and appropriately chosen

,
Since the proposition stems immediately from A5 in the case
where r = 1, it is also true in the general case.
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Finally, observe that
P(det R(t) = x) = [ P(det Hy(1) < x)]"
< (Er)MxM'r,- — nxL

where L = M7, can be made arbitrarily large by increasing M
(i.e., N). This concludes the proof of the *‘if”” part of Lemma
3.

b) Necessity: In order to prove the “‘only if>* part of Lemma
3, denote by A\(#) the minimum eigenvalue of R(?). Observe
that E[R™'(#)] < o entails E[N\] ()] < =, i.e.,

/: % dP(M(1) <) < o

and since P(N\(¢) = 0) = 0 we have
Ye>03x,>0

fox%dP()\l(t) <y) s

such that for any 0 < x < x,

1 1
Since /cf ; dP(ND =) 2 -; P(\(®) = x), we finally ob-

tain for any 0 < x < x;: P(\(¢) < x) < ex.
Since A\(#) is the minimum eigenvalue of R(?), for any
deterministic vector 8 with || 8] = 1 we get

N(2) = BT[E: o(t—i)o™(t - i)](s

Z

-1

= Y (8%(t- ).

i
Consequently, P(X7o'(876(f — i))* < x) < PO\(1) = X) <
ex. Observing that NNg! {(BT¢(t -))= %} entails
TN (BTé(t — i))? < x and exploiting the i.i.d. property of
{o(D} we get

AT N! 2
[P((Bch(t)) < 7\}-)] sP( > (BTo(t - i) sx) <ex
i=0

that is

x
P((BT¢(I))25 ]TJ) < /NN, 0<x<x.

Finally, making the substitution y = x /N, we arrive at condi-
1 X
tion A5 with vy = (Ne)'/V, 6 = ~ @d X = iy
Remark 1: It is known that distribution of any r-dimensional
random vector ¢ can be factored as (Lebesgue decomposition
theorem)

F() = p.F($) + naFy(9) + nFi(9)

where F,, F,;, F, are continuous discrete and singular distribu-
tions, respectively, and p., py, ps are nonnegative constants
such that p, + pg + p; = 1.

What AS effectively says is that F(¢) should be free of
discrete and singular (supported on hyperplanes) components.
Additionally, it rules out ‘‘almost discrete’” and ‘‘almost singu-
lar’’ components in the continuous distribution. We note that A5
admits a very large class of continuous distributions, e.g., ail
ones characterized by bounded probability density functions
(such as Gaussian, uniform, etc.).

Remark 2: Note that the dependence structure of {$(#)} was
not used when we derived the moment condition A4. If the input
sequence is m-dependent existence of second-order moments
(implied by A2) is sufficient to prove boundedness of the second
term on the right-hand side of (20).

D. Extension to Weaker Mixing and Covariance
Conditions

The requirement that the sequence of regression vectors {e()}
should be white (as stated in conditions of Lemma 3) is, quite
clearly, very inconvenient. Note, for example, that it is never
met for FIR models (2), even if the input sequence is white!
(since successive regression vectors share r — 1 components).

Basically, the results of Lemma 3 can be extended in two
different directions: to weaker mixing (asymptotic independence)
conditions and weaker covariance (rate of decorrelation) condi-
tions.

As far as mixing is concerned relaxation of i.i.d. assumption
to m-dependence (consistent e.g., with (2) under white noise
excitation) is straightforward. Suppose that {¢(#)} is an identi-
cally distributed and m-dependent sequence obeying AS. Then
{@(tm)} is an i.i.d. sequence and hence, for suitably large N

E[R7Y(1)] = E[(; o(t — im)o™(t - im))%] < .

Extension to weaker mixing conditions is also possible. In
particular, denote by Z° the sigma algebra generated by {o(i);
t < i=<s}. If the following mixing (asymptotic independence)
condition is fulfilled:

|P(4B) — P(A)P(B)| = ¥(n)P(A)P(B)

for any events A € %', and Be £, where n =5 — t and
¥(n) — 0 for n— oo the sequence {¢(2)} is called super uni-
formly mixing or ¥ mixing. All previous results can be easily
extended to such sequences.

From the practical point of view, much more interesting
results can be obtained by means of relaxing covariance condi-
tions imposed on {$(#)}. Actually, consider the case where ¢(?)
is the output of the state space model

x(t + 1) = Ax(t) + By(t)
o(t) = Cx(t) + Dn(1).

Then we have the following result.
Theorem 1: Lemma 3 holds if the model (29) is output
reachable and {n(#)} is an i.i.d. sequence obeying AS.
Outline of proof:
The proof is based on the following basic inequality valid for
output reachable state space models (see e.g., [17], [18])

(29)

| £ 61671 -9)

N+v-1

T

a(e - a7 (¢ - i)], vt (30)
I=
where 7() = [97(2),"**, 97(t — w7, v is the McMillan de-
gree of the system (29) and ¢ > 0.
The following example will illustrate the main steps in the
proof of Theorem 1.
Example: Let {u(t)} be generated from the following
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AR( p) model:
u(t) + au(t — 1) + -+ +a,u(t - p) = €(t)

where {e(?)} is an i.i.d. sequence satisfying P( le()] =x) =<
vx?%, for some y >0, & > 0. Then Lemma 3 also holds with
o) = [u(t = 1)+, utt — )"

Proof: Let us denote

A(g7 ") =ap+ag™' + 0 +a,q?

where g, =1 and g~! is the backwards shift operator, and
define

N-p-1

V() = Ao, R(D= X ¥ iTle= ).

Then by the Schwarz inequality it is seen that for any vector
aeR’

= N{“l[fj a;0T¢(t - i—j)}
i=0 Jj=0

S(Zpia% (‘f ol [a’¢(t—f—f)]2)
Jj=0 j=0 i=0

Consequently, by the arbitrariness of a

Hence, the desired result follows by observing that
det R((1)
-1
e[ RA(D)]}

and that ¢(f) = [e(f — 1),--+, e(t — r)], is an r-dependent
sequence. ]

Theorem 1 extends the invertibility result to a very general
class of stationary signals with rational spectra. Extension to a
limited class of nonstationary signals is also possible using the
same approach (cf. [17]).

Remark: Generally speaking, the higher is dimension r of
regression vector and the weaker is mixing condition imposed on
{#(#)}, the larger should be N in order to guarantee sufficiently
large value of L in (23). We note, however, that the lower
bound on L resulting from our analysis is a deterministic
quantity obtained without referring to any asymptotic argu-
ments.

Nuin| Ri(1)] =

V. RESULTS FOR SLIDING WINDOW LS
EstiMATORS — THE GAUSSIAN CASE

A. Tighter Bounds for R~ (1)

Much stronger results can be obtained if we assume that the
sequence {¢(#)} is normally distributed. Assume, for conve-
nience, that N = mK. Then we have the following:

Lemma 4: If the sequence {¢(f)} is stationary, Gaussian,

203
and m-dependent then
Ry! Ry!
— <E[R°'(N)]s—7F—— vt. (31
N = [ ()] N-m(r+1) (31)
_Proof: Observe that
m
R() = 3 6,(1) (32)
Jj= ]

where
K-1
Gi(t) =X o(t—Jj—im+1)¢7(t—j—im+1).
i=0

Since the sequences {¢(t — j — im + 1), i = 0} are i.i.d.
and Gaussian, the matrices Gj(t) are Wishart-distributed with X

degrees of freedom
G,(t) ~ W(KRy, K).

(33)

Hence, using properties of the inverted Wishart distribution [16]

E[G;'(1)] = R 34
[ J (t)] - K-r—-1 * ( )
Using the inequality (see Appendix I)
m -1 1 m
(£o0) =m(form) e
j=1 m=j=1

and combining it with (32)-(34) one obtains

E[R_l(t)] = ;U(—R_a—r‘_—l')‘

which is nothing but the upper bound in (31). The lower bound
in (31) stems from the fact that (see Appendix II)

E[R7Y(0)] = [E[R(D)]] "'

(the matrix variant of the Jensen inequality for inverses).

(36)

B. Evaluation of Parameter Tracking Bounds

Several conclusions can be drawn from (31) for the sliding
window LS estimators. First, observe that for the rectangular
window

- 1
R(t) = — R(¢
(1) = % R()
and hence using (31) and (36) one gets

m(r+1)
0<E[A(t)] = ———= R;'!
[()] N-m(r+1)°
Consequently, for N > m(r + 1) we have (cf. Lemma 1)

Emao-aors% (37)

where b—we emphasise this fact strongly—is a deterministic
constant not depending on N and t. We will look for the bound
on the mean-square parameter tracking error in the form

E[|la(1) - «() ] = D(N).
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First, we consider the case of time-invariant parameters: o(f) =
ay. One can show that under A1-A3 @&(¢) is an unbiased
estimate of co and

cov[&(1)] = poE[R™'(1)].
Consequently
D,
D(N) = = (39)
which parallels (9), the result derived by Macchi and Eweda for
LMS filters.

The counterpart of (10) can be derived using the inequality
(16). Note that

a 2 Q - 2
E[| &) - «(0)]] = E[1 &) - &[]
+E[|a(0) - ()] (9)
where {a(?)} denotes the average path of parameter estimates

&(1) = E[&(1)]| A(1)]

e 1 N-1
= ¥ w(elt=i)=5 X alt =)

A1) = {a(r), a(t - 1), }

and observe that there is no cross-coupling term on the right-hand
side of (39) due to orthogonality of &(#) — @(¢) and a(r) —
a(t).

Assuming that the true parameter trajectory can be modelled
as random walk in sufficiently long but finite time interval
T=[4,04] L-4 > N, one can show that (teT):
E[| &(t) — &@0)||1%1 = 0(1), El||a(n) - «(t)||*] = O(N) re-
sulting in

D,
D(N) = — + D,N. (40)
N
We note however, that (40) is—unlike (10)—a Jlocal result,
valid for finite, though possibly very long time intervals. Exten-
sion to infinite-time intervals is forbidden under A3 (only the

mean-square bounded parameter trajectories can be analyzed in
the present framework).

C. Extension to the Case of Nonuniform Weighting and
Non-Gaussian Regressors

By applying the central limit theorem to the properly normal-
ized elements of the matrix R(¢) — R, and using the appropri-
ate truncation technique one can show that

e[l - &) =of+)

in the case of nonuniform weighting and non-Gaussian regres-
sors. This, however, is based on asymptotic theory we were
trying to avoid so far. Hence, it holds only as long as ¢+ = oo.

A more conservative but nonasymptotic bound can be ob-
tained using the Schwartz inequality. Observe that

w {E[A(t)]} = {E[R-}(1)(Ro - R(1))R5']}
= E[tr {a,(1) a,(1)}]

where
A(t) = RF'R'(£),  Ay(¢) = Ro - R(2).
Let ||A(D)]|? = tr {A(f) AT(#)}. Using Schwartz inequality and

(36) one gets
1

0=t {E[a(n)]) = (E[||A,(z)||2])5(E[||A2(t)||2]5.

By a similar argument to that used in Section V-A
E[[]A(H)]|?] = 0(1). In the case of i.i.d. regressors

£l a0 = E[

2

> w(i[o(t - 1)o7t~ 1) - Ry

i=

=d Y wi(i)
i=0

where d = E[[ ¢()]|*] = (EL|| #(£)]|*1)*. More generally, one
can show that for m-dependent regressors E[||A,(1)|%] =
0(1/¢) and hence, combining all the results given previously
with (17) one gets

E[la() - &[] = = (1)

where ¢ is a deterministic constant not depending on ¢« and f.
Combining this with (39), a bound analogous to (40) (but
expressed in terms of ¢) can also be derived for an arbitrary
WLS estimator.

The bound (41) was derived for a system with time-varying
coefficients. If the system is time-invariant, i.e., a(?) = a,, the
problem is much easier to handle. Due to the mutual indepen-
dence of the processes {¢(#)} and {n(¢)}, implied by assump-
tion A2, one has

cov [a(1)]
= poE[R-‘(t)( i-wz(i)qb(t - i)oT(t - i))ﬁl(t)]

< 2 gl R(1)] (42)
K
where «x = 1/(max, w(t)) is the quantity usually called the
effective width of the window (effective number of observations).
One can easily show that for a sequence of windows of the same
shape but increasing width it holds « ou, i.e., both measures of
the window size differ merely by a constant multiplier.
According to (42), the fluctuations of WLS parameter esti-
mates E[|| &(t) — ap||%] = tr {cov [&(#)]} are, under station-
ary conditions, inversely proportional to the size of the applied
window which is a further generalization of (38).

VI. IMPORTANT SPECIAL CASE—EXPONENTIALLY
WEIGHED LS ESTIMATORS

Quite clearly, if the window used in the method of WLS is
strictly finite-length (i.e., if w(f) =0 V¢ > ty) our technical
assumption AS is practically unavoidable. This is also a limita-
tion of all results obtained using the concept of *‘inscribed’
window. Using a slightly different technique, we will show that
AS is not needed any more if exponential weighting is applied.
Rewrite the expression for the exponentially weighted LS esti-
mator in the form

&(r) = R™Y(1)S(1) (43)

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on December 29,2025 at 00:49:48 UTC from IEEE Xplore. Restrictions apply.



NIEDZWIECKI AND GUO: NONASYMPTOTIC RESULTS FOR WLS FILTERS

where now (0 < A < 1) as follows:

-~
{

1

R(t) = Y Ne(t — )oT(z - i),

-~ o~
1l
- O

S(t) = 2 Ny(t—i)o(t - i).

i=0

We note that (43) can be recursively updated using (5), (6)
(note: D(t) = R™(2) if the exact initialization is used, i.e., if
D(t,) is set to R~ (#,) for sufficiently large #;). Note also that

R(t) = NR(t - 1) + o(£)o7(2).

Exact initialization corresponds to taking R(0) = 0 in (44).
However, in practice, recursion (6) is started using D(0) = D,
> 0 which amounts to taking

R(0) >0

(44)

(45)

in (44) and which will play a crucial role in our analysis. We are
ready to prove the following lemma.

Lemma 5: Suppose that {¢(#)} is an i.i.d. sequence such that
E[¢()éT(1)] = Ry > 0. Then the condition (23) of Lemma 2 is
fulfilled and the number L in (23) can be made arbitrarily large
by increasing ¢ = (1 + N/(1 = N).

Proof: Note that R(f) = NR(t — r) + X™'Q(t) where
Q(t) = SiZoo(t — DT(t — i) and

det R(t) = det R’(¢) + det Q'(¢) (46)

where R(f) = XR(t - r), Q(t) = N"'Q(0).

We have
P(det R() < x) = P(det R(t) = x|det Q'() < x,)
-P(det Q'(#) < x,)
+P(det R() =< x|det Q'(#) = x,)
- P(det Q'(7) = x).

Using (46) and the fact that the matrices Q'(f) and R'(f) are
independent, we obtain P(det R(f) < x | det Q'(f) = x4) = 0
for all x < x,, and

P(det R(f) =< x|det Q'(7) < x,) =< P(det R'(¢) < x)

which results in

P(det R(t) s x) < P(det R'(t) < x)py  (47)
where
Py =P(det Q(t) < xo) = -)% (48)
and
Po = P(det Q1) < x) < 1 (49)

(since E[¢(1)97(1)] > 0).

We will use inductive reasoning. Suppose that our assertion is
true for R(t — r), i.e., P(det R(t — r) < x) < gx*.

Then VI < X

P(det R(1) <x) = P(X"det R(t - r) = x)

N = erz

205

and hence, according to (47) P(det R(¢) < x) < (ppn/X)x*
< gxL, i.e., our assertion is true for R(f) provided that A = X\
such that

In p,

In % (L+1)r2-r’
Since R(t) = NR(0), t = 1,---, r we get P(det R(t) < x) =
O<qgxl t=1,---,r for all x < xy=det(NR(0)) and arbi-
trarily large L. Our assertion is therefore true for any f.

Finally, note that arbitrarily large value of L can be guaran-
teed in (23) provided that the forgetting constant \ is sufficiently
close to 1. ]

Extension of Lemma 5 to y-mixing sequences (which includes
m-dependence as a special case) and weaker covariance condi-
tions is straightforward. Therefore, only assumptions Al1-A3
are needed to guarantee boundedness of the mean-square param-
eter tracking error if the method of exponential weighting is
used!

VII. STATISTICAL ROBUSTNESS

On the qualitative level the results obtained in previous sec-
tions raise several important issues which can be easily over-
looked if a2 mechanical, ‘‘bookkeeping’’ approach towards cer-
tain mathematical details is adopted.

First of all, one should realize that results of Section IV
indicate certain nonrobustness properties—as far as statistical
analysis of WLS filters is concerned—of strictly finite-length
windows. Assumption AS admits a large class of continuous
distributions but rules out all discrete onmes. Is it a serious
limitation? In a way it is. In the world of computers and digital
processing, random variables with continuous distributions be-
long in mathematical ‘‘science fiction.”” Any form of quantiza-
tion turns a continuous random variable into a discrete one.
Hence, results of Section IV are not robust against quantization.
The situation is essentially different if exponential weighting is
applied. Let

Pmin = P(det Q(2) = 0).

If p,;, = O one can make p,, given by (49), arbitrarily small
by decreasing x,. This corresponds to the case where there is no
discrete or singular component in F(¢). Presence of such
components, however, does not destroy invertibility of R(¢)
which was the case for finite length windows. Instead, it sets a
lower bound on the forgetting constant A

In Prin

1 fS ———
" eia = (LT D)2 -

i.e., the minimum equivalent width of the windows for which
invertibility is guaranteed.

APPENDIX |
DERIVATION OF (35)

The inequality can be easily proved by induction using the
following proposition:

Proposition: For any two positive-definite matrices A and
B and any integer m

mA~'+ B "= (m+1)’(A+B)".

Proof: The proof is straightforward in the scalar case. The
multivariate case can be converted into the scalar one by per-
forming the simultaneous diagonalization of matrices 4 and B
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(note: there exists a real matrix Q and a positive-diagonal matrix
A such that: QTAQ = A and Q7BQ = I). O

Suppose that (35) holds for a certain m. Then, using the result
of the aforementioned proposition, one gets

m+1

PEAT

S G7(1) + Gaha()

v

mZ(é':1 G,-(t)) B + Giy(1)

v

m+ 7% 60|

L}

i.e., (35) is also true for m + 1. Since it is also true for m = 1
(cf. proposition above) it remains valid for any m.

APPENDIX II
ProOF OF (36)

Observe that for Ry = E[R(1)), R(1) = R(t)/N: E[R™ (1)
- R3' = ER™'(t) - RZHRUYR™ (1) - RgH1 = 0
which is nothing but (36).
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Technical Notes and Correspondence

Proportional-Plus-Multiintegral Stabilizing
Compensators for a Class of MIMO
Feedback Systems with Infinite-
Dimensional Plants

Y.-P. Harn and E. Polak

Abstract—A method is presented for designing proportional-plus-
multiintegral stabilizing compensators for a class of feedback systems
with exponentially stable infinite-dimensional plants. These compen-
sators enable the feedback system to asymptotically track polynomial
inputs and suppress polynomial disturbances of corresponding order.

I. INTRODUCTION

Exponential stability, asymptotic tracking, and disturbance rejec-
tion are among the most fundamental requirements in control system
design. Not surprisingly, over the years, these requirements have
received a considerable amount of attention in the literature. In [5]
and [6], Davison presented a characterization of a minimal-order
robust error-driven servocompensator which achieves asymptotic
tracking and disturbance rejection for finite-dimensional systems.
The result was extended to distributed parameter systems in [1], [7]
in which, because of the coprime factorization used to obtain it, the
compensator turns out to be infinite-dimensional. Since, in practice,
one needs to construct a finite-dimensional compensator, the ap-
proach in [1] has to be supplemented with cumbersome approxima-
tion and order reduction techniques. In [16], [17], [12]-[14], and
[10], it is shown that feedback systems with exponentially stable
infinite-dimensional plants can be stabilized and regulated by a
multivariable proportional-plus-integral compensator of the follow-
ing form:

(1.1)

where K and K , are real matrices whose dimensions are related to
the input and output dimensions of the plant, k* is some real
positive number, and s is the Laplace parameter.

In this note, we present a method for designing finite-dimensional
proportional-plus-multiintegral stabilizing compensators for a
class of feedback systems with exponentially stable infinite-dimen-
sional plants. The resulting feedback systems are internally stable
and track, asymptotically, polynomial inputs and suppress, asymp-
totically, polynomial disturbances. Our analysis makes use of a
characteristic function [8] for a class of feedback systems with
infinite-dimensional plants, and of the Rouche theorem in complex
variable theory [3]. The resulting proofs are quite straightforward.

When used in design, the effectiveness of the construction proce-
dure presented in this note can be increased considerably by combin-
ing it with the computational stability criterion presented in [8] and
semiinfinite optimization [18]. In this manner, the coefficient matri-
ces of a compensator designed by our method can be further

1
~kK;+ K, 0<kskt
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The feedback system S(P, K).

Fig. 1.

modified to ensure better feedback-system performance with respect
to various performance requirements, without destroying stability,
tracking, and disturbance rejection properties. .

In Section II, we will introduce the descriptions of the plants that
we can deal with and present some preliminary results. The main
results will be established in Section HI. Finally, we will give a
numerical design example in Section IV.

II. PRELIMINARY RESULTS

Consider the feedback system S(P, K) shown in Fig. 1, where
the nrinput and 7 -output plant is described by a linear time-in-
variant differential equation in a reflexive Banach space Z

%,(t) = A,x,(1) + B,ey(t); y2(t) = C,x,(t) + D,ey(t)
(2.1)

where x,(t) € Z, e,() € R™, y,(1) €R", for { = 0.

Assumption 2.1: The operators B,: R" = Z, C,: Z— R",
and D_: R™ — R"° are assumed to be bounded. The operator A,
from ZtwZ , may be an unbounded operator with domain dense in
Z, which generates a strongly continuous (C,) semigroup,
{ € Apt}r =20 !

We denote the domain and the range of A, by D(A,) and
R(A)), respectively. We define the transfer function of the plant
G,(s) to be C,(sl - AP)"IBD + D,, Vsep(A,), and we will
denote its elements by g;; J(s). By [11, Theorem III 6.7], G,(s) is
analytic on p(A ).

Definition 2.1: We say that a semigroup {T(#)},. is exponen-
tially stable in a Banach space if there exist y € (0, ) and o >0
such that || T(£)}| < ye *, vt =0. |

Assumption 2.2: The operator A, generates an exponentially
stable semigroup {e“#'}, o, with ag > 0 and M, < oo such that

le“4p!| ; < Mye™ 0",  vt=0. (2.2)
]
Assumption 2.3: The matrix G,(0) has maximum rank. | |
For any « =0, we define the stability region D_, £ {se
© |Re(s) < —a}, with complement U_, 2 [5e@|Re(s) = —a},
whose boundary and interior will be denoted by dU_, £ {se
©|Re(s) = —o} and U?, 2 {se@|Re(s) > —a}, respectively.
Finally, we define 6°2 {s€@|Re(s) < 0}, ©,2 {se©|Re(s)
= 0}, and 88,2 {se@|Re(s) = 0}.

Definition 2.2: We will say that a function g: @ — © converges
at infinity in a domain D C @, if there exists a finite complex
number ¢ such that lim,_ sup g >, sep|&(s)—c| =0, and
we will denote by lim || o, sep £(5) this complex number c. We
will say that a matrix function G: © — ©"™*" converges at infinity
in a domain D if each of its elements converges at infinity in D. W

' When the space Z is obtained via the extension of the domain of
definition of an infinitesimal generator A ,, of a C, semigroup, then model
(2.1) can represent a flexible beam with point actuators and sensors [4], [8],

9]
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Under Assumption 2.2, Uﬂao C p(A)) [15, p. 11] and hence,

G,(s) is analytlc on U2, . It follows from [19] that lim |\ o ge
s> —ag0p(5) = There ore, it is easy to show that the following
proposition is true

Proposition 2.1: Suppose that Assumption 2.2 holds. Then there

exists M < oo such that each element of G,(s) satisfies
ghi(s)| =M, vseU°,,,
=1,2,""

(2.3)

We assume that we are required to design a minimal finite-di-
mensional proportional-plus-integral compensator, described by a
differential equation of the following form:

x(1) = Acx (1) + Beey (1) »,(t) = Cex (1) + Deey(¢)
(2.4)

where x (1) eR", e()eR", y(H)eR™,and A, B,, C,, and
D, are matrices of appropriate dimension, with all the eigenvalues
of A, equal to zero, for mtegral action. Since o(A,) = {0}, the
compensator transfer function is G(s) = C(sI — Ac) 'B.+ D,
= STLoF;/s/, where the F; €R"*"0 and m depends on A To
ensure well-posedness of the closed-loop system, we assume that
det(I,, + D.D,) # 0.

We deﬁne the product space H by H = Z X R"¢. Since e, = u,
— y, and e, = y; + u,, we obtain the following state equations for
the closed-loop system:

Mgy j=1,2,+, 1,

Xp _ 4% Uy
(xc)(t) A TORYI A TORCES
e X u
(el)(t) =C(x’:)(t)+D(u;)(t) (2.5)
where
[ B,D(1,,+D,D,)""
-8,(1,,+D,D,)"'C,
B,D(1,,+D,D)""  B,(I,+D.D,)"
B(I, +D,D,)"" -B.(I, +D,D.)"'D,
(2.6b)
. -(1,,+D,0,)"'c, ~-(I,,+D,D.)”'D,C.
-p,(1,,+D,0)"'c, (I,+D.D,) 'C,
I, +D,D,)"" 1,,+D,D,) 'D
D= ( no b ) B ( ) l P (26C)
D.(1,,+ D,D.) (1,,+ D.D,)”

The domain D(A) = D(A,) X R" C H; the operators B, C,
and D are easily seen to be bounded. It follows from [15, p. 76]
that because, with the exception of A ,, all the operators in the
matrix A are bounded, and because diag(A4,, 0) generates a
Cy- semlgroup, the operator A also generates a C,-semigroup
{e"}»o0-

Let x = [x,, xJ]€H. Then the formula x(?)= edixy +
Joe - ”Bu(f) dr defines a mild solution of (2.5a) [15]. We
therefore define the exponential stability of the feedback system
S(P, K) in terms of the semigroup {e*'},. ,.

Definition 2.3: The feedback system S(P K ) is said to be
exponentially stable if the semigroup {e”},5, is exponentially
stable. | |

The following result relating the exponential stability to the

C
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spectrum of the operator A is a special case of Proposition 2.1 in
[8].

Proposition 2.2: Suppose that Assumptions 2.1-2.3 hold, then
the feedback system is exponentially stable if and only if &, is
contained in p( A). ]

We define the characteristic function x(s) of the system S(P,
K) by

x(s) = det (s, — A.)det (I, + G.(5)G,(s))
= s"det (1, + G.(5)G,(s))
= s"edet (I, + G,(s)G.(5))- (2.7)

Next, for any function f: @ — ©, we define Z(f) e {se@]| f(s)
= 0} to be its set of zeros. The following proposition follows
directly from Theorem 3.1 in [8].

Proposition 2.3: the system S(P, K) is exponentially stable if
and only if Z(x) C @°. |

I1I. STABILIZING PROPORTIONAL-PLUS-MULTIINTEGRAL
COMPENSATORS

We will establish the existence of a proportional-plus-multiin-
tegral stabilizing compensator in three steps. First, we will show
that we can construct a proportional stabilizing compensator. Then
we will show that we can construct an integral stabilizing compen-
sator. Finally, we will combine and extend these two results to show
that one can construct proportional-plus-multiintegral stabilizing
compensators of arbitrary order. As a corollary to the results in [1],
we will obtain the fact that these compensators result in asymptotic
error free tracking of polynomial inputs and in asymptotic polyno-
mial output-disturbance suppression.

In the proofs to follow, we will make use of the Rouche theorem,
stated as follows [3].

The Rouch Theorem: Let f, g: @ — © be functions which are

-1
B,(1, + D.D, C
P P( ni c p) < (2.62)

A, - B,(I,, +D,D,)”'D,C,

analytic inside and on a positively oriented simple closed contour C
in the complex plane. If | f(s)| > | g(s)| at each point 5 on C,
then the functions f(s) and f(s) + g(s) have the same number of
zeros, counting multiplicities, inside C. |
Theorem 3.1: Consider the feedback system S(P, K) in Fig. 1
and suppose that A, = 0, B, =0, C, = 0, and n_ = 0. Then there
exists a matrix D, # O such that the closed-loop system is exponen-
tially stable.
Proof: By Proposition 2.3, the system S(P, K) is exponen-
tially stable if and only if Z[det(I,,i + D,G,(s)] C ©°. Suppose
that D, = [d"/]. Then

det (I, + D.G,(s)) = det

no
[Ai.j + Z di‘kg:'j(s)]
k=1 i

d" kg !(s) + o

21+ H(s) (3.1)

where A" /=1 when i=j and A" /=0 otherwise, and H(s)
represents the first and higher order terms in d"J and g' i) It
follows from Proposition 2.1 that there exists M >0 such that
[g”(s)| <M, for all sedU_,, where 0 < a < a;. It is clear
t.hat we can always choose a matrix D, # 0, with sufficiently small
components d” “/ to ensure that |H(s)| < 1, for all sedlU_

Setting C = dU_,, f(s) =1, and g(s) = H(s), we obtain from
the Rouche theorem that det(I + D,G,(s)) = 1 + H(s) has the
same number of zeros in U2, as f(+), which is zero. Therefore,

nMg_

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on December 29,2025 at 00:49:48 UTC from IEEE Xplore. Restrictions apply.



