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摘    要   随着信息技术的快速发展, 特别是计算能力和数据收集能力的持续提升, 利用大参数模型对复杂场景进行建模已

成为显著的发展趋势. 然而, 关于一般反馈输入下此类模型的学习问题, 在控制系统领域却鲜有研究. 鉴于此, 针对饱和观

测下的大回归模型, 设计一种在线扩展型自适应学习算法. 该算法可随着新数据的增加自动更新算法维数和计算结果, 在无

需存储历史数据的前提下, 实现学习结果的动态调整与输出的实时预测. 具体而言, 在一般的非持续激励数据条件下证明了

所提出算法的收敛性, 该结果可以适用于一般反馈控制系统. 此外, 在无需任何数据激励条件的情况下, 证明了所提出算法

的预测“遗憾”具有良好的收敛性. 最后, 基于真实的故意伤害罪判决数据开展司法量刑预测实验, 检验了所提出算法的计

算效率和预测精度.
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随着信息技术的迅猛发展, 特别是计算能力和 数据收集能力的显著提升, 大参数模型在众多领域

得到广泛应用, 尤其是近几年发展迅猛的大语言模

型 [1−2]. 此类模型通常包含大量乃至无穷的未知参

数, 能够更加有效地刻画复杂系统的动态特性和潜

在规律. 本文将考虑一类具体的大参数模型称为大

回归模型. 这类模型能够描述现实世界中许多无穷

阶系统, 将非参数问题转化为参数化问题来处理,
将某些非凸优化问题转化为凸优化问题来研究, 甚
至还能处理某些传统框架下难以应对的有限阶系统

问题. 因此, 对大回归模型进行相关算法设计与理

论研究具有重要意义.
特别地, 在众多复杂动力系统中, 数据的固有

属性以及观测器的测量局限常常影响输出观测的完
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整性, 饱和观测数据在实际应用中普遍存在. 此类

观测数据往往只能反映输出信号的部分信息: 当输

出位于某一可观测区间内时, 可被精确测量, 而一

旦超出该区间, 观测值则会“饱和”, 即被限制在区

间边界. 饱和输出观测数据的存在使得即便对于经

典的有限阶线性回归系统, 包含输出的回归向量也

无法完整获取. 因此, 传统的系统辨识方法难以适

用, 而有必要发展适用于此类情形的大回归模型辨

识方法.
进一步, 尽管机器学习等极大推动了自动化与

智能化进程, 目前相关理论与技术仍面临诸多困难

与挑战: 首先, 传统的机器学习计算方法与理论主

要基于统计学范式, 通常要求输入数据满足独立同

分布 (Independent and identically distributed,
i.i.d.)或平稳遍历等理想化假设, 这些假设在可进

行模拟实验设计的理想环境中或许是可行的, 但在

许多真实世界的应用场景中却难以验证或满足. 尤
其是在带有反馈回路的复杂动态系统中, 输入数据

的性质通常由复杂的非线性动力学方程所决定, 其
远不满足独立性和平稳性等经典统计学假设[3−5]. 其
次, 在实际机器学习任务中, 海量数据随时间不断

累积, 为计算设备带来极大的存储压力. 尤其是针

对大规模的学习任务, 庞大的存储需求导致数据存

储成本急剧上升, 可能会降低整个系统的计算效率

与响应速度.
因此, 在饱和输出观测和更一般输入数据条件

下建立大回归模型的学习方法和理论, 并在不事先

存储所有数据的前提下实现自适应学习的目的, 成
为重要的研究方向.

数据是信息的载体, 是经验的具体体现, 也是

建模与学习的基础. 如前所述, 饱和观测数据普遍

存在, 其广泛存在于人工智能[6−8]、经济学[9−11]、生物

医学[12−13] 以及社会系统[14−15] 等各个应用领域. 例如,
在机器学习中的线性整流函数 (Rectified linear
unit, ReLU)神经元模型中, 神经元激活函数值在

负区间内将被置零, 难以观测到精确信息[6−8]; 在经

济学中的 Tobit模型中, 消费者的购买能力在未发

生购买行为时无法被完整观测[9−11]; 在生物医学中

的生存分析问题中, 个体的生存时间若超出跟踪区

间则无法被精确测量[12−13]. 近年来, 随着我国智慧法

院工程的持续推进以及智能审判辅助系统的深入应

用, 饱和观测数据成为智能司法量刑预测中建模与

分析的重要对象. 由于我国法律体系中对刑期判决

存在明确的法定刑区间约束, 量刑数据表现出典型

的饱和观测特性: 对于根据量刑情节调节后低于或

超过相应法定刑区间的案件, 其宣告刑应限定在法

定刑区间内[14]. 在本文的实验部分将进一步探讨所

提出模型算法在司法量刑计算中的具体应用.

尽管饱和观测数据的存在使原本结构简单的线

性系统转变为更为复杂的非线性系统, 但在过去十

余年中, 针对饱和观测数据的建模与估计问题, 系
统辨识领域仍涌现出大量研究成果[16−24].

文献 [16]针对二值观测情形提出基于经验测

度的参数辨识方法, 并在输入信号满足周期性的条

件下建立算法的强一致性理论结果. 文献 [17−19]
提出一类基于一阶梯度信息的自适应辨识算法, 并
在某些强持续激励 (Persistent excitation, PE)条
件下对其收敛性等性质进行系统分析. 文献 [20]
针对具有饱和观测特性的逻辑回归模型, 设计自适

应牛顿型辨识算法, 并在 i.i.d. 数据假设下给出其

收敛性结论. 近年来, 文献 [21]针对二值观测情形,
提出拟牛顿型自适应辨识算法, 并结合李雅普诺夫

函数与鞅方法, 在一般的非持续激励 (Non-persist-
ent excitation, Non-PE)[25] 条件下证明了参数估计

的强一致性. 随后, 文献 [22]针对饱和观测情形, 提
出两阶段拟牛顿型递推算法, 在 Non-PE条件下对

算法的渐近与非渐近性能进行理论分析, 同时将该

算法应用于司法量刑计算中[14]. 此外, 针对无限阶

脉冲响应 (Infinite impulse response, IIR)系统, 文
献 [23]基于扩展截尾的随机逼近算法 (Stochastic
approximation algorithms with expanding trunca-
tions, SAAWET)对随机维纳系统中的未知参数进

行辨识, 但需假设输入信号服从 i.i.d. 高斯分布. 文
献 [24]则针对二值观测场景, 设计一种拟牛顿型辨

识算法, 并在 Non-PE条件下建立其收敛性理论.

ARX(∞)

可以看出, 对于饱和观测下的学习和预测问题,
面向一般反馈输入下大回归模型的相关研究仍然较

少, 且即使是针对结构较为简单的有限脉冲响应系

统, 现有理论结果也常常依赖于 PE条件, 甚至要

求输入数据满足独立性或周期性等理想化假设. 事
实上, 针对完全观测情形下的大回归模型, 系统辨

识领域已取得诸多重要进展[26−30]. 文献 [26]采用极

大似然算法对未知参数进行估计, 但此时输入数据

仍需满足平稳性假设. 文献 [29]通过建立双指标鞅

的极限理论, 研究  模型的参数估计问题,
并首次针对该模型在适用于一般反馈输入的 Non-
PE条件下建立最小二乘算法的强一致性. 随后, 文
献 [30]对文献 [29]中的双指标鞅估计理论进行推

广和改进, 并考虑了参数与阶数均未知的非平稳

ARMAX (Autoregressive moving average with
extra input)模型的估计问题.

近期, 文献 [31]基于文献 [29−30]的理论和方

法, 针对饱和观测下的大回归模型提出一种拟牛顿

型辨识算法, 并在 Non-PE条件下对该算法的辨识

与预测性能进行理论分析. 然而, 该算法缺乏自适

应机制, 在处理大规模高维数据时可能面临存储需
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求大、计算效率低等一系列挑战. 因此, 为克服上述

研究中 (如文献 [29−31])算法的存储与计算瓶颈,
本文针对饱和观测条件下的大回归模型, 设计一种

高效的自适应学习算法, 并在适用于反馈输入信号

的一般数据条件下, 建立算法的自适应辨识与预测

理论. 本文的主要贡献如下:
1)设计一种在线扩展型自适应学习算法高效

估计饱和观测下的大回归模型的未知参数. 该算法

不仅能够随着新数据的增加自动更新算法维数, 且
适应动态流数据环境, 在无需存储历史数据的前提

下实现在线学习与预测, 在时间和空间复杂度上显

著优于现有相关方法, 适用于大规模高维数据的快

速响应与实时处理.
2)在一般的非持续激励数据条件下, 利用随机

李雅普诺夫函数方法及鞅估计理论, 得到所提出算

法的收敛性和收敛速度. 该结果无需输入数据满足

i.i.d. 或平稳遍历性等严苛假设, 且适用于随机反馈

控制系统. 此外, 在无需任何数据激励的条件下, 通
过对输出与观测的预测“遗憾”的收敛性证明, 验证

了所设计的自适应预测器具备良好性能.
3)基于真实的故意伤害罪判决数据, 开展司法

量刑预测实验, 通过分析预测精度随参数规模递增

的变化趋势, 为量刑预测任务中的较优参量选取提

供有效参考. 此外, 通过与文献 [31]中算法的对比

实验, 直观展示了本文算法在保证精准量刑预测的

同时显著降低存储开销并提升运算效率.
本文的结构安排如下: 第 1节介绍饱和观测下

大回归模型的具体形式, 并引入本文所需的基本符

号与假设条件; 第 2节提出一种自适应投影学习算

法, 用于估计模型中的未知参数; 第 3节给出本文

主要的理论结果; 第 4节给出相关结果的详细证明;
第 5节基于实际司法判决数据开展量刑预测实验,
验证所提出算法的预测性能与计算效率; 第 6节对

全文进行总结, 并就未来的研究方向进行展望.

 1　数学模型

 1.1　饱和观测下的大回归模型

考虑下列饱和观测下具有无穷参量的随机回归

模型:

yk+1 =

∞∑
i=1

biuk, i + vk+1, k ≥ 0 (1)

zk+1 = Sk(yk+1) =


Lk, yk+1 < lk

yk+1, lk ≤ yk+1 ≤ nk

Nk, yk+1 > nk

(2)

uk, i ∈ R yk ∈ R zk ∈ R vk ∈ R

k < 0, vk = 0 uk, i = 0

1 ≤ i <∞ Sk(·)
{lk, nk, Lk, Nk}

bi ∈ R
∑∞

i=1 |bi| <∞

其中,  ,  ,   和  分别表示

系统的输入、输出、输出观测以及随机噪声. 不失一

般性, 假设对于任意的 ,   对所

有的  均成立.   为已知的饱和观测函

数, 且  为已知的随机序列. 未知参

数  满足 .

uk, i uk−i+1

注 1. 模型 (1)在参数辨识中具有重要意义[31].
一方面, 当式 (1)中的  取为  时, 模型退

化为饱和观测下的 IIR模型, 其在传统包含输出的

有限维回归向量无法完整获取的情况下, 依然能够

进行有效的估计与预测; 另一方面, 该模型可视为

一个内层参数经过预训练固定的单隐层无限宽度神

经网络. 此外, 这类模型不仅能够刻画现实世界中

的诸多无穷阶系统, 还可将某些非凸优化问题转化

为凸优化问题进行研究, 例如第 5节所探讨的司法

量刑问题.

Lk = lk = 0

Nk = nk = ∞ Sk(·)
Lk = lk = nk = 0 Nk = 1

Sk(·) Lk =

lk = −∞ Nk = nk = +∞

注 2. 饱和观测下的大回归模型中定义的饱和

观测值在实际中具有广泛应用[22]. 当  且

 时,   退化为机器学习中常见的

ReLU激活函数; 当  且  时,
 退化为分类任务中常用的二值函数[21]; 当 

 且  时, 对应于经典的完全

输出观测情形[32].
此外, 如果引入未知参数向量

Θ = [b1, b2, b3, · · · ]T ∈ R∞ (3)

以及相应的回归向量

Φk = [uk, 1, uk, 2, uk, 3, · · · ]T ∈ R∞ (4)

zk则式 (2)中的  可简洁地表示为

zk+1 = Sk(Θ
TΦk + vk+1) (5)

本文的主要目标是在一般的输入数据条件下,
提出高效的自适应学习算法, 以估计饱和观测下的

大回归模型中的未知参数, 并设计精准的自适应预

测器对模型输出或观测进行预测, 同时建立相应的

理论. 为此, 首先引入一些基本的符号和假设.

 1.2　符号与假设

∥ · ∥
x = (x1, x2, x3, · · · )T

lα ∥x∥α = {
∑∞

i=1 |xi|α}
1
α α = 1, 2

λmax{X} λmin{X} {an}, {bn}
bn > 0 an = o(bn) n→ ∞

an/bn → 0 an = O(bn) C > 0

n > 0 |an|/bn ≤ C

在本文中, 记  表示向量或矩阵的欧几里得

范数. 对于任意无限维向量 ,

其   范数定义为  ,  .

对称矩阵 X的最大特征值和最小特征值分别记为

 和 . 此外, 设  为两个实

数序列, 且  ,   表示当   时有

;   则表示存在常数 , 使
得对于所有  , 有  ; 符号 a.s. (Al-
most surely)表示在概率意义下几乎处处成立.
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{Fk}
lk, nk, Lk, Nk Fk

假设 1. 令  为一非降的 σ-代数序列. 饱和

函数 (2) 中的已知量   均适应于  

且满足

lk − c ≤ Lk ≤ lk ≤ nk ≤ Nk ≤ nk + c, a.s. (6)

其中, c为一非负有界的随机变量.

Sk(·)
实际上, 假设 1是一种十分自然的设定, 用以

保证饱和函数  的单调非降性.
k > 0 vk ∈ Fk假设 2. 对于任意的  , 随机噪声  

为鞅差序列, 且满足

sup
k≥0

E
[
|vk+1|4|Fk

]
<∞, a.s. (7)

vk+1 Fk

Gk(x) = E[Sk(x+ vk+1)|Fk]

G′
k(x)

此外,   在  条件下的条件概率密度函数

有界. 条件期望函数  可

微, 且其导数  满足

0 < inf
|x|≤M, k≥0

G′
k(x) ≤ sup

|x|≤M, k≤0

G′
k(x) <∞ (8)

M > 0其中,   为任一有界常数.
vk+1 Fk

fk(·) Fk(·)
Gk(x) G′

k(x)

注 3. 记噪声  在  条件下的条件概率密

度函数和条件分布函数分别为  和 , 则假

设 2中的函数  及其导数  的具体表达式

如下:

Gk(x) =

∫ nk

lk

tfk(t− x)dt+ LkFk(lk − x) +

Nk[1− Fk(nk − x)] (9)

G′
k(x) = Fk(nk − x)− Fk(lk − x) +

(lk − Lk)fk(lk − x) +

(Nk − nk)fk(nk − x)

(10)

k ≥ 1 uk, i Fk

i ≥ 0 M > 0

假设 3. 对任意 , 输入  适应于  对

任意  均成立, 且存在常数 , 使得

sup
0≤i, k<∞

|uk, i| < M <∞, a.s. (11)

{Mk, k ≥ 0}
k ≥ 0

由假设 3 可知, 存在正有界序列  

使得对任意的 , 有

sup
0≤i<∞

|uk, i| < Mk < M, a.s. (12)

此外, 为便于分析, 现引入以下将在下文中多

次使用的记号:

θ̃k = θ(k)− θ̂k (13)

wk+1 = zk+1 −Gk(Φ
T
kΘ) (14)

ψk = Gk(Φ
T
kΘ)−Gk

(
ϕ̄Tk θ̂k−1

)
(15)

δk =

( ∞∑
i=pk−1+1

|bi|
)2

(16)

∆n =

n∑
k=1

δ
1
2

k (17)

εk = ΦT
kΘ− ϕ̄Tkθ(k − 1) (18)

θ(k) ϕ̄k = [uk, 1, · · · , uk, pk−1
]T

∈ Rpk−1 ϕk pk−1

其中,   由式 (19)定义, 
 表示下文式 (20)中向量   的前   个分

量组成的子向量.

 2　自适应学习算法

pk c1 ⌊log(k + e)⌋
≤ pk ≤ c2 ⌊(k + 1)α⌋ k ≥ 0 c1 >

0, c2 > 0 c1 α ∈ (0, 1)

⌊x⌋ k ≥ 0

令   为一非降正整数列, 满足  

 对任意  均成立, 其中 

 为常数且  充分大,  . 这里, 符号

 表示不超过 x的最大整数. 对任意的 , 记

θ(k) = [b1, · · · , bpk
]T ∈ Rpk (19)

且

ϕk = [uk, 1, · · · , uk, pk
]
T ∈ Rpk (20)

θ(k) θ̂k未知参数  在 k时刻的估计  记为

θ̂k = [b̂1, k, · · · , b̂pk, k]
T ∈ Rpk (21)

Dk ⊆ Rpk

受文献 [4]的启发, 首先构造如下的投影区域

:

Dk = {x ∈ Rpk : ∥x∥1 ≤ min{dk, αk}} (22)

dk =

√
hk

(
gk(0)
αk

)
+ 1 k > 0

gk(·) hk(·)

其中,  . 这里对于任意的 ,

 及其反函数  分别定义为

gk(t) = min

{
inf

|x|≤t, k≥0
G′

k(x),

1

2M2
kpk sup|x|≤t, k≥0G

′
k(x) + 1

}
, t ≥ 0

hk(t) = inf{s ≥ 0 : gk(s) = t}, 0 < t ≤ gk(0) {αk,

k ≥ 0} αk = o(kη), α0 ≥ 1

αk → ∞, k → ∞ η ∈ (0, 1/2)

及 . 
 为递增的正序列满足   且

, 其中,   为任取的常数.

βk

0 ψk ∞

G
′

k(x) dk

式 (22) 中对投影区域内向量范数的上界加以限

制, 旨在确保下文算法中所构造的自适应增益  趋

于  的速率以及式 (15) 中定义的  趋于  的速

率均在一定的可控范围内. 对于完全观测情形[29−30],
由于   为常数, 投影区域无须施加   的上界

限制.
Dk此处的投影区域  无需对未知参数所在的集

合进行有界的先验假设[4]. 事实上, 在实际应用中,
投影区域的构造可分为两种情况: 1)若参数向量的

上界未知, 则可采用式 (22)中的构造方式; 2)若已

知未知参数向量存在先验上界 L, 则投影区域的范

数上界可直接设置为 L, 即
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D̄k = {x ∈ Rpk : ∥x∥1 ≤ L} (23)

Dk D̄k对上述定义的区域  或  及任一已知的正

定矩阵 Q, 可以定义相关的投影算子为

ΠDk

Q {x} = arg min
ω∈Dk

∥x− ω∥Q, ∀x ∈ Rpk (24)

∥ · ∥Q其中, 范数  定义为

∥y∥Q = (yTQy)
1
2 , ∀y ∈ Rpk (25)

由投影算子的性质可知[33]

∥ΠDk

Q {x} −ΠDk

Q {y}∥Q ≤ ∥x− y∥Q, ∀x, y ∈ Rpk

(26)

pk

pk−1

pk

基于上述投影算子, 本文提出一种在线扩展型

自适应学习算法 (算法 1), 用于估计饱和观测下的

大回归模型中的未知参数, 并对模型的输出和观测

进行预测. 该算法的核心思想在于: 随着时刻 k的
推进, 待估参数向量的长度  可自动且缓慢地扩

展. 在这一设定下, 时刻 k的参数估计向量的前 

维可由前一时刻的估计值递推获得, 而新增维度的

参数估计值则自动初始化为零. 当  增长得足够缓

慢时, 算法便有充足的时间通过递推精确估计前段

的主要参数, 从而提升整体估计的稳定性与准确性.
算法的具体形式如式 (27) ~ (30)所示.

pk

注 4. 相比于文献 [31]中所提出的学习算法, 算
法 (27) ~ (30)的主要优势在于其高效的自适应性.
具体而言, 算法能够随着数据量的增加自动调整未

知参数向量的维数 , 在无需存储海量数据的前提

下实现对参数的在线更新与输出的实时预测. 这种

特性不仅有效减少了存储需求, 还极大提升了运算

效率, 尤其在处理大规模数据时, 能够显著提高算

法的响应速度和实时性能.

n

n

表 1展示了算法 (27) ~ (30)与文献 [31]中算

法的复杂度对比, 其中  表示数据量. 可以看出, 本
文提出的自适应学习算法 (算法 1)在时间复杂度和

空间复杂度方面均明显优于文献 [31]中的算法 (算
法 2). 随着数据规模  的增大, 算法 1在计算效率

和存储资源上的优势更加显著. 第 5节将通过基于

真实数据的实验进一步验证这一优势.

　  算法 1. 在线扩展型自适应学习算法

k = 1, 2, 3, · · ·对于正整数 , 递推计算:

θ̂k = I{pk=pk−1} ·Π
Dk

P−1
k

{
θ̂k−1 + akβkPk−1ϕk ·[

zk+1 −Gk

(
ϕ̄Tk θ̂k−1

)]}
+

I{pk>pk−1} ·Π
Dk

P−1
k

{
θ̂†k−1 + akβkP

†
k−1ϕk ·[

zk+1 −Gk

(
ϕ̄Tk θ̂k−1

)]}
(27)

Pk = I{pk=pk−1} ·
{
Pk−1 − akβ

2
kPk−1ϕkϕ

T
kPk−1

}
+

I{pk>pk−1} ·
{
P †
k−1 − akβ

2
kP

†
k−1ϕkϕ

T
kP

†
k−1

}
(28)

ak =
1

µk + β2
kϕ

T
k

[
I{pk=pk−1}Pk−1 + I{pk>pk−1}P

†
k−1

]
ϕk

(29)

βk =

min

{
g
k
,

1

2ḡkϕTk
[
I{pk=pk−1}Pk−1 + I{pk>pk−1}P

†
k−1

]
ϕk + 1

}
(30)

θ̂†k−1 ∈ Rpk [θ̂Tk−1, 0, · · · , 0]T

P †
k−1 ∈ Rpk×pk

[
Pk−1 0
0 Ipk−pk−1

]
g
k
= inf|x|≤Mkdk

G′
k(x) ḡk = sup|x|≤Mkdk

G′
k(x)

dk θ̂k ∈ Rpk

θ(k) θ̂0 ∈ Rp0

P0 = I ∈ Rp0×p0 ΠDk

P−1
k

(·)

P−1
k

µk ∈ Fk 1 ≤ infk≥0 µk ≤ supk≥0 µk <∞

其中, 式 (27)中的  取为 , 式

(27) ~ (30)中的  取为 . 此

外,  ,  , 其中

 在式 (22)中给出. 式 (27)中的  为在时刻 k对

 的自适应估计, 初始值  可任意选取, 初始矩阵

取为 . 式 (27)中的投影算子  由式

(24)定义, 其中  为正定矩阵, 具体证明详见第 4节. 式

(29) 中的  且满足 .

 
 

表 1    算法复杂度分析对比

Table 1    Comparison of algorithm complexity analysis

维度 算法 1 算法 2[31]

时间复杂度 O(np2
n) O(n2p2

n)

空间复杂度 O(p2
n) O(p2

n)

 

 3　主要结果

n→ ∞
定理 1. 在假设 1 ~ 3下考虑饱和观测下的大

回归模型, 则当  时, 由算法 (27) ~ (30)所产

生的参数估计误差界有如下的渐近性质:

∥Θ− Θ̂n∥22 =

O

(
p2nα

2
n

[
pn logn+ α2

npn + αn∆n

]
λmin(n)

)
, a.s.

(31)

Θ̂n = [θ̂Tn , 0, 0, · · · ]T ∈ R∞ λmin(n)其中,   且  定义为

λmin(n) = λmin

{
Ipn

+

n∑
k=1

ϕ̃k(n)ϕ̃
τ
k(n)

}
(32)

这里

ϕ̃k(n) = [uk, 1, uk, 2, · · · , uk, pk
, 0, · · · , 0]T ∈ Rpn

(33)

α2
n = O(logϵ n),

0 < ϵ < 1 pn = c1 ⌊log(n+ e)⌋ c1 > 0

|bi| = O(λi), i ≥ 0, 0 < λ < 1 pn =

推论 1. 在定理 1的条件下, 若 

, 且进一步取  , 
充分大 ,    或者  
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c2 ⌊nα⌋ |bi| = O(i−a), a > (1 + α)/α,  , 则定理 1 的

结果简化为

∥Θ− Θ̂n∥22 = O
(
p3n log

1+ϵ n

λmin(n)

)
, a.s. (34)

注 5. 根据推论 1可知, 若条件

p3n log
1+ϵ n = o (λmin(n)) , a.s. (35)

Θ̂n

Θ

pn p log1+ϵ n =

o(λmin{
∑n

k=1 φkφ
T
k}) φk = [uk, 1, · · · , uk, p]T

n = O(λmin{
∑n

k=1 φkφ
T
k})

成立, 则参数估计值  将几乎处处收敛到真实参

数值 . 事实上, 若系统 (1)退化到有限阶系统情

形, 即  取为常数 , 条件 (35)退化为 

, 其中,  ,
这显然比传统的 PE条件 

要弱. 对于本文所研究的无穷阶系统, 可以类似定

义 PE条件[29] 为

n = O (λmin(n)) , a.s. (36)

pn = O(nα), α ∈ (0, 1/3)

λmin(n) p3n log
1+ϵ n

λmin(n)

当  时, 条件 (35)比条

件 (36)弱得多, 是完全观测下的有限阶随机回归模

型下最小二乘收敛性的最弱激励条件的推广. 具体

而言, 条件 (35) 只需  相对于  增

长得稍快, 便足以保证算法的收敛性; 而条件 (36)
至少需要  与 n具有同阶增长速率才能确保

算法收敛. 值得注意的是, 条件 (35)并不排除非独

立、非平稳的输入数据, 且适用于随机反馈控制系统.

k > 0

接下来分析自适应预测的准确性. 注意到对于

任意的 , 式 (2)中的饱和观测可改写为

zk+1 = Sk

(
ϕ̄Tkθ(k − 1) + εk + vk+1

)
(37)

zk+1对式 (37)两边取条件期望, 可得到  在均

方意义下的最优预测, 即

E(zk+1|Fk) = Gk

(
ϕ̄Tkθ(k − 1) + εk

)
(38)

Gk(·)
θ(k − 1) θ̂k−1 εk

zk

其中,   由假设 2定义. 将式 (38)中的未知参数

 替换为其估计值  并忽略余项 , 可以

得到如下对  的自适应预测器:

ẑk+1 = Gk

(
ϕ̄Tk θ̂k−1

)
(39)

通常情况下, 最优预测 (38) 与自适应预测 (39)
之差定义为“遗憾”, 具体表达为

R
(1)
k = [E(zk+1|Fk)− ẑk+1]

2 =
[
ψk

]2 (40)

yk+1类似于以上分析, 可对模型输出  的“遗憾”　

进行如下定义:

R
(2)
k = [E[yk+1|Fk]− ϕ̄Tk θ̂k−1]

2 (41)

∑n
k=0R

(i)
k = o(n),

定理 2将说明, 上述自适应预测器具有良好的

性能, 关于模型的观测和输出预测的平均“遗憾”在
渐近意义下均将收敛至 0 ,  即  

a.s., i = 1, 2.

n→ ∞
定理 2. 在假设 1 ~ 3的条件下考虑饱和观测

下的大回归模型, 则当  时, 关于模型观测和

输出预测的累积“遗憾”在几乎处处意义下分别具有

如下上界:
n∑

k=0

R
(1)
k = O

(
p2nα

2
n

[
pn logn+ α2

npn + αn∆n

])
(42)

n∑
k=0

R
(2)
k = O

(
p2nα

2
n

[
pn logn+ α2

npn + αn∆n

])
(43)

D̄k βk g
k
= inf|x|≤MkLG

′
k(x)

ḡk = sup|x|≤MkL
G′

k(x) pn bi

注 6. 若将上述算法中的投影区域设置为式 (23)
中的 , 自适应增益  中的 ,

, 且  和  按照推论 1的取

法, 则定理 1和定理 2的结果可分别改写为

∥Θ− Θ̂n∥22 = O
(
pn logn
λmin(n)

)
, a.s. (44)

n∑
k=0

R
(1)
k = O

(
pn logn

)
, a.s. (45)

n∑
k=0

R
(2)
k = O

(
pn logn

)
, a.s. (46)

n

k

可见相较于文献 [31]的理论结果, 本文算法在

不加强估计收敛条件的前提下优化了预测“遗憾”的
收敛速度, 主要得益于算法 (27) ~ (30)的自适应机

制, 使得无需考虑当前时刻  与参数估计迭代次数

 之间的一致性问题. 相比之下, 本文算法能够更加

方便地应用于自适应反馈控制系统, 并有效降低计

算的复杂度.
pn

O(logn)

此外, 当  取为有限阶系统阶数的上界时, 该
结果与完全观测下针对线性随机回归模型的经典最

小二乘算法的相关收敛性结果一致. 此时, 累积“遗
憾”的渐近阶  为自适应预测的最优结果[34].

 4　主要结果的证明

 4.1　两个引理及其证明

本节首先引入文献 [28]中提出的一个关于鞅

估计的基本引理.
{ωn, Fn} {fn, Fn}

α ∈ (0, 2]

引理 1. 设  为鞅差序列,   为

一适应序列. 若存在某个 , 使得

sup
n

E [|ωn+1|α | Fn] <∞, a.s. (47)

n→ ∞ η > 0则当  时, 对任意的 , 有
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n∑
i=0

fiωi+1 = O
(
sn(α) log

1
α+η (sαn(α) + e)

)
, a.s. (48)

sn(α) = (
∑n

i=0 |fi|
α
)

1
α .其中, 

接下来, 证明一个关键引理, 其分析思路主要

受文献 [4, 29, 32]的启发.

k0 > 0

引理 2. 若饱和观测下的大回归模型满足假设

1 ~ 3, 则存在整数 , 使得算法 (27) ~ (30)具
有如下性质:

Vn +

(
1

2
− γ

) n∑
k=k0

µ−1
k β2

k[θ̃
T
k−1ϕ̄k]

2 =

Vk0 +O(pn logn+ α2
npn + αn∆n), a.s. (49)

Vn = θ̃TnP
−1
n θ̃n γ ∈ (0, 1/2)其中,  , 且常数 .

hk dk dk →
∞, k → ∞ ∥θ∥1 = O(1)

Dk k0 > 0

k ≥ k0

证明. 由式 (22)中  和  的定义可知, 
. 注意到 , 根据式 (19) 以及

式 (22) 中   的定义可知, 存在充分大的  ,
使得对任意 , 有

θ(k) ∈ Dk, ∥θ∥1 ≤ dk0
, M ≤ dk0

(50)

P−1
k根据矩阵求逆公式及式 (28),   可表示为

P−1
k = I{pk=pk−1}P

−1
k−1 + I{pk>pk−1}P

†−1
k−1 +

µ−1
k β2

kϕkϕ
T
k (51)

ak此外, 由式 (51)和  的定义可知

akP
−1
k

[
I{pk=pk−1}Pk−1 +

I{pk>pk−1}P
†
k−1

]
ϕk = µ−1

k ϕk (52)

k > k0 pk > pk−1对任意给定的 , 当  时, 令

¯̄θ(k) = [bpk−1+1, · · · , bpk
]T ∈ Rpk−pk−1 (53)

¯̄ϕk = [uk, pk−1+1, · · · , uk, pk
]T ∈ Rpk−pk−1 (54)

Vk = θ̃TkP
−1
k θ̃k,

k ≥ k0

下面考虑随机李雅普诺夫函数 

. 由式 (25)和式 (26)、式 (14)和式 (15) 以及

式 (50) ~ (54), 可知

Vk =
∥∥θ̃k∥∥2P−1

k

≤ I{pk>pk−1}·∥∥∥∥[θ̃Tk−1,
¯̄θ T(k)]T − akβkP

†
k−1ϕk

[
ψk + wk+1

]∥∥∥∥2
P−1

k

+

I{pk=pk−1} ·
∥∥∥∥θ̃k−1− akβkPk−1ϕk

[
ψk+ wk+1

]∥∥∥∥2
P−1

k

=

I{pk>pk−1} ·
{
[θ̃Tk−1,

¯̄θ T(k)]P †−1
k−1 [θ̃

T
k−1,

¯̄θ T(k)]T +

µ−1
k β2

k{[θ̃Tk−1,
¯̄θ T(k)]ϕk}2 −

2akβk[θ̃
T
k−1,

¯̄θ T(k)]P−1
k P †

k−1ϕk[ψk + wk+1] +

a2kβ
2
kϕ

T
kP

†
k−1P

−1
k P †

k−1ϕk[ψk + wk+1]
2

}
+

I{pk=pk−1} ·
{
θ̃Tk−1P

−1
k−1θ̃k−1 + µ−1

k β2
k[θ̃

T
k−1ϕk]

2 −

2akβkθ̃
T
k−1P

−1
k Pk−1ϕk[ψk + wk+1] +

a2kβ
2
kϕ

T
kPk−1P

−1
k Pk−1ϕk[ψk + wk+1]

2

}
=

I{pk>pk−1} ·
{
Vk−1 + ∥ ¯̄θ(k)∥2 +

µ−1
k β2

k{[θ̃Tk−1,
¯̄θ T(k)]ϕk}2 −

2µ−1
k βk[θ̃

T
k−1,

¯̄θ T(k)]ϕk(ψk + wk+1) +

µ−1
k akβ

2
kϕ

T
kP

†
k−1ϕk(ψk + wk+1)

2
}
+

I{pk=pk−1} ·
{
Vk−1 + µ−1

k β2
k[θ̃

T
k−1ϕk]

2 −

2µ−1
k βkθ̃

T
k−1ϕk(ψk + wk+1) +

µ−1
k akβ

2
kϕ

T
kPk−1ϕk(ψk + wk+1)

2
}

(55)

令

Γk = (1 +
1

d
)µ−1

k β2
k[θ̃

T
k−1ϕ̄k]

2 −

2µ−1
k βkθ̃

T
k−1ϕ̄k(ψk + wk+1) +

µ−1
k akβ

2
kϕ̄

T
kPk−1ϕ̄k(ψk + wk+1)

2 (56)

ξk = ∥ ¯̄θ(k)∥2 + (1 + d)µ−1
k β2

k(
¯̄θ T(k) ¯̄ϕk)

2 −

2µ−1
k βk

¯̄θ T(k) ¯̄ϕk(ψk + wk+1) +

µ−1
k akβ

2
k∥ ¯̄ϕk∥2(ψk + wk+1)

2 (57)

d > 0 ϕk = ϕ̄kI{pk=pk−1} +

[ϕ̄Tk ,
¯̄ϕTk ]

TI{pk>pk−1}

2ab ≤ ϵa2 + 1
ϵ b

2, ϵ > 0

其中,   为一常数. 注意到 

, 由式 (55) ~ (57) 和基本不等

式 , 可知

Vk ≤ Vk−1 + I{pk=pk−1}Γk + I{pk>pk−1}(Γk + ξk) =

Vk−1 + Γk + I{pk>pk−1}ξk (58)

k0对式 (58) 左右两端同时从  到 n求和, 可知

Vn ≤ Vk0−1 +

n∑
k=k0

Γk +

n∑
k=k0

I{pk>pk−1}ξk (59)

ξk ∈
(min{ΦT

kΘ, ϕ̄
T
k θ̂k−1}, max{ΦT

kΘ, ϕ̄
T
k θ̂k−1})

下面依次分析式 (59) 中的右端项. 根据微分中

值定理, 由式 (13)、(15) 和 (18) 可知, 存在  

, 使得

ψk = G′
k

(
ξk
) [
ϕ̄Tk θ̃k−1 + εk

]
(60)

εk = ΦT
kΘ− ϕ̄Tkθ(k − 1)其中,   由式 (18)定义, 故有
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|ψk| ≥ βk

∣∣∣ϕ̄Tk θ̃k−1 + εk

∣∣∣ (61)

ψk[ϕ̄
T
k θ̃k−1 + εk] ≥ 0

b > 0

由式 (10)和式 (60) 可知,  ,

再根据式 (61) 和基本不等式, 存在常数 , 使得

− 2

n∑
k=k0

βk

[
θ̃τk−1ϕ̄k + εk

]
ψk ≤

− 2

n∑
k=k0

β2
k

[
θ̃τk−1ϕ̄k + εk

]2
≤

(
2

b
− 2

) n∑
k=k0

β2
k

[
θ̃τk−1ϕ̄k

]2
+ (2b− 2)

n−1∑
k=k0

β2
kε

2
k

(62)

由此可知

−
n∑

k=k0

µ−1
k βkθ̃

τ
k−1ϕ̄kψk ≤

(
1

b
− 1

) n∑
k=k0

µ−1
k β2

k

[
θ̃τk−1ϕ̄k

]2
+

(b− 1)

n∑
k=k0

µ−1
k β2

kε
2
k +

n∑
k=k0

µ−1
k βkψkεk (63)

βk根据  的定义可知

akβkḡkϕ̄
T
kPk−1ϕ̄k ≤ 1

2
(64)

由上式和式 (61), 可得

−
[
βk − akβ

2
k ḡkϕ̄

T
kPk−1ϕ̄k

]
×
[
θ̃τk−1ϕ̄k + εk

]
ψk ≤

− 1

2
βk

[
θ̃τk−1ϕ̄k + εk

]
ψk ≤

− β2
k

2

[
θ̃τk−1ϕ̄k + εk

]2
(65)

ψ2
k ≤ ḡkψk[θ̃

τ
k−1ϕ̄k + εk]

c > 0

注意到  , 由式 (65) 和

基本不等式可知, 存在常数 , 使得

−
n∑

k=k0

µ−1
k βkψkθ̃

τ
k−1ϕ̄k +

n∑
k=k0

µ−1
k akβ

2
kψ

2
kϕ̄

T
kPk−1ϕ̄k ≤

− 1

2

n∑
k=k0

µ−1
k β2

k

[
θ̃τk−1ϕ̄k + εk

]2
+

n∑
k=k0

µ−1
k βkψkεk ≤

n∑
k=k0

(
1

c
− 1

2

)
µ−1
k β2

k

[
θ̃τk−1ϕ̄k

]2
−

n∑
k=k0

(
1

2
− c

4

)
µ−1
k β2

kε
2
k +

n∑
k=k0

µ−1
k βkψkεk (66)

由式 (11)、(22) 和 (18) 可知

n∑
k=k0

ε2k = O

(
n∑

k=k0

δk

)
= O(∆n), a.s. (67)

n∑
k=k0

ψkεk = O

(
αn

n∑
k=k0

δ
1
2

k

)
= O(αn∆n), a.s.

(68)

下面根据归纳假设证明

P−1
n = Ipn +

n∑
k=1

µ−1
k β2

kϕ̃k(n)ϕ̃
T
k (n) (69)

n− 1 ≥ 0

ϕ̃k(n) ϕ̃n(n) = ϕn

假设对于  结论成立, 根据式 (33)中

 的定义可知 , 再结合式 (51)可知

P−1
n = I{pn=pn−1}P

−1
n−1 +

I{pn>pn−1}P
†−1
n−1 + µ−1

n β2
nϕnϕ

T
n =

I{pn=pn−1}

{
Ipn−1

+

n−1∑
k=1

µ−1
k β2

kϕ̃k(n− 1)ϕ̃Tk (n− 1) + µ−1
n β2

nϕnϕ
T
n

}
+

I{pn>pn−1}

{
Ipn

+

n−1∑
k=1

µ−1
k β2

kϕ̃k(n)ϕ̃
T
k (n) +

µ−1
n β2

nϕnϕ
T
n

}
= Ipn

+

n∑
k=1

µ−1
k β2

kϕ̃k(n)ϕ̃
T
k (n) (70)

pk = pk−1式 (69)得证. 根据式 (51)可知, 当  时,

|P−1
k | = |P−1

k−1||I + µ−1
k β2

kPk−1ϕkϕ
T
k | =

|P−1
k−1|(1 + µ−1

k β2
kϕ

T
kPk−1ϕk) (71)

pk = pk−1因此, 当  时,

µ−1
k β2

kϕ̄
T
kPk−1ϕ̄k =

|P−1
k | − |P−1

k−1|
|P−1

k−1|
(72)

pk > pk−1同理可证, 当  时,

µ−1
k β2

k

[
ϕ̄TkPk−1ϕ̄k + ∥ ¯̄ϕk∥2

]
=

|P−1
k | − |P †−1

k−1 |
|P †−1

k−1 |
(73)

|P †−1
k−1 | = |P−1

k−1|注意到  ,  结合以上两式及式

(69), 有
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n∑
k=k0

akβ
2
kϕ̄

T
kPk−1ϕ̄k = O

(
n∑

k=k0

|P−1
k | − |P−1

k−1|
|P−1

k |

)
=

O

(∫ |P−1
n |

|P−1
k0−1|

1

x
dx

)
= O (pn log(npn)) = O(pn logn)

(74)

ak akβ
2
kϕ̄

T
kPk−1ϕ̄k < 1

k > 1

又由  的定义可知  对于任

意的  均成立, 结合式 (74), 可得
n∑

k=k0

[
akβ

2
kϕ̄

T
kPk−1ϕ̄k

]2
= O(pn logn) (75)

wk+1 k > 0

接下来, 分别对式 (56)中的噪声求和项进行估

计. 根据  的定义可知, 对于任意的 ,

E(wk+1|Fk) = 0 (76)

{wk, Fk}
|Sk(Θ

TΦk + vk+1)− Sk(Θ
TΦk)| ≤ |vk+1|+ 2c

由此可知,   为一鞅差序列. 此外, 由式 (6)
可知,  ,
由此及式 (7)、基本不等式以及施瓦茨不等式, 得到

E
[
|wk+1|4 | Fk

]
=

O
(
E
[∣∣Sk(Θ

TΦk + vk+1)− Sk(Θ
TΦk)

∣∣4∣∣Fk

])
=

O
(
E
[
|vk+1|4

∣∣Fk

])
+O(1) = O(1), a.s.

(77)

因此, 由式 (76)和式 (77) 以及引理 1可知
n∑

k=k0

µ−1
k βkθ̃

τ
k−1ϕ̄kwk+1 =

o

(
n∑

k=k0

µ−1
k β2

k

[
θ̃τk−1ϕ̄k

]2)
+O(1), a.s. (78)

此外, 利用文献 [29] 中引理 3.4 的类似推导,
由式 (74) ~ (77)以及引理 1, 可知

n∑
k=k0

µ−1
k akβ

2
kϕ̄

T
kPk−1ϕ̄kw

2
k+1 = O(pn logn), a.s.

(79)

ψ2
k ≤ ḡ2k[ϕ̄

T
k θ̃k−1 + εk]

2注意到 , 根据式 (64)并

再次利用引理 1, 可得
n∑

k=k0

µ−1
k akβ

2
kϕ̄

T
kPk−1ϕ̄kψkwk+1 =

o

(
n∑

k=k0

[
µ−1
k akβ

2
kψkϕ̄

T
kPk−1ϕ̄k

]2)
+O(1) =

o

(
n∑

k=k0

µ−1
k β2

k

[
θ̃Tk−1ϕ̄k

]2)
+ o

(
n∑

k=k0

β2
kε

2
k

)
+O(1), a.s.

(80)

∑n
k=k0

I{pk>pk−1}ξk

ψk ∥θ∥1 = O(1) βk uk, i µ−1
k

下面分析式 (59)中求和项 .

根据   的定义、  以及  ,   和  

的有界性, 依次有
n∑

k=k0

∥ ¯̄θ(k)∥2I{pk>pk−1} = O(pn) (81)

n∑
k=k0

µ−1
k β2

k[
¯̄θ T(k) ¯̄ϕk]

2I{pk>pk−1} = O(pn) (82)

n∑
k=k0

µ−1
k βk

¯̄θ T(k) ¯̄ϕkψkI{pk>pk−1} = O(αnpn)

(83)

pk > pk−1 akβ
2
k∥

¯̄ϕk∥2 ≤ (|P−1
k | −

|P−1
k−1|)/|P

−1
k | ≤ 1 akβkḡk∥ ¯̄ϕk∥2 ≤ 1/2

注意到 ,  当   时 ,  

 且  . 类似于式

(74) 以及式 (78) ~ (80)的分析, 且根据式 (82), 有
以下估计:

n∑
k=k0

I{pk>pk−1}µ
−1
k βk

¯̄θ T(k) ¯̄ϕkwk+1 =

o

(
n∑

k=k0

µ−1
k β2

k[
¯̄θ T(k) ¯̄ϕk]

2I{pk>pk−1}

)
+O(1) =

o(pn), a.s. (84)

n∑
k=k0

I{pk>pk−1}µ
−1
k akβ

2
k∥ ¯̄ϕk∥2w2

k+1 =

O(pn logn), a.s. (85)

n∑
k=k0

I{pk>pk−1}µ
−1
k akβ

2
k∥ ¯̄ϕk∥2ψkwk+1 =

o

(
n∑

k=k0

µ−1
k β2

k

[
θ̃Tk−1ϕ̄k

]2)
+ o

(
n∑

k=k0

β2
kε

2
k

)
+O(1), a.s.

(86)

pk > pk−1 ψ2
k ≤ ḡ2k[θ̃

T
k−1ϕ̄k + εk]

2

akβkḡk∥ ¯̄ϕk∥2 ≤ 1/2 ḡk βk

此外, 根据式 (11)、(22) 和 (67), 并结合当

 时所满足的不等式 

与 , 再考虑到  与  均为有界

量, 可得
n∑

k=k0

I{pk>pk−1}µ
−1
k akβ

2
k∥ ¯̄ϕk∥2ψ2

k ≤

n∑
k=k0

I{pk>pk−1}µ
−1
k akβ

2
k∥ ¯̄ϕk∥2ḡ2k

[
θ̃Tk−1ϕ̄k + εk

]2
=

O

(
n∑

k=k0

I{pk>pk−1}

[
θ̃Tk−1ϕ̄k

]2)
+

O

(
n∑

k=k0

I{pk>pk−1}ε
2
k

)
= O(α2

npn) (87)
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b, c, d γ =

1/b+ 1/c+ 1/d ∈ (0, 1/2)

将式 (63)、(66) ~ (68)、(78) ~ (80) 以及式 (81) ~
(87) 替换到式 (59)中, 并取  适当大, 使得 

, 最终得到引理 2成立. □

 4.2　定理 1 的证明

λmin{P−1
n }∥θ̃n∥2 ≤ θ̃TnP

−1
n θ̃n证明. 注意到   , 由

此以及引理 2可知

∥θ(n)− θ̂n∥2 =

O
(
pn logn+ α2

npn + αn∆n

λmin{P−1
n }

)
, a.s. (88)

结合式 (16)、(19)、(21)和 (88), 可得

∥Θ− Θ̂n∥22 ≤ ∥θ(n)− θ̂n∥2 + δn+1 =

O
(
pn logn+ α2

npn + αn∆n

λmin{P−1
n }

)
, a.s. (89)

∆n ≥ δ
1
2
nn λmin

{
P−1
n

}
= O(n)其中, 由于  以及 , 因此

式 (89)中最后的等式成立.

c0 > 0

注意到, 由式 (22)、(30)和 (50)可得, 存在常

数 , 使得

βk ≥ gk(d
2
k) ≥ gk(0)α

−1
k ≥ c0p

−1
k α−1

k (90)

结合上式以及式 (69)和式 (89), 得证.  □

 4.3　推论 1 的证明

pn = c1 ⌊log(n+ e)⌋ c1 > 0

|bi| = O(λi), i ≥ 0, 0 < λ < 1

证明 .  当  ,    充分大 ,

 时,

∆n = O

(
n∑

k=1

λpk−1

)
= O(1) (91)

pn = c2 ⌊nα⌋ , |bi| = O(i−a), a > (1 + α)/α当   

时, 注意到

δ
1
2

k =

∞∑
i=pk−1+1

∫ i

i−1

dx
ia

≤
∫ ∞

pk−1

dx
xa

= O

(
1

pa−1
k−1

)
(92)

由上式可得

∆n = O

(
n∑

k=1

1

kα(a−1)

)
= O(1) (93)

根据式 (91)和式 (93), 并结合推论 1的条件,

可证得式 (31)成立.  □

 4.4　定理 2 的证明

证明. 结合式 (67)和式 (90)、微分中值定理以

及引理 2, 可得

n∑
k=0

R
(1)
k = O

(
n∑

k=0

R
(2)
k

)
=

O

(
n∑

k=0

[
θ̃τk−1ϕ̄k

]2)
+O

(
n∑

k=0

ε2k

)
=

O
(
p2nα

2
n

[
pn logn+ α2

npn + αn∆n

])
, a.s. (94)

  □

 5　司法量刑实验

Lk ≡ lk ≡ 6, Nk ≡ nk

≡ 36 Lk ≡ lk ≡ 36 Nk ≡ nk ≡ 120

本节基于中国裁判文书网1 所采集的真实故意

伤害罪判决文书数据集, 开展司法量刑预测实验.
该数据集包含 2019年—2024年 87 587份轻伤案

件判决文书以及 9 228份重伤案件判决文书. 上述

数据经过结构化预处理后, 可基于饱和观测下的机

理模型进行量刑预测[14−15]. 此处针对量刑预测任务

开展实验的主要原因是司法判决符合饱和输出观测

的特征, 即宣告刑存在明确的法定刑区间上下界规

定. 根据 《中华人民共和国刑法》 第 234条规定, 轻
伤案件判处有期徒刑 6个月至 3年, 重伤案件判处

有期徒刑 3至 10年. 对应于式 (2), 轻伤案件和重

伤案件的饱和函数上下界分别为 

 以及 ,   (单位: 月).
此外, 鉴于法律条文会随时间进行修订调整, 且类

案推送机制在全国范围内推广适用, 司法判决数据

在时间与空间维度上呈现出显著的相关性. 因此,
本文所采用的一般数据条件更能贴近司法判决数据

的实际统计特性.
本文考虑如下的量刑机理模型[15]:

zk+1 = Sk

([
ak + bx

(1)
k + cx

(2)
k

]
×

m1∏
i=1

(1 + piz
(i)
k ) ×

[
1 +

m2∑
j=1

qju
(j)
k + e

]
+ wk+1

)
(95)

m1 = 13, m2 = 22

2m1(3 + 3m2)

模型的构建依据及各变量的具体含义详见文献

[15], 本文实验中,  , 由此定义如下扩

展回归向量及参数向量, 其维度分别为 :

Φk =
[
akϕ

T
1k, x

(1)
k ϕT1k, x

(2)
k ϕT1k, ak(ϕ1k ⊗ ϕ2k)

T,

x
(1)
k (ϕ1k ⊗ ϕ2k)

T, x
(2)
k (ϕ1k ⊗ ϕ2k)

T]T (96)

Θ =
[
(1 + e)ϑT1 , b(1 + e)ϑT1 , c(1 + e)ϑT1 , (ϑ1 ⊗ ϑ2)

T,

b(ϑ1 ⊗ ϑ2)
T, c(ϑ1 ⊗ ϑ2)

T]T (97)

 

1 见 https://wenshu.court.gov.cn/
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其中

ϕ1k = [1, z
(1)
k , · · · , z(m1)

k , z
(1)
k z

(2)
k , · · · ,

z
(m1−1)
k z

(m1)
k , · · · , z(1)k · · · z(m1)

k ]T (98)

ϕ2k = [u
(1)
k , u

(2)
k , · · · , u(m2)

k ]T (99)

ϑ1 = [1, p1, · · · , pm1
, p1p2, · · · ,

pm1−1pm1
, · · · , p1 · · · pm1

]T (100)

ϑ2 = [q1, · · · , qm2
]T (101)

Sk(·)则饱和函数  的内部结构转化为线性参数化的

高维随机回归模型, 即模型 (95) 转化为模型 (5)的
形式, 因此可通过算法 (27) ~ (30)对其进行优化.

本文采用相对误差衡量量刑预测效果, 精度指

标的具体定义如下:

RAD = 1− 1

n

n∑
k=1

z̃k
zk
I(z̃k > max{20%zk, 2}) (102)

z̃k = |zk − ẑk| zk

ẑk

max{20%zk, 2}
20%zk
2

RAD

其中,  , 这里  表示第 k个司法案件的

实际判决刑期,   为其对应的预测值, n为总判决

数据量. 阈值项  反映法官在量刑过程

中的自由裁量权, 其中  基于我国 《量刑指导意

见》2 中的裁量标准; “  ”来源于与一线法官以及检

察官的访谈结果, 体现实际办案中的经验性判断. 相
较于已有研究中普遍采用的传统预测精度指标, 如
文献 [35]等中的分类指标, 式 (102)所定义的  指

标能够提供更加细致且合理的量刑预测性能评估.

ak

pk =⌊
log(k + 80)3.4

⌋
θ̂0 = [0, · · · , 0]T ∈ Rp0

P0 = I ∈ Rp0×p0 βk = 0.1 µk = 25

vk N(0, 25)

Gk(·)

针对算法的部分超参数设置, 模型 (95) 中量刑

起点  设置为法律所规定量刑起点区间的下界, 该
设定依据一系列的对照实验所得[14]. 另外, 取 

. 初始值 , 初

始矩阵取为  .   且  .
假设随机噪声  为服从正态分布  的独立

同分布序列, 函数  可根据式 (9)计算得到. 此
外, 尽管式 (97)中待估的参数向量维数较高但仍为

有限维, 且根据我国 《量刑指导意见》 的规定, 各种

特征要素对量刑结果的调节作用具有法定上界, 即
未知的参数向量范数具有先验上界, 因此这里采用

式 (23)所定义的有界投影方式, 这也更加符合法律

规定. 具体而言, 特征因素“重伤人数”和“轻伤人数” 　

对应参数的投影区间分别为 [0, 20] 和 [0, 5]; 增刑

和减刑特征因素对应参数的投影区间分别为 [−0.1,
1]和 [−1, 0.1].

为验证第 2节中提出的在线扩展型自适应学习

算法 (27) ~ (30)的有效性, 本文采用该算法对模

型 (95)进行学习和预测. 考虑到扩展后的未知参数

向量维度较高, 且尾部分量多为高阶交叉项, 对量

刑精度的贡献应该有限. 为兼顾预测性能与计算效

率, 本文通过分析预测精度随参数规模的变化趋势,
选取合适的参数规模. 图 1和图 2分别展示了在轻

伤案件和重伤案件中, 平均量刑预测精度随未知参

数向量维度增加的变化趋势; 图 3和图 4则分别展

示了式 (40)中定义的平均预测“遗憾”随着未知参

数向量维度增加的变化趋势. 可以看出, 两类情形

下的平均预测精度均随参数规模增加呈现上升趋势;
平均预测“遗憾”则随着参数规模的增加分别呈现下

降趋势, 验证了所提出算法的良好预测性能. 此外,
可以看出, 随着参数规模增大, 预测精度的提升幅

度较为缓慢, 表明预测性能会随着参数规模的增加

逐渐趋于饱和, 最终分别达到 79.31% 和 93.28%.
因而, 在实际应用中可在预测精度与计算复杂度之

间进行权衡, 合理选取参数维度以实现预测性能与
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图 1    随着参数规模递增的轻伤案件平均预测精度

趋势变化

Fig. 1    The trend of average prediction accuracy for
minor injury cases with increasing parameter size
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图 2    随着参数规模递增的重伤案件平均预测精度

趋势变化

Fig. 2    The trend of average prediction accuracy for
serious injury cases with increasing parameter size 

2 见 https://www.court.gov.cn/
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资源消耗的平衡. 实验结果表明, 对于轻伤案件和

重伤案件, 参数维度分别取 3 000与 1 200时已能获

得较好的量刑预测效果.
上述方法不仅验证了本文所提出的在线扩展型

算法的有效性, 也为量刑预测任务中的最优参量选

取提供参考, 对大模型架构下的复杂度控制与泛化

能力提升具有一定的实践启示.
进一步, 为验证自适应算法 (27) ~ (30)的高效

性, 本文选取部分重伤案件数据进行实验, 对比本

文算法 (算法 1)与文献 [31]中的算法 (算法 2)在
计算效率与预测精度方面的表现. 图 5的精度趋势

图显示, 两种算法的性能相当, 均具备较高的预测

精度, 但实际运算效率差异显著: 本文算法的运行

时间仅为 95.22 s, 而文献 [31]中算法需约 6 121.72 s,
耗时约为本文算法的 64.29倍. 事实上, 结合表 1的

复杂度分析可知, 随着数据规模的扩大, 这一效率

差距会更加显著. 这一结果充分表明, 本文算法在

保证量刑预测精度的同时, 大幅降低了计算开销,
提升了运算效率. 这主要得益于算法在设计上的优

化: 相较于传统机器学习方法及文献 [29−31]中的

算法, 本文算法实现了参数的在线更新与实时预测.
该特性不仅显著降低了对历史数据的存储需求, 还
提升了在处理大规模数据时的计算速度与响应能

力, 能够更好地满足各种应用场景中对高效在线学

习的实际需求, 尤其适用于大规模高维数据场景下

的建模与优化问题.

 6　结束语

本文针对饱和观测下的大回归模型, 设计一种

新的高效在线学习算法, 并在一般复杂数据条件下

建立其自适应辨识与预测理论, 在保障学习精度的

同时, 显著降低运算代价. 此外, 基于真实司法判决

数据开展量刑预测实验. 通过分析预测精度随参数

规模增长的变化趋势, 为量刑模型规模选取问题提

供重要参考; 通过对比实验检验本文算法的计算效

率和预测精度. 未来研究可进一步探讨更一般的非

线性大参数模型 (如深度神经网络)自适应学习的收

敛性理论及参数规模选取问题; 同时, 也可在本文

模型基础上进一步研究自适应控制系统的理论问题,
为相关具身智能系统的研究提供理论和方法基础.
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