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Abstract—This paper investigates the online identifi-
cation and data clustering problems for mixed linear re-
gression (MLR) model with two components, including the
symmetric MLR, and the asymmetric MLR with the bal-
anced mixture. Two corresponding new online identifica-
tion algorithms are introduced based on the expectation-
maximization (EM) and least-squares (LS) principles. It is
shown that both algorithms will converge to the true pa-
rameter set for any non-zero initial value without resorting
to the traditional i.i.d data assumptions. The main challenge
in our investigation lies in the fact that the gradient of the
likelihood function does not have a unique zero, and a
key step in our analysis is to establish the stability of the
corresponding differential equation in order to apply the
celebrated Ljung’s ODE method. It is also shown that the
within-cluster error and the probability that the new data is
categorized into the correct cluster are asymptotically the
same as those in the case of known parameters. Finally, nu-
merical simulations are provided to verify the effectiveness
of our online algorithms.

Index Terms— Mixed linear regression, online identifica-
tion, non-i.i.d data, convergence, data clustering

[. INTRODUCTION

Mixed linear regression (MLR) has been extensively studied
in the fields of system identification, statistical learning, and
computer science due to its convenience and effectiveness in
capturing the nonlinearity of uncertain system dynamics. It
was first proposed as a generalization of switching regressions
[1] and has found numerous applications including trajectory
clustering [2], health care analysis [3], face recognition [4],
drug sensitivity prediction [5] and the relationship between
genes and disease phenotype [6]. In MLR, each input-output
data belongs to one of the uncertain linear regression models
or sub-models but we don’t know which sub-model it comes
from, i.e., the label of data is unknown to us. We note that
the MLR model is closely related to several models used in
the investigation of control theory. For example, the piece-
wise affine model is widely studied (cf., [7]-[9]), where the
mixture laws depend on the system states rather than on
random processes as in the MLR. The bilinear systems can be

This work was supported by Natural Science Foundation of China
under Grants T2293770 and 12288201.

Yujing Liu, Zhixin Liu and Lei Guo are with the State Key Labo-
ratory of Mathematical Sciences, Academy of Mathematics and Sys-
tems Science, Chinese Academy of Sciences, Beijing 100190, China,
and also with the School of Mathematical Science, University of Chi-
nese Academy of Sciences, Beijing 100049, China. (E-mails: liuyu-
jing@amss.ac.cn, lzx@amss.ac.cn, Lguo@amss.ac.cn).

closely related to MLR provided that the input signal switches
over a finite set, as in the case of bang-bang control (cf., [10]).
Moreover, the switched linear systems are widely used in
adaptive identification and control (cf., [11]-[16]), and notably,
MLR can be regarded as a class of such systems in which both
the true parameter set and the data label sequence are unknown
(cf., [15], [16]).

For learning and prediction of MLR, how to construct
algorithms based on the observed data to identify the unknown
parameters and to categorize the newly observed data into
correct clusters is of fundamental importance. Due to the
coupling between parameter estimates and data label estimates,
the MLR identification problem is proven to be NP-hard
if there is no assumption imposed on the properties of the
observed data [17]. Nonetheless, it still attracts much attention
from researchers in diverse fields under additional assump-
tions such as Gaussian and the independent and identically
distributed (i.i.d) assumptions on the data. The commonly
used methods include the tensor-based method (cf., [18]—
[20]), the optimization-based method [21] and the expectation-
maximization (EM) method [22]. In the tensor-based method
[23], an efficient spectral decomposition of the observed tensor
matrix is needed so that the subspace spanned by true param-
eters is included in the subspace spanned by eigenvectors of
the tensor matrix. By grid searching with a sufficiently small
grid resolution in this subspace, the exact recovery guarantee
for the MLR problem is given (see e.g., [17], [24]) , but
this method suffers from high sample complexity and high
computational complexity. In the optimization-based method,
minimizing the non-convex mean square error of the MLR
problem can be converted into the optimization of some
objective functions with nice properties such as convexity or
smoothness [21]. However, solving the optimization problem
is essentially to optimize a nuclear norm function with linear
constraints [25] or to solve a mixed integer programming
problem [26], both of which may lead to high computational
cost. The EM algorithm [22], including E-step and M-step,
is a general technique to estimate unknown parameters with
hidden random variables. The E-step is used to evaluate the
expectation of the log-likelihood function for the complete data
set based on the current parameter estimate, while the M-step
is used to update the estimate by solving the corresponding
maximization problem. Compared with the other two methods,
the lower computational cost of EM makes it more attractive
to solve MLR problems in practice (cf., [2], [27]).

In the theoretical aspect, there has been remarkable progress
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on solving the MLR identification problems by using the EM
algorithm. In the symmetric MLR case, the mirror symmetry
prior information can be used to simplify the design and
analysis of EM algorithms (cf., [28]). For example, Balakr-
ishnan et al. [29] studied the population EM algorithm and
obtained local convergence results under the assumption that
the regressor is i.i.d with a standard Gaussian distribution,
and later Klusowski et al. [30] proved a larger basin of
attraction for local convergence. Kwon et al. [31] established
the convergence to the true parameter set of the population EM
for any non-zero initial value by verifying that both the angle
and distance between the estimate and the true parameter are
decreasing using Stein’s Gaussian lemma under the i.i.d data
assumptions, and thus overcame the difficulty of non-unique
optimal parameters for MLR problems. For EM algorithm
with finite number of samples, convergence results in the
probability sense can also be established (cf., [31]). In the case
where there is no symmetric assumptions on the MLR model,
the local convergence of the population EM algorithm is
established by verifying the convexity of a small neighborhood
of the true parameters under the i.i.d Gaussian data assumption
(cf., [21], [30], [32]). Later, Zilber et al. proposed a novel EM-
type algorithm in [33] and provided an upper bound on the
estimation error with arbitrary initialization.

To summarize, all the above-mentioned theoretical investi-
gations have several common features. Firstly, the regressors
are required to be i.i.d Gaussian, which is hard to be satisfied
in many important situations, especially in stochastic uncertain
systems with feedback control [34]. Some studies are devoted
to relaxing the i.i.d standard Gaussian assumption on the data,
allowing the regressor to follow a Gaussian distribution but
with general covariances [24] or a general continuous distri-
bution [20]. However, while these studies relax the distribution
assumption, they do not relax the independence assumption on
the data. Secondly, the computational algorithms are of off-line
character. In fact, the off-line population EM algorithm is used
in most previous investigations, which requires infinite number
of samples at each iteration. Although the EM algorithm with
a finite number of samples has been proposed (cf., [29],
[31]), the computational approach still remains off-line and
the convergence results are derived in a high probability sense
only. In contrast to off-line algorithm, the online algorithm
is desirable in many practical situations, which is updated
conveniently based on both the current estimate and new input-
output data, without requiring storage of all the old data and
with lower computational cost. Thirdly, there are few global
convergence results to the true parameter set in general (cf.,
[30], [32], [33]). The only exception is the symmetric MLR
problem where such a convergence result is established for
the population EM algorithm with the i.i.d data assumption.
For the asymmetric MLR problem, only local convergence
around the true parameters has been obtained and there is
currently no theoretical guarantee for global convergence to
the true parameter set, even when adopting the population
EM algorithm under i.i.d data Gaussian assumptions. How
to establish such a convergence result for EM algorithms
without relying on i.i.d assumptions still remains to be an
open problem.

In this paper, we consider the online identification and data
clustering problems for MLR with two components. The main
contributions of this paper can be summarized as follows:
Firstly, different from the existing off-line EM algorithms used
in MLR identification problems (cf., [29]-[33]), we propose an
online EM algorithm to estimate the unknown parameters of
the symmetric MLR, which alternates between computing the
probability that the new data belongs to each sub-model and
updating the parameter estimates based on the current estimate
and the new observation. Building on this algorithm and the
least-squares (LS) principle, we then devise a two-step online
identification algorithm to estimate the unknown parameters
of the asymmetric MLR with the balanced mixture. Secondly,
by adopting Ljung’s ODE method [35], we transfer the con-
vergence analysis of proposed stochastic recursive algorithms
to the stability analysis of deterministic ordinary differential
equations (ODEs) with multiple equilibria. Furthermore, by
making efforts to establish the stability of the corresponding
ODEs, for the first time, we are able to establish the global
convergence of the proposed algorithms to the true parameter
set without requiring the widely-used i.i.d data assumptions
in the previous studies (cf., [29]-[33]). Finally, based on the
proposed online identification algorithms, we prove that the
data clustering performance, including the within-cluster error
and the probability that the new data can be categorized
into the correct cluster, can asymptotically achieve the same
performance as those in the case where true parameters are
known.

The remainder of this paper is organized as follows: Section
II presents the problem formulation. In Section III, we pro-
pose our online EM algorithms. Sections IV states the main
results on the convergence of parameter identification and the
performance of data clustering algorithms for MLR problems.
Sections V gives the proofs of the main results. Section VI
provides numerical simulations to verify the effectiveness of
our algorithms. Finally, we conclude the paper in Section VII.

Il. PROBLEM FORMULATION
A. Basic Notations

In the sequel, v € R< is a d-dimensional column vector, v”
and ||v|| are its transpose and Euclidean norm, respectively.
For a matrix A € R?*4, || A]| is its spectral norm and tr(A) is
its trace. For a symmetric matrix P € R%*?, the maximum and
minimum eigenvalues are denoted as Apax(P) and Ayin (P),
respectively. For two matrices A and B, A > (>)B means
that A — B is a positive (semi)-definite matrix.

Let (92,F,P) be a probability space, where Q is the
sample space, the o-algebra F on (2 is a family of events
and P is a probability measure on (£, F). For an event
A € F, its complement A° is defined by A° = Q — A.
The indicator function I4 on €2 is defined by 14 = 1 if the
event A occurs and I4 = 0 otherwise. If P(A) = 1, then
it is said that the event A occurs almost surely (a.s.). An
infinite sequence of events {Ay,k > 1} is said to happen
infinitely often (i.0.) if A happens for an infinite number
of indices k € {1,2,---}. Moreover, a sequence of random
variables {xj,k > 0} is called uniformly integrable (u.i.) if
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Jim supy>, Jijzy|>a [TRIAP = 0. We use E[] to denote the
mathematical expectation operator, and E[-|Fj] to represent
the conditional expectation operator given Fj, where {Fj}
is a non-decreasing sequence of o-algebras. According to
convention, x ~ F' indicates that the random variable x obeys
the distribution F' and N (u, 0?) is the Gaussian distribution
with 1 and o2 being the mean and the variance, respectively.

Definition 1: A sequence of random variables {zy, k > 1}
is said to be asymptotically stationary if for any ¢ > 0, and
any set C' € B> with B°° being the Borel set of R>°, there
exists K > 0 such that for all £ > K,

}ed)

It is further ergodic if lim E| x| exists and
k— o0

|P({xk, Trt1,- - — P({@k41,Tp42,- - F €C) < e

n
lim lek = lim Exyg, a.s.
n—oo N 1 k—o0
In the above definition, if both parameters ¢, K can take
value 0, then {xp,k > 1} is called stationary and ergodic,
which is consistent with the traditional definition as in [36].

B. Problem Statement

Consider the following mixed linear regression (MLR)
model consisting of two sub-models:

BTk + wrgr, if zp =1,
Ykl = (D

B3 dr + wpg1, if zp = —1,

where 37 and (35 are unknown parameter vectors in R? that
determine the sub-models, ¢, € R¢, Yk+1 € Rand wiy € R
are the regressor vector, observation and the system noise. In
addition, z; € {—1,1} is a hidden variable, namely, we do
not know which sub-model the data {¢y, yx+1} comes from.

Remark 1: 1t is worth mentioning that the MLR model is
said to be symmetric if the true parameters satisty 37 = —(;
and the phase retrieval model [28] is such a case. The MLR
model is said to be balanced if the hidden variable z; has
equal probabilities, i.e., P(zy = 1) = P(2; = —1). One can
find that some real-world situations, e.g., the classical human
perception of tones can be mathematically formulated as the
model (1) with a balanced mixture (cf., [27], [37]).

The aim of this paper is to develop online algorithms
to simultaneously estimate the true parameters (7 and (3
by using the streaming data {¢k,yrt1}5e,. and establish
convergence results for the identification algorithms. Based
on the estimates of 87 and (3, we further investigate the
probability and performance that the newly generated data can
be categorized into the correct cluster.

[I. ONLINE EM ALGORITHMS

In this section, we design online identification algorithms
based on the likelihood method for both symmetric and
asymmetric MLR models. We note that the symmetric MLR
case will bring benefits for the design and theoretical analysis
of the algorithm and will pave a way for the study of the
asymmetric MLR case, we will therefore first consider the
identification problem of the symmetric MLR problem.

A. Online EM Algorithm for Symmetric MLR Problem

The symmetric MLR model can be simplified as follows:
@

where 7 in (1) is denoted as 8*. The symmetric prior infor-
mation simplifies the estimation of the posterior probability of
which cluster the newly generated data comes from, thereby
facilitating the design and analysis of the algorithm.

In order to illustrate the design principle of the identification
algorithm, we take the i.i.d N'(0,0%) noise, i.i.d regression
vector and i.i.d balanced hidden variable cases with mutual
independence among all three sequences just for simplicity
of derivation (not actually used in our convergence analysis).
Then we derive the likelihood function of model (2) with the
parameter /3:

Yrt+1 = 268" Ok + Wiy,

n

) = kli[l P(yr+118, k) = 1;[ [QW
(Yrt1 + B7x)

o (e T ORY | o (G )](L

With simple calculations, the gradient of the corresponding
log-likelihood function with respect to 3 has the following
expression:

n(ﬂ) = Vg log(Ln)
2012{ > |:—¢k¢;;5 + ¢rYr+1 tanh (BT(b;ng )} }7 @
k=1

where tanh(x) is the hyperbolic tangent function defined as
tanh(z) = w We can see that (4) has multiple
zeros, and it is hard to obtain the closed-form expression of
maximum likelihood estimation (MLE). Hence, we adopt the
EM algorithm (cf., [22]) to approximate the MLE. Denote [3;
as the estimates of 8* at the time instant ¢. The EM algorithm
is conducted according to two steps:

1) E-step: compute an auxiliary function Qg(f), i.e., the
log-likelihood for the data set {y;11, 2, ¢¢ }~_, based on B;:

k

_Q;{Z

t=1

+ P(ze = —1|¢¢, yet1, Be) (Yt +/67¢t)2} } + ke,

Qr(p) = [P(Zt = 1)¢s, Yet1, Be) (Y1 — BT ¢r)?

where ¢ = log(ﬁ), the conditional probabilities of the
hidden variable z; given {¢;, ys11,0:} are as follows:

exp ()

P(z = 1o, ys41,8) = = -
exp (ﬁ, ¢;§1t+1> + exp (_ JeX ¢;gt+1)

and P(z = —1{¢¢, yet1, Bt) = 1 — Pz = ¢r, yt1, Be)-
2) M-step: update the estimate [; by maximizing the

function Qy(5):

Brt1 = al”génax Qx(B)
! 1 5)
Z(Z%@) <Z¢tyt+1 tanh (Bt(btytﬂ>)
=1 =1
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It is clear that the EM algorithm is a soft version of the well-
known k-means algorithm [38].
Denote

Uk+1 = Yk+1 tanh (%) (6)

We can see that the equation (5) is the standard formula of LS
with output 41 and the regressor ¢, hence following the
same way as the derivation of the recursive LS [39], we get
the resulting online EM algorithm as shown in Algorithm 1.
Unlike the existing off-line EM algorithms where batch data is
required at each iteration (cf., [31]), the parameter estimates in
Algorithm 1 will be recursively updated based on the current
estimate and the new observation data.

Algorithm 1 Online EM algorithm for symmetric MLR

Bibry r

Bit+1 = Bk + arProdr (yp41 tanh (%) - Bidr), (Ta)
Pi+1 = Py — ai Proior Pr, (7b)
1
1+ ¢ Py’
where [, is the estimate at time k, Py is the adaptation gain
matrix, the initial values Sy # 0 and P, > 0 can be chosen
arbitrarily.

ag (70)

B. Online EM Algorithm for Asymmetric MLR Problem

First of all, we show that the asymmetric case can be
transferred to a case that can be dealt with by both the method
in the symmetric case and the method of LS.

Let us denote 07 = ﬁl*%% and 05 = b Tgﬁ 2| Clearly,
the parameters 57 and S5 in (1) will be obtained once the
parameters 67 and 65 are identified. The MLR model (1) can
then be equivalently rewritten into the following model:

Y1 = 077 dr + 21057 O + Wit )

Under the balanced assumption on the hidden variable zj,
and the mutual independence assumption among zj, ¢ and
wy1 for each k > 0, we have E [2,057 ¢r|dr] = 0, and then

E [yri1|ox] = 077 dx, )

which is actually a linear regression model and can be esti-
mated by the LS algorithm.

Thus, we propose a two-step identification algorithm to es-
timate the parameters 67 and 3. Firstly, by (9), the parameter
07 is estimated using the LS algorithm. Secondly, by replacing
the unknown parameter 67 in (8) by its LS estimate given in
the first step, we can then estimate the unknown parameter 6;
in the same way as that for the symmetric case stated above.
The whole algorithm is summarized in Algorithm 2.

Remark 2: The differences between Algorithms 1-2 and
the classical stochastic gradient descent (SGD) algorithm and
other similar approaches in adaptive identification including
LS (cf., [39]) are as follows: 1) Rather than the mean-squares
loss typically used in SGD and other similar approaches in
adaptive identification, Algorithm 1 is designed to optimize
the log-likelihood function of the observed data based on

Algorithm 2 Online EM algorithm for asymmetric MLR

#Step 1: LS estimation 6, ; of 07
Ok+1,1 = Okt + arPredr (Yer1 — Ok 10k)

1
Pyy1 = Py — ap Propdp Py, ap =

L+ ¢ Pror’
#Step 2: EM estimation 6, 5 of 65

Of 2 PkMk 11

Ok+1,2 = O 2 + a Ppdy [my1 tanh ( o ) — Ok.20k]

M1 = Ykt1 — 05,10k,

Br+1,1 = Ok+1,1 +O0kt12, Br+1,2 = Oky1,1 — Okt1,2,

where 11 and o are the estimates at time k, Py is the
adaptation gain matrix, the initial values 6y 1, 09 2 # 0, Py > 0
can be chosen arbitrarily.

the probability density function (p.d.f) of the noise, resulting
in a smoother gradient function and simpler analysis. Be-
sides, different from the existing algorithms (e.g., the EM
algorithms) that directly minimize the original non-convex
log-likelihood or the mean-squares functions, Algorithm 2
operates in an online two-step manner by minimizing two
coupled criterion functions, thus exhibiting global conver-
gence to the true parameter set; 2) Algorithms 1-2 employ
the adaptation gain matrices, rather than the same step size
for each coordinate in SGD, can potentially accelerate the
convergence rate. As for other similar approaches in adaptive
identification, one class of most commonly-used algorithms is
the adaptive Newton-like algorithms constructed by using the
adaptation Hessian matrices. However, the adaptation Hessian
matrices here may not be positive-definite due to the coupling
with parameter estimates, whereas Algorithms 1-2 ensure the
positive-definiteness of adaptation gain matrices by adopting
the EM principle based on the posterior probability estimation
of the hidden variable.

IV. MAIN RESULTS

In this section, we give the main results concerning the
convergence of parameter estimates and the data clustering
performance of Algorithms 1 and 2, respectively.

A. Performance of Algorithm 1

To establish a rigorous theory on the performance of the
identification algorithms, we need to introduce some assump-
tions on the hidden variable zj, the noise wyyi, and the
regressor ¢y.

Assumption 1: The sequence of hidden variables {zj} is
i.i.d with distribution P(z, = 1) = p € (0,1) and P(z, =
—1) =1 — p. In addition, zj is independent of ¢y, for k > 0.

Remark 3: As far as we know, Assumption 1 on the mixing
weights in the symmetric MLR case is the weakest one
compared to most existing works that assume balanced (p =
%) [31] or unbalanced mixtures with additional constraints
[33]. Besides, Assumption 1 is also adopted by [40] in the
noiseless case.
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Assumption 2: The sequence of noises {wy1} is i.i.d with
Gaussian distribution A/(0, 02). In addition, w1 is indepen-
dent of {z;}i<i and {¢;}i<y for £ > 0.

Assumption 3: The regressor sequence {¢} is asymptoti-
cally stationary and ergodic and {||¢y||*} is uniformly inte-
grable. In addition, its p.d.f g (x) satisfies

lim gi(z) = g(z) € G = {g(z) : g(z) is a function
k—o0
(10)
of ||z|| for = € RY,
Remark 4: We remark that the set G of probability density
functions include many familiar distributions, such as the
uniform distribution on the sphere, the isotropic Gaussian dis-
tribution, the Logistic distribution, the polynomial distribution
and the probability density functions introduced in [41].
Remark 5: The requirement that g(z) is a function of ||z||
means that it has the rotation-invariant property. This property
is assumed for simplicity of presentation and can be further
relaxed. For example, if the asymptotically stationary density
function of ¢y, is Gaussian with zero mean and non-unit covari-
ance matrix ¥ > 0, then g(x) will have the form go(X~/2x),
which does not satisfy the rotation-invariant property although

the standard normal density go(x) does. In this case, let

(¢k¢k

From the fact that Ek — X almost surely as k — oo, it is
easy to obtain that ¢, converges in distribution to a standard
normal random variable. Then by replacing ¢; with ¢ in
Algorithm 1, it can be transferred to the rotation invariant
case in Assumption 3 and our main results in Theorems 1-4
still hold.

Remark 6: Assumption 3 is weaker than that in most ex-
isting literature where the regressor {¢y} is required to be
1.i.d with a standard Gaussian distribution (cf., [29]-[31]).
Assumption 3 can be satisfied in many cases, for example,
when {¢} is generated by the following standard stochastic
linear dynamical system excited or driven by a white noise
signal:

za”g(z)dz > 0}.

or =R, (blek—Rk 1+ - Ri—1) .

Prr1 = Adp + epq1,

where the matrix A is stable, and ey, is i.i.d with (0, I).

Based on the above assumptions, we give the convergence
result for parameter identification and data clustering perfor-
mance of Algorithm 1 as follows:

1) Convergence of Algorithm 1: We give the following main
theorem on the convergence of the identification Algorithm 1:

Theorem 1: Let Assumptions 1-3 be satisfied. Then for any
initial values 5y # 0 and Py > 0, the estimate [ generated
by Algorithm 1 will converge to a limit point that belongs to
the set {8*, —3*} almost surely.

Remark 7: Note that the convergence property provided in
Theorem 1 is of local nature in the sense that the limit point
of [ may depend on the initial value [y of Algorithm 1.
A somewhat surprising fact is that this local convergence
property is sufficient for guaranteeing the global optimality
of the data clustering performance asymptotically, as will be
rigorously shown in Theorem 2 below. This is reminiscent
of the well-known self-tuning regulators in adaptive control,

where the control performance can still achieve its optimal
value even though the parameter estimates may not converge
to the true parameter values (cf., [42]-[44]).

2) Clustering Performance of Algorithm 1: For the new data
{k, Yr+1}, denote its corresponding cluster as Z; = 1 if zj, =
1, and Z}} = 2 if z;, = —1. Based on the estimate 3} generated
by Algorithm 1, we can online categorize {¢,yr+1} to the
corresponding cluster Z;, € {1, 2} according to the criterion:

I = a?g{féin{(ykﬂ + (=1)'Bion)}- (In
To evaluate the clustering performance for the within-cluster
errors, a commonly-used evaluation index (cf., [33]) is defined
as follows:
1 L Ik T
= EZ Y1+ (=17 Bl én)%. (12)

Our purpose is to provide a lower bound to the probability
that {yx+1, @r } can be categorized into the correct cluster, and
an upper bound of the within-cluster error. The main result on
the performance of data clustering is stated as follows:

Theorem 2: Let Assumptions 1-3 be satisfied. Then the
probability that the new data {¢dx,yr+1} is categorized into
the correct cluster is bounded from below by

*T 2
lim P(Z, =Z;) > 1 —E [exp (—Mﬂ . (13)
(14)

k—o0

202
and the within-cluster error (12) satisfies

lim J,

n— oo

=0® +4En(¢)] < o?,

with
n(@) = (8" ¢)2 (—'5:“5) o] ¢ (-W) <0,

where ¢ is a random vector with p.d.f g € G being the
asymptotic stationary p.d.f of ¢y, ®(z) and ®'(z) are the
standard Gaussian distribution function and density function,
respectively.

Remark 8: From the proof of Theorem 2, one can find that
the bounds given in (13) and (14) are actually the same bounds
as in the case where the true parameter 5* is known. It can
also be seen that the data clustering performance is positively
related to the signal-to-noise ratio 157 ¢l . Specifically, as the
noise variance o2 tends to zero, the lower bound to the
probability of correct categorization will converge to 1 and
the upper bound of the within-cluster error will approach 0.

It goes without saying that given a specific form of the
density function g, one can obtain a more explicit bound
concerning the probability that the new data is categorized
into the correct cluster.

Example 1: Let conditions of Theorem 2 be satisfied and
g be the p.d.f of Gaussian distribution A(0,X) with ¥ > 0.
Then with the estimate (3, generated by Algorithm 1, we have

1

lim P(Zpy =Z;) > 1 — ———
k—o0 1+ ﬁ*TZﬁ*

15)

The proof of (15) is provided in Appendix I.
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B. Performance of Algorithm 2

In this subsection, we first give the convergence results of
Algorithm 2 and then present the corresponding data clustering
performance. For this purpose, the noise {wyi1} and the
regressor { ¢y, } are still assumed to obey Assumptions 2 and 3
in Section IV-A, while the sequence of hidden variables {z}
is assumed to satisfy the following assumption:

Assumption 1': The sequence of hidden variables {zj} is
i.i.d with balanced distribution P(z, = 1) = P(z, = —1) =
%. In addition, zj is independent of ¢ for each k£ > 0.

1) Convergence of Algorithm 2: Based on the convergence
theory presented in Section IV-A and the celebrated conver-
gence property of the LS, we can obtain the following main
result on the convergence of Algorithm 2:

Theorem 3: Let Assumptions 1’ and 2-3 be satisfied. Then
for any initial values 6y 1, o2 # 0 and Py > 0, the estimate
(Bk.,1, Br,2) by Algorithm 2 will converge to a limit point that
belongs to the set {(87,55), (85, 85)} almost surely.

2) Clustering Performance of Algorithm 2: Similar to the
analysis in Section IV-A, based on the estimates [;; and
B2 generated by Algorithm 2, we can also online categorize
{®k, yr+1} to the corresponding cluster Z;, € {1,2} according
to the following criterion:

~ BLiow)*}- (16)

L = argmin{(yes1
i=1,2

Moreover, the corresponding within-cluster error is defined as

n

Iy = n Z(Z/kﬂ - 512,1,/€¢k)2~

k=1

a7

In the following theorem, we give an asymptotic lower
bound to the probability that {yxi1,¢r} can be categorized
correctly and an upper bound of the within-cluster error:

Theorem 4: Let Assumptions 1’ and 2-3 be satisfied. Then
the probability that the new data {¢y,yx+1} is categorized
into the correct cluster is bounded from below by

((Bf — B3)79)?

: /
o P 802

=I;)>1-E |:exp(—
and the within-cluster error (17) satisfies

lim J! = o* +E[n(¢)] < o?,

n—00
where 5/(6) = (87 — 83)70)*® (— L) — 90)(5; -
B3)7|D’ ( (51702)7‘15'), ¢, () and ®'(z) are defined in
Theorem 2.
Similar to Example 1, if g has a specific form, one can also
obtain the following concrete result:
Example 2: Let conditions of Theorem 4 be satisfied and

g be defined in Example 1. Then with the estimates () ; and
B2 generated by Algorithm 2, we have

1

=I;)>1- .
\/1 + BB 2 (6 -55)

. /
o P

V. PROOFS OF THE MAIN RESULTS

In this section, we provide proofs of Theorems 1-4.

A. Proof of Theorem 1

The celebrated Ljung’s ODE method [35] provides a general
analytical technique for recursive algorithms by establishing
the relationship between the asymptotic behavior of the recur-
sive algorithms and the stability of the corresponding ODEs.

=1 [Po_l +3F qstgzﬂ. From (7) and the
matrix inverse formula [45], it follows that axPror =
Ppi1¢r = %R,;ilm. Thus Algorithm 1 can be rewritten in
the following equivalent form:

Denote Ry11

(18a)

1
Br+1 = Br + EQI(%’ Ohes Yk+1)5

1
Riy1= R+ EQ2<3319; k> Ykt1)s (18b)

with Q1 (2, ¢k, yks1) = Ryliék (yrs1 tanh (%) -
Brok), Qa(xk,dr,yki1) = ¢rdp — Ry, and 1z, =
[ B7 vec™(Ry) |7, where vec(-) denotes the operator by
stacking the columns of a matrix on top of one another. Then
x), evolves according to the following form:

1
Tht1 = T + %Q(xk, k> Yk+1)s (19)

where

Ql(xka ¢k:7 yk+1)
vee (Qz2(zk, Ok, Ykt1))

In order to analyze (19), we introduce the following ODEs:

Q(Ikaqbkvyk-‘rl) = (20)

S8 = B0 (B(0) ela
%R(t) =G - R(t), (21b)

where  f(B(t)) = Jim E [k (yp 11 tanh (E00e)
BT (t)¢r)] and G = Jim E [prbF).

The main results of Ljung s ODE method can be restated
in the following proposition, which plays an important role in
our analysis:

Proposition 1: [35] Let D be an open and connected subset
of R4 and D, be a compact subset of D such that the
trajectory of (21) starting in Dy remains in Dy for ¢ > 0.
Assume also that there is an invariant set D. C D, of (21)
such that its attraction domain D4 O D,. Then z, — D, as
k — oo almost surely, provided that the following conditions
are satisfied:

Bl) The function Q(z,¢,y) defined in (20) is locally
Lipschitz continuous for x € D with fixed ¢ and y, that is,
for x; € U(z, p(x)) with p(z) >

||Q($1,¢, ) (.%27(;57 )H < R( ¢7y,p(x))||x1 _x2||7
where z = [ 87 vec™(R) ] , and U(x, p(x)) is the p(x)-
neighborhood of z, i.e., Uz, p(x)) ={Z : |l — Z|| < p(x)}.

B2) © Z R(z

foranyxeDasn—>oo
B3) khm E [Q(x, ¢k, yr+1)] exists for z € D and
—00

, Ok, Yk+1, p()) converges to a finite limit

1 n
Jim > Q@ by yit1) = Jim E[Q(z, dr, yk+1)] - (22)
k=1
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B4) There exists a positive constant L such that the follow-
ing events happen i.o. with probability 1:

xp € Dy and || ¢kl < L.

In order to establish the convergence property of Algorithm
1, we will verify all the conditions in Proposition 1. We first
verify Conditions B1)-B3) in Lemmas 1-2 with their proofs
given in Appendix I.

Lemma 1: Under Assumptions 1-3, {dx £
(21 ¢F wik+1]7,k > 1} is an asymptotically stationary and
ergodic process with bounded fourth moment. In addition,
any measurable function of dj is also an asymptotically
stationary and ergodic stochastic process.

Lemma 2: Consider Algorithm 1 subject to Assumptions 1-
3. Then Conditions B1)-B3) in Proposition 1 are satisfied in
the open set D = {z : R > 0} with z = [ 87 vec”(R) ]T.

For the verification of the remaining conditions required
by Proposition 1, i.e., the stability analysis of ODEs (21) and
Condition B4), we provide some useful lemmas (Lemmas 3-5)
with their proofs given in Appendix L.

Lemma 3: For a random variable y ~ pN(a,0?) + (1 —
p)N(—a,c?) with p € [0,1] and a being a constant, we have
E [y tanh (%)] = a.

Lemma 4: [46] For a random variable y ~ N (a,c?) with
constants a and a satisfying aa > 0, we have

E [‘Zg tanh’ <“‘Z)] >0,
g (2

E [tanh ()| 51— exp (- lelminlallaD)
02 202

where tanh’(-) is the derivative function of tanh(-).
Lemma 5: For x > 0 and ¢ > 0, the function

oo 'lU2
F(e,z) = /_Oo fle,z,w) exp (_W> dw (23)
is increasing with respect to x, where f(c,z,w) = (w +
x) tanh % + (w — z) tanh (%

Based on the above lemmas, we now proceed to verify the
remaining conditions required by Proposition 1 through four
steps. To be specific, we will establish the stability analysis
of ODEs (21) in Steps 1-3 and then verify Condition B4) in
Step 4.

Proof of Theorem 1: Without loss of generality, we focus
on the analysis for the case of 8* # 0 and then give some
additional explanations for the case of 5* = 0.

We now investigate the properties of ODEs (21). Specifi-
cally, we prove the following assertion:

the ODEs (21) has the invariant set D, = {x : 5 €
{B*,—B"} U Dys, R = G} with the domain of
attraction Dy = {x : [|[R — G| < &}.

(24)

where = = 87 vec™(R)]", Dys = {0, c*v, —c*v}, v is a unit
vector orthogonal to 5*, c* and ¢ are positive constants to be
determined later. We prove the assertion (24) by establishing
the stability properties of (21) on three subsets D41 = {z :
876 > 0,|R—G|| < e}, Dan = {x: f75* < 0, |R—G] <
etand Dys ={z: 078" =0,||R— G| < e} of the domain

of attraction D 4. For the case of z(0) € D4, 1, we show that
x(t) € Da for t > 0 in Steps 1-2 below and then establish
the corresponding stability result in Step 3 below.

From (21b), we have

R(t) =G +e “(R(0) - G). (25)

By (21) and the fact that the asymptotically stationary p.d.f of
¢ has the rotation invariant property, we have G = c¢ol with
co being a positive constant [41]. From (25), it follows that
IR(t)—G|| < ||R(0)—G]|. So it suffices to show 57 (¢)8* > 0
when proving z(t) € D 4,1 for t > 0. For this, we derive the
lower and upper bounds of ||5(t)]| in (21a) in Step 1 below.

Step 1: Boundedness of ||3(t)|| generated by (21a).

For the convenience of analysis, we choose a set of standard

orthogonal basis {v1(t), - -+ ,va(t)}, where v1(t) = % and
vo(t) belongs to span{/3(t), 8*}. Then 5(t), f* and f(5(t))

defined in (21) can be written as follows:
d d
B =3 bitei(), B =" b (tuilt),

FB0) =" mB@Ow).

where b1 (t) = [|B®)|, bi(t) = 0(¢ > 1), b5(t) = B* v (),
b5(t) = B*wa(t), bi(t) = 0@ > 2) and hi(B(t)) =
vl (t)f(5(t)). Note that there may exist a time instant %
such that vo(t) = wvi(¢) for ¢ > to. For such a case, the
orthogonal basis defined above degenerates, but the analysis in
this part still holds. Besides, v;(t) is differentiable whenever
IB(#)|] # O since B(t) is continuously differentiable, and
we will show below [|3(t)|| > 0 for ¢ > 0. Moreover, we
give some illustrations on properties of f(5(t)). By (21) and

Assumptions 2-3, we have

(26)

BT (t) oy T

£(8(0)) = Elo(ytann (T g7(10)),

where ¢ is a random vector with p.df g € G being the

asymptotic stationary p.d.f of ¢, and the random variable y

given ¢ obeys the distribution N'(3*7 ¢, 0®) by Assumption 2
and Lemma 3. Denote a;(t) = v] (t)¢, i € [d], we have

0=3"" alt)uilt).

By Assumption 3, we know that the p.d.f g(¢) of ¢ has
the rotation-invariant property. Thus from (28), it follows
that the p.d.f of a(t) = [ai(t), - ,aq(t)]” equals g(a(t)),
which is an even function in ;(t) and also the marginal
p.d.f of a;(t) is an even function in a;(t) for ¢ € [d]. So we
have Ela1(t)a;(t)] = 0,i € [d]\{1} and E[a3(t)az(t)] = 0.
Moreover, by the definition of G in (21) and G = ¢pl in
(25), we have E[p¢7] = col, thus E[a?(t)] = ¢o for i € [d].
Besides, by assumptions that {||¢x||*} is u.i. and the p.d.f of
¢ has the rotation-invariant property in Assumption 3, we can
obtain that E[a}(t)] = c1,4 € [d] with a positive constant c;.
These properties will be used in the following analysis without
citations.

We now prove that by(t) = ||8(t)|| has a positive lower
bound for ¢ > 0. From z(0) € D4 1, it suffices to prove that
there exists a constant b; > 0 such that

dbi (t)

—_— if bi(t) < by.
o >0, if 0 <byi(t) < by

27)

(28)

(29)
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By the fact v] (t)v;(t) = 1 for i € [d], we have

0 d”;f) =0. (30)
Thus from (21a), (26) and (30), we have
dbu(t) _ d[B"(t)os (1)
dt dt
7 )P b o 02 = g ) 7(510)
=co i (B() + o] () (R () — cg "I F(B(1)) £ S(ﬂ(%)i)

By (26) and (28), we have 87 (t)¢ = a1(t)b1(t) and 5*"¢ =
a1 ()b} (t) + a2(t)b5(t), thus by (27), we have for i € [d],

(B(0) = Elas(t)(y tand (28 30, 1)),
(32)
where y obeys the distribution N (a1 ()b} () + aa(t)b5(t), 0?)
given a(t). Then by tanh(0) = 0, we have h;(8(¢)) = 0 and
f(B(t)) =0 for by(t) = 0, thus S(B(t)) = 0 for by(t) = 0.

Hence, by (31) and the mean-value theorem, we obtain

S(B(1)) = (b (1) — 0) 2P

TR0 . (33

b1(8)=¢(¢)
where ((t) € [0,b1(t)]. To prove (29), ie., S(B(t)) > 0 if
0 < by (t) < by, we proceed to show

dS(B(t))
dby ()

> 0. (34)

b1 (t)IO

By (26), the fact h;(8(t)) = 0 and f(B(t)) = 0 when by (t) =
0, we have

dS(B(t)) _1dhi(B(1)) .

—_— =cy —t +ol(t

dbi () b, (1)=0 dbi(t) Ty, 1= v (35)
d
_ - vi(t)dhi(B(t))

(R7Y(t) — ¢ 1[)( —_— .

0 ; dba(t) by (£)=0
To analyze (35), we consider d%(ﬁg)) ‘bl(t):o’i € [d] term by

term. Firstly, by Assumptions 1-3, the definitions of y in (27)
and a1 (t) in (28), we have E[a?(t)] < oo, E[a?(t)y?] < oo.
Then by (32), tank(0) = 1, [b()[2 + b3(1)* = [|*]?
and the properties of a(t), we obtain

()] _plad0y’
Br(t) |y, 1m0 =E [ o2 1(t)]
. {a% (2 (b <Z>2+ OLAC) . @] (36)
& {ai‘(ﬂb’ﬁ(t) +Z§(t)a%(t)b§2(t)] >0

Secondly, by (32), we have

ha(B(t)) = E[ax(t)y tanh (‘“(75)0%)]

Similar to (36), with simple calculations, it follows that

w (’?,(t)} SOLTONNE)

(37

—9E [
b1 (t):O

Thirdly, by (32) and the fact that the marginal p.d.f of a;(¢)
is even, it is not difficult to obtain that for ¢ > 2,

hi(B(t)) =0, and dhi(B(t))

by (1) =0

by (t)—O

(39)

Choose ¢ = 400 in Dy, we have — () -
et < —I and then we have v] (t)(R_l(t) —cy vy (t) >
5i0 L] (t)(R_l(t) —cy tDuy(t) > — 52+ Thus by substitut-

ing (36), (38), (39) into (35), and using Schwarz inequality,

we can obtain

dsS(B(t))
dbi(t) |y, (t)=o

_ 2E[af()a3 (Db (0)b3 (1)

3coo? -
where the facts Efa}(t)] = Ela3(t)] and E [af(t)a3(t)] > 0
derived from the rotation-invariant property of the p.d.f of ¢
in Assumption 3 are used. Thus (34) is obtained. From the
continuity of 2331 a¢ p, (t) = 0, it follows that there exists

by (f)
a positive constant b; such that djbf ((f))) |b =ct) > 0if 0 <

¢(t) < bi(t) < by. Then by (33), we have S(B3(t)) > 0 if
0 < by (t) < by, thus (29) holds. Therefore, we can obtain that
b1(t) has the following positive lower bound:

bi(t) > b = min {by, by (0)} .

_ 4 [E[ai ()]b1*(¢) + Elat(t)a3(8)]05° (1))

5000'2

18*|1°E [af (t)a5 ()]

3coo?

>0,

(40)
1B(#)]l- By (32),

We now derive an upper bound of by (t) =
| tanh(-)| < 1 and Assumptions 2-3, we have

hi(B(1)) < Ellax(t)y[] — bi()E[ai(t)] = po — cobi (1), (41)
where pg = E [|a1(t)y|] < co. By (37), (39) and (41), we have

IFBEI < [P (B(E) + ha(BE)I] < p1 + cobr(t),  (42)

where p1 = po + E[|az(t)y|] < co. Thus by (31), we have

dby (t _ 1 _
% < Co l(p() —coby (t)) + gCO 1<p1 + coby (t)) <0, (43)

if by (£) >

bl(t) S B = max{(?)po +p1>/(260), bl(O)} .

Step 2: Proof of 57 (¢)5* > 0 for all ¢t > 0.

For this purpose, by 57 (t)8* = b1 (¢)bi(¢t) and b1 () > 0
derived in Step 1, we only need to prove that bj(¢) > 0 for
t > 0. For this purpose, by the fact that b3 (0) > 0 for 2(0) €
D 41, it suffices to show that

3”5’%. Thus by (t) has the following upper bound:
(44)

db(t
bcllt( ) >0, if bi(t) >0 (45)
By (26), we have b32(t) + b32(t) = || 3*||? and then
db(t dbs(t
i(t) (jhp:— 2(1) jhf). (46)
dbs (t)

In order to prove (45), we first analyze the properties of =2
for 0 < [b5(t)] < ||8*||. By b2(t) = 0 in (26), it follows that
220 — 0, then by (21) and (26), we have

dbz( ) d[B7(t)va(?)] Fondu2(t) o dB(t)
dt dt =B85 a2 (*) dt (47,
dvg(t)

= bl (t)—, +uz (R () F(B(1) =0.
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Thus by (30) and (47), we have

abs(t) d’l)g( )

*T dvy (t)
dt =5

dt
bi(t)

= bi(H)o1 (t)

b*(t) 'r —1 _
)

T 1 _
bﬁyﬂmR (t) =5 " DIB(D).
We analyze the right-hand-side (RHS) of (48) term by

term. For the first term, let us denote the marginal p.d.f of
(a1(t), az(t)) as follows:

:/-~-/g(a1(t),-~- Laq(t))das(t) - - daq(t), (49)
R R

where g is the p.d.f of the random vector ¢ defined in (27).
Since tanh(z) is odd and z tanh(z) is even, by (37), we have

g tha(B(1)) (48)

@wsz@m@ﬁmw+@w@m+ﬂ
mm(awmwhqu+@w@w+ﬂﬂ

27ra///a2 [a1 (£)b} () + az(t)bs(t) + w]

.t mm>[uw9+@w@m+w>

2

Glai(t), as(t)) exp (-“’) dwdaz(t)day(t)  (50)

/ / a1 a2 (t))
2w0 Ja, (1)>0 az(t)>0

(t) 2() + I(=a1(t), —ax(t))
—|—I (a1(t), —az(t)) }3(a1(t), az(t))das(t)day (t)

2o ~/al(t)>0 /ar_;(t)>0 ( (t), |ax ()01 (1)

+az(t)b3(1)]) — F(c(t), lar(£)bi () — a2(t)03(1)]) }
g(ar(t), az(t))daz(t)dan (),
where I(ai(t),az2(t)) = aa(t) [glar(t)bi(t) + az(t)b5(t) +
] tanh ((BOL 0o ()b*<2t>+az<t>b (t>+w1 exp< ) du,

the function F(c(t),x(t)) is defined in Lemma 5 with
c(t) = a1(t)b1(t) > 0 (since by1(t) > 0 by (40)). Besides,
for positive ai(t), az(t) and bi(t), we know that the term
an(OBE(E) + as (B3O — ar(BBE(E) — as(B)b3(8)] has
the same sign as b5(¢), thus by Lemma 5, it follows that
Fc(t), |aa (O03(8) + as(®b3(B)]) — F(e(t), aa (03 (£) —
az(t)b3(t)]) has the same sign as b3(t). Therefore, by (50),
we have for positive b3 (t),

ha(B(t)) = 0if 0 < b3(2) < |87,
ha(B(t)) < 0 if —||B%]| < b3(t) <0,

where the equality holds if and only if b5(¢) = 0. Choose

-1
e = 212000 by (42), (44) and (48), we obtain that 5"

has an opposite sign with b3(¢) at ¢ = 0. Besides, from (25) it

(51

follows that ||[R'(t) — ¢y *I|| = O(e™"). Then by (48), (50),
(51), we can derive that for positive b3 (¢),

D5 < o if 0 < b3(0) < 187,
dt
;t >0if — ||g| < b3(t) <0,

where the equality holds if and only if b5 (¢) = 0 (The detailed
proof of (52) is provided in Appendix I). Therefore, by (46)
and (52), (45) is proved. Moreover, by taking the Lyapunov
function as b32(t) and using the Lasalle invariance principle,
we obtain

lim b5(¢) = 0, and |b5(¢)| < [b5(0)]. (53)
t— o0
Thus by (53) and b} (t)? + b5(t)? = ||3*||%, we have
b1(0) < b1 (t) < [IB7]. (54)
Combining all the above analysis, and letting

& in [ Lo o h2(8(0))]
= —Ccp, ——— 55
€ mln{4co, dpo + cob , 55

then by (40) and (54), we obtain 57 (t)5*
bbi(0) > 0 for all £ > 0.

Step 3: Analysis of the Lyapunov function.

We first establish the stability properties of 3(t) in (21a)
for the case of x(0) € D41 using the Lyapunov method.

By the definition of D4, (25) and (55), we know that
R(t) > 3¢ol,t > 0. Now we consider the following Lyapunov
function:

= bi(t)bi(t) >

1~ ~
V(B() = 55T MR(A(),
where 3(t) = 5(t)—/3*. Then we have the following derivative
of V along the trajectories (21):

av(B(t), R(t . 1~ ~

WL _ g (1) p((0)) + 357 (1) (@ ~ BE) At

(56)

For the first term on the RHS of (56), by (26), we have

BT F(B() = bi(t)ha(B(1)) = b3(Dh2(B(E),  (5T)
where by (t) = by (t)—b(t). With simple calculations, we have
by (32),

bi(t)h1(B(t)) = bi(8)(La(B(1) + La(B(1))),  (58)
where
Ly(B(t)) = Ela1(t)[ar (1)b7(t) + az(t)b3(t) + w]
tanh (% t)b1(t)[a1(t)b*(tg+a2( )b (%) +UJ]) i (B)x
o050+ )t (200 ai L))
and
La(B(t)) = E[a(t)]ar ()b (t) + w]x
touiy (L OLOO L))y, 0,
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with w ~ N(0,02) given a1(t) and ay(t). By mean-value
theorem, on the one hand, we have

b1() L1 (B(t)) = bi(1)b3(H)E[as (t)as(t)
+ ll(t> tanh’ (ll(t>) }] < 1.200“31 (t)

{ tanh (11 (2)) (59)
[1b3(2)];

a1 (1)ba (t )(al(t)bl( )+az ()¢ (t)+w) , C1(t) is be-

where [1(t) =
tween 0 and b3(¢), and the last 1nequa11ty holds by | tanh(z)+
ztanh’(z)] < 1.2 and Schwarz inequality. On the other
hand, by Lemma 3 and Assumption 2, we have a;(t)b;(t) =
E[[a1(t)bi(t) + w] tanh (al(t)bl(t)[‘?z(t)bl(tHw])|a1(t)], then
it follows that

La(B(t)) = Elay (t)]ar ()b3 () + w] x
a1 ()b (t)[ay (8)b3 (1) + w]>

tanh ( >
[a1 (£)b1 (£) + w] tanh (2 a (¢ >b1(t)[a;(2t)b1(t) + ] )
b

= — b1 ()E[a?(t){ tanh (I2(t)) + lo(t) tanh’ (I2(¢)) }],

where I5(t) = al(t)b‘(t)[al(t)cz(tHw] , Ca(t) is between b (t)
and by (t). By (40) and (54) we have mln(g‘Q( ), Ca(t)by(t)) >
min (b12(0),b%) £ ¢ > 0. By taking @ = a;(t)b;(t) and a =
a1 (t)¢2(t) in Lemma 4, we can derive that

bi (1) La(B (1)) < —CBi (1),
where C' = E[a?(t)(1—exp (— E;i(zt) ))] is a positive constant
by Assumption 3. Then by (56)-(60), 52(t) = b2(t) + b32(t)
from (26), and G = col, we have

d B
TV (B(t), R(t) < —CbI(t) +71(t)
< = Ceg'V(B(1), R(1)) + ra(t),

where 7i(t) = 1.2co|b1(t)]|b5()] — b3(t)h2(B(1)) +
1B7(t) (G — R(t)) B(t) and ro(t) = ri(t) + Cb32(t) +
Cey'B7(t) (G — R(t)) B(t). By (25) and (53), we have
lim r5(t) = 0. Hence, by Lemma 8 and the comparison prin-
cip(ice [47], we obtain tlgglo V(5(t), R(t)) = 0, then from the
positive-definiteness property of R(t), we have hm Bt) =
B*. Therefore, we obtain that D.; = {z : § = ﬁ* R G}
is the invariant set with domain of attraction Dy ;.

We now provide the additional analysis for the other two
cases of £(0) € Dy o and z(0) € D4 3.

For the case of x(0) € Dy, similar to the analysis for
the case x(0) € D4 1, we can obtain that D,y = {z : § =
—f*, R = G} is the invariant set with the domain of attraction
D 42 by choosing the Lyapunov function as %BT(t)R(t)B(t)

— al(t)x

(60)

(61)

with 3(t) = B(t) + B*.

For the case of x(0) € Dy 3, we have bj(0) = 0 and
b5(0) = ||B*||. Besides, by (46), we have %t(t) = 0 if
b*() = 0 and b5(¢) = [|8. Thus we know b5(t) = |||

and bi(t) = 0, i.e., z(t) € D3 for all ¢ > 0. Furthermore,
by (26)-(27), it follows that

hi(B(t)) = E[as (t)[a2(t)|87[| + w]x
tanh (al(t)bl B)la2 O8] + ] )] - E[a%(t)bl(t)] ©2

Besides, by (50), we have ho(8(t)) = 0, and (39) still holds.
Thus by (25), (31), (41) and (62), we have
dbq (t _ _
% = (g ' +0(e™))hi(B(1)).
By (62), we have that if b;(t) = 0, then hy(5(t)) = 0
dhi(B(1)) 0, and if b1(t) is positive and large, then

and b, (1)
h1(B(t)) < 0 and dzlb(fég)) < 0. Thus it is clear that there
exists a constant ¢* > 0 such that hy(5(t)) < 0if b1 (t) > ¢
and hi(B(t)) > 0if 0 < by(t) < ¢*. So by Lemma 8, we
have l_i)m bi(t) = c¢* if b;(0) > 0. Similarly, we can get
lim bi(t) = —c* if by(0) < 0, and by (£) = 0 if by (0) = 0.
Therefore, we obtain that D.3 = {z : 8 € Dys,R = G} is
the invariant set with domain of attraction D4 3, where D,
is defined in (24).

The above analysis shows that the assertion (24) holds. By
Proposition 1, the remaining proof concerns the compact set
D,. Below, we give an explicit expression for Dg:

Dy = {z :||8]| < max{mo,b},[|R - G|| < e1},

(63)

(64)

where mg = \/2||6*||2 +2¢5'02,0 < g1 <&, band ¢ are
defined in (44) and (55), respectively. From ||3(t)|| = b1(t),
(25) and (44), it is clear that the trajectory of (21) that starts
in D remains in Dy for t > 0.

Step 4: Convergence of the sequence {5}

For the remaining proof, we need to verify Condition B4) in
Proposition 1. By Lemma 1, it follows that {¢} is bounded
i.o. with probability 1. We only need to prove that the event
{zy € Ds,k > 0} happens i.0. with probability 1.

We now analyze the properties of Ry and 3, respectively.

Firstly, by (18) and Assumption 3, we have

k
. .1 .
fim Ris = lim 52 o0t =G (69

where G = ¢pI. Then for any € > 0, the event | Ry+1 — G| <
¢ happens i.0. with probability 1.
Secondly, we show that
{||Bk+1ll < mo, k > 0} happens i.0. with probability 1.
(66)
Let us denote Uy, = [¢f -+ ¢7]" and Y1 = (1 -+ Uky1]”
with ¢;41 defined in (6). By (65) we have

1

k—o0
UL ; — G
L k = k/’ Z ¢f )
then by Lemma 7, we have for sufficiently large k,
Y U (WE W) " WY < VL Vi

By Algorithm 1, it is evident that

(67)

k
= Pip1 Y & = (Py '+ WR0) T LY,

t=0
thus by (67), it follows that

| Bt
_ - _1 _ r 1
<[Pyt + L) 2 || 1(Fy 1+\Iv T0) 20 Y|

Br+1

(68)

T T -3 !
<[ (WE W)~ 2|H|Yk+1H—H( Vi Vi) HHTYkJrlH
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By the definition of ¥k in (6), model (2), Assumptions 1-3
and the fact | tanh(-)| < 1, we have

k k
I 2 wr
*HYkHH =% D Ui < T Z[(ﬁ $0)? + wi]
=0 =0

k—o0

27 2001877 4 202,

Thus we have

limsup || Bg41]| < mo, as., (69)
k— o0
and (66) holds. Therefore, by (65) and (66), we have {x}, €
D,} happens i.o. with probability 1 and Condition B4) is
verified. Then by Proposition 1, we have z;, — D, as k — oo
almost surely and D, is defined in (24).
We now prove that 5 converges to a limit point 5* or —3*.
We first show that §; will not converge to the unstable
point set D, of D. defined in (24). To establish this, it
suffices to verify that kli_)m BrB* # 0. By Algorithm 1, we
can see that 3 is a rati(o)onal function of random variables
{20, b0, w1, ,2Kk—1, Pr—1, Wy }, Which are jointly absolutely
continuous with respect to Lebesgue measure by Assumptions
1-3. From the results in [48], it follows that 3, is also
absolutely continuous with respect to Lebesgue measure. Then
with the initial value of Algorithm 1 satisfying that 8y # 0,
we have for any £ > 1,

P(BTB* #0) =1. (70)

By (70) and the fact that the points in D, are saddle points,

we can derive 3] 3 - 0 (with its detailed proof in Appendix

I). Thus B will converge to the set {8*, —8*} almost surely.
We then prove that 85 converges to a limit point. Denote

Fr = o{de, ze,wi, t < k} (71)
and
€k+1 = Yk+1 tanh (%) — Br, Pk (72)
By model (2) and Assumption 2, we have
E ez 1| Fk] < 3[(87éw)® + (BLow)’] + 307 (73)

From (7b) and (65), it follows that 1P7" = L[S0 ¢y, +
Py'l = G > 0, thus We have HPkH = O(4) and then
[ Pit1—=Pell = [|Pot1 (P = Py ) Pill = | Peradndp Prll =
O(”%H) Hence, by (7b), we have

[EAs

ar || Prdi|® = tr(Pes1 — Pr) = O( 2 )-

Moreover, by the assumption that {||¢||*} is u.i. in Assump-
tion 3, we have sup,; E [[|¢x]|*] < oo. Thus by (7a), (69),
(73), we obtain

> EllaxPedreriall’] =Y ElE[|larPeorers ]| Fi]]

k=1 k=1
<3 E [akl| Pudrl*[(8" ¢1)° + (BT 6w)* + 7]
k=1
Z ||¢kH ] < oo,
k=1

(74)

Since for any sequence of random variables Zj,
S E[|Zk]] < oo implies Y oo, Zp < oo [36], we
have that >, ||ax Prdrer+1]|* converges a.s. Thus by (7a)
and (72), we have
> NBrsr = Bell> =D larPeoreria|* < oo.
k=1 k=1

(75)
Hence, kli_}m |Bks1 — Brl|?> = 0, which means that (3} cannot
jump from a small neighborhood of 3* to a small neighbor-
hood of —f3* infinite times. Consequently, 35 will converge
to a limit point which is either 8* or —(3* almost surely.

We now proceed to show that our algorithm can handle
the case 8* = 0. At this time, bj(¢) = b3(¢) = 0. Then by
the facts x tanh(z) < 22, we know hy1(B(t)) < 0if by(t) >0
and hy(B(t)) > 01if by () < 0, where the equality holds if and
only if by () = 0. So by taking the Lyapunov function as b?(t),
and using (31) and Lemma 8, we can obtain hm b (t) = 0.
Moreover, Condition B4) holds for D, in (64) for p* = 0.
Therefore, by Proposition 1, we have 8, — 0 as k — oo
almost surely.

Therefore, we complete the proof of Theorem 1. ]

B. Proof of Theorem 2

Firstly, we prove the inequality (13). Without loss of gener-
ality, we assume that {¢y, yx11} is generated by the sub-model
Yk+1 = BT ¢ + wgr1. We now show that if lim By = 57,

k—o0
then (13) holds. By (11), (71) and the deﬁnitic?n of I}, the
probability that {¢x,yr+1} is categorized correctly can be
calculated as follows:

P(Zy = Ip | Fr)
=P ((yr+1 — Bior)* < Wrtr + BLodw)?| F)
=P (Bl ¢ (B o1 + wiy1) > 0| F%)
=0 (|87 pr|/0) + 2@ (=|B87 dkl/0) — Ulisr 6,675 <0}
Thus by the convergence of J; and Assumption 3, we have

Jim P(Ty = I;) = lim E[P(Z, = T;|Fy)]
> lim [E[® (16" ¢x|/0)) — 2E[|5} 6k| /]

. (76)
=1— lim E[®(—|8" ¢r|/0)]
k—oc0
>1 - E [exp (~(679)/(20%))]
If hm B = —[B*, we can obtain the same result by a similar

analysm as that of (76). Hence, the inequality (13) is obtained.
Secondly, we prove the inequality (14). We now show that
if klim Br = B*, (14) holds. Denote
—00

Ap1 ={w : yry1 = 8 op + w1},

Ao ={w: Y41 = =87 ¢ + Wi},

Ars = {w: (yhsr + BLon)> < (yhyr — BLor)*} N Ak,
Apa = {w: (ybsr — BLoR)* < (yhyr + BLor)*} N Ak 2,

where Ay, 1, A 2 denote the events that the data {¢y, yx+1} is
generated by these two sub-models, Ay, 3, Ay 4 represent the
events that the data {¢y, yr+1} is categorized into the wrong
cluster, and thus A1 — A3, Ak — Aga are the events
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that the data is categorized into the correct cluster. Then the
evaluation index (12) can be written as follows:
n

1
Jn :E Z(yk+1 - Blz:—(bk)g I:H{Ak‘,l_-Ak,B} + I[-AkA]
k=1

1 — - (77)
+ E Z(ykJrl + 5k¢k)2 [H{Ak,z—AkA} + ]I-Ak&]
:Ln 1+ Ln 2+ Ln 3
where L1 = L1377 1{ Yer1 — BLow)’Ta,, + (Yes1 +
B dx) ]IAM} Ln,2 Zk 1{ Yot + B o) — (Yr1 —
IS e {1 —BL k) > — (Yrs1+

5Z¢k)2 I[.Ak,s and Ln73
ngbk)z L4, .- We now analyze the RHS of (77) term by term.
For the term L, ;, we have the following expression:

Lot =2 S (500

k=1
2 1 —

2
— W11 + — w
”Z Br orwi11la, , n; k41

where (i, = 8, —/*. By Assumption 2, nh—{%o % Y oreq wzﬂ —

- - Z Brorwi41la, |

k 1

o?. By Jim Br = 0 and the average boundedness of ||¢ ||
:—00
and ||¢rwg41]| from Lemma 1, we obtain

lim L, =07 as. (78)

n—oo
For the term Ly, o, let us denote A; = {(8*7¢)? + * pw <
0} and A; = {y = B""¢ + w}, by Assumptions 1-3, we
have P (A1 N As|¢) = P (A1]@) P (Azl) = p@(— 7720).
Besides, from Lemma 1, [3*7 ¢ ¢ 8% + 5" dpwi+1] La,na,
is asymptotically stationary and ergodic. Thus by Assumptions
2-3 and (76), we obtain

n

4 * *T
Jim Lyy = lim — 3 [Blop0 8" + BT drwnia] Lay s
k=1
=4E [(ﬁ*T¢>2E [H-AlﬁAz |¢H +4E [IB*T¢E [wHA1ﬂ-A2 |¢H
=4E[(57¢)*P (A1 N Az29) |
Brrel [T ( w? ) ]
+ 4pE we dw
b {\/ 210 J_0o P 202
=4pE [n(¢)] .
(719)
Similarly, for the term L,, 3, we have
lim Ly = 4(1 - p)E [n(9)]. (80)
Funhermore since for any positive constant a, | __; a exp (—

)dx <o?exp (- ) we have 7(¢) < 0. Thus by (77)-
(80) (14) is obtained. Slmllarly, if khm Br = —p*, we also
—

have (14). Therefore, we complete the T)oroof. |

C. Proofs of Theorem 3 and Theorem 4

Denote zj, = [0 ; 0] , vecT (Ry)]", similar to (19), it is not
difficult to obtain that zj, evolves according to the following
dynamical systems:

1
Th1 = T + EQ(%, Ohes Yk+1)s (81

where Q(Zk, Pk, Yr+1) is determined via Algorithm 2. In order
to analyze (81) using the ODE method, we introduce the
corresponding ODEs as follows:

d -1

% 01(t) = R~ () f1(6:(1)), (82a)
d;f’z (t) = B~ () £(001)), (82b)
- R() =G = R(1), 820)

where f1(01(t)) = klgrolo]E [0k (Yrg1 — 07 (D) on)], f2(0(t) =
kli—>m E[ér ((yr+1 — 07 (t)dr) tanh (95(”‘z’k(y’f+1*95(t)¢k)> _
03 (t)di)]. 6(t) = (61(t),02(t)) and G = hm ]E[qsmk]

Before giving the proof of Theorem 3, a related lemma is
given as follows:

Lemma 6: Under Assumptions 1’ and 2-3, Conditions B1)-
B3) in Proposition 1 are all satisfied in the open area D =
{z : R > 0}, where x = [0] 03 vec” (R)]".

Proof of Theorem 3: We will analyze the convergence of
0,1 and 0 o separately by verifying all conditions of Propo-
sition 1. By Lemma 6, it remains to prove the requirements
on the trajectories of ODEs (82) and Condition B4).

Step 1: Convergence analysis of the sequence {0} ;}.

It is clear that the trajectory generated by (82c) is the
same as that of the ODE (21b), which evolves according
to (25). We now establish the stability result of (82a). For
this, let us construct the Lyapunov function Vi (01(t), R(t)) =
207 (t)R(t)01(t) with 6, (t) = 61(t) — 07. Then we have

~ 1- ~
OO RO _ g7 1), (02(0)) + 7 (DIC ~ BENG )
(83)
For the first term on the RHS of (83), by (9), (82), we have

01 (1) F1(01(8) = lim E[0](6)ox (yisr — 07 (t)on)]
— lim E [0 (1)6x (E [yn+119] — 07 (D6) |
- ) Jim E 61671 61(0) = —eoll B (D],

where the last equality holds by Assumption 3 and cy is a
positive constant defined in (25). Then it follows that

(84)

SVA0:(0), R() = ~2V (10, R(D) + (1),
where 7(t) = 107(t) (R(t) — G)61(t) tends to 0 by (25).

Thus by Lemma 8, we have tllm V1(01(t), R(t)) = 0. From

the positive-definiteness property of R(t), it follows that
tlim 01(t) = 0%. Therefore, we obtain that the ODE (82a) has
— 00

the invariant set Dy ; = {[07” vec” (G)]" } with the domain of
attraction D' = {v = [#" vec"(R)]" : R > 0}.

Denote D, = {v = [07 vec"(R)]" : ||0|| < my,e1] <
R < &I} with mi = /3co([|B5]12 + [|B5]]?) + 302 and
0 < €1 < eq. It is clear that the trajectories of (82) that
starts in D’ remains in D’. Besides, similar to (69), we
have limsup;,_, o ||0x+1,1]| < mq, a.s. Thus Condition B4)
is verified. By Proposition 1, we have

lim 6, =07, as. (85)
k—o0

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on January 02,2026 at 08:31:54 UTC from IEEE Xplore. Restrictions apply.

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2025.3649290

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (SEPTEMBER 2023) 13

Step 2: Convergence analysis of the sequence {6} }.

The proof is similar to that of Theorem 1 and we only
need to establish the stability of the ODEs (82b). We just
provide the analysis for 62(0) € D4 1, and omit the analysis
for 92(0) c DA72 and (92(0) S DA73.

For this, consider the Lyapunov function V5(62(t), R(t)) =
10:(t)" R(t)0s(t) with 0(t) = 02(t) — 65. Then we have

dVa (02 (t t ~ 1~ ~
WO RO) _ 301 12000)) + L35 0)1G — RN,
(86)
We now analyze the first term on the RHS of (86). Denote
my,1 = Yk+1 — 077 ¢k, then by (8), we have my, , =

2,057 1. + wi41. Moreover, by (82), we obtain
f2(0(t)) = ha(0(t)) + h2(6(2)),

whete hy(0(1) = lim E[oy(m,, tanh (Z0%575e)

03 (t)¢x)] and ho(f ()) = fa(8(t)) — m1(6(t)). Since the
analysis of 03 (£)hy(6(t)) is the same as that of 37(t)f(5(t))
in (56), from (61) in Theorem 1, we have

03 (DR (0(t)) < =CllB2(8)II* + Cb3>(t) + 1.20102(8) b5 (t)],

(88)
where C' is a positive constant defined in (60) and the term
b3(t) will tend to zero. Let 01 = 651 — 07. By mean-value
theorem, Schwarz inequality and the fact that |tanh(z) +
ztanh'(z)| < 1.2, we obtain that

03 (1)h2(6(1)) = 05 (1) (f2(6(t)) —
= lim E[03 () pr 0% 0k.1 [ tanh(Ix (1)) +

<ea|:(8)] lim (ElIfka]?) ",

87)

h1(0(t)))
+ I(1) tanh’ (I(£))]]

(89)
where Ip(t) = is between 017 ¢, and

07 (t)y, and ¢y = 1. 2,/E||¢> [%. Then by (86)-(89) and G =
cOI we obtain
dVa(02(t), R(t))
dt

05 (f)¢k(yk+1 Ck(t)) O

< —Cey"Va(02(t), R(t)) + r(t),

where r(t) = Cb2(t) + 1.2]6:()[|b3(t) +
B Jim EGea|)? + (3~ Cep OG-
R(t))05(t). By (25), (85), and the fact b3(t) — 0, we
have t1i>120 r(t) = 0. Thus by Lemma 8, it follows that
tliglc Va(02(t), R(t)) = 0, and by the positiveness-definite
property of R(t) from (25), we have tlgrolo 02(t) = 65, and the

(90)

assertion (24) (replacing 8* with 63) holds.
Then by Proposition 1, we have

lim 62 =05, or lim 6= —65, as. 91)

k—oo k—o0
Thus, the results of Theorem 3 can be obtained. |
Proof of Theorem 4: The proof is similar to the way used
in Theorem 2, which is omitted. |

VI. SIMULATION RESULTS

In this section, we conduct simulations for the asymmetric
MLR problem to verify the effectiveness of our algorithm.

Consider the data {¢y, yr+1}7>, generated by the following
dynamical model:

Yr+1 = B Olzy =1y + B3 bkl ——1) + w1,
Or+1 = 0.5¢; + ex+1,

where ¢, € R0, 2, is i.i.d with P(z, = 1) = Pz = —1) =
0.5, ext1 i N(0, I1g), w41 i N(0,1). Tt is clear that the
regressor {¢y} is dependent, and all assumptions in Theorem
3 are satisfied.

Firstly, we conduct Algorithm 2 to estimate the unknown pa-
rameters 37 and 33. The estimation error is defined by Sj,; =
/Bk,i —ﬂ%hi, (Z = 1, 2) with Ik’,i = arg minj=1,2{||,6’k7i —BJ* H}
From Fig.1, one can see that estimation errors Bkl(z =1,2)
tend to zero along the time k, and the within-cluster error
(17) also decreases to the noise variance o2 along the time
k. Moreover, we note that Zw, (i=1, 2) are convergent, i.e.,
(Br,1, Br,2) will converge to a limit point belonging to the set
{(B,55), (B3, 87)}, which demonstrates the effectiveness of
our algorithm.

Secondly, we compare the performance of Algorithm 2 with
the population EM algorithm, which is employed in most
investigations for the MLR problem. The population EM with
the finite number of samples [29] is executed as follows:

E-step:
_ BT b1 2
i exp (7 (Y41 25;,1@») )
Qp ¢ = — 37 2 —ar 2N
exp (_ (Ye+1 25;11%) ) + exp (_ (Yr+1 253‘2%) )
M-step:

n —1 n
1 i T 1 i
Bry1,i = (n Zak,t%%) (n Zak,t¢kyk+1>v
k=1 k=1

where 7 = 1,2, ;; is the estimate of 3] at the iteration step
t, a};’t is the conditional probability of {¢dx,yx+1} belongs
to the ¢-th sub-model based on the current estimate [ ;,
{bk, yr+1}}_, is a collection of n samples, and n is often
chosen sufficiently large to approximate the population EM.
In our simulation of the population EM algorithm, we
choose the number of samples n to be 5000 and the total
iteration step 7" to be 20. Both Algorithm 2 and the population
EM algorithm are initialized with the same values. Specifically,
fori=1,2andj =1,---,10, B(JM is sampled from a uniform
distribution U(B:j — K, B:j + k), where 6371- and 627 are the j-
th element of J; ; and [}, respectively. It can be seen that the
parameter x measures the distance between the initial values
and the true parameter set. For each simulation with a given
k in [0, 20], we run 500 independent realizations and plot the
convergence probability of the algorithms, i.e., the proportion
of 500 simulations that converge to true parameters, about the
parameter « in Fig.2. From the simulation results, we see that
the convergence probability of our algorithm does not depend
on the parameter x, while the convergence probability of the
population EM algorithm will decrease to zero as x increases.
The results show that the estimates generated by Algorithm 2
will converge to the set {(37, 55), (85, 87)} for any non-zero
initial values, while the population EM algorithm does not.
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Fig. 1. Estimation error and clustering performance under Algorithm 2.
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VIl. CONCLUSION

In this paper, we investigated the online identification and
data clustering problems of two classes of MLRs. For the
symmetric MLR problem, we proposed an online identification
algorithm based on the EM principle, and for the first time,
established the convergence to the true parameter set for any
non-zero initial value without imposing i.i.d data assumption.
For the asymmetric MLR problem, we designed a two-step
online identification algorithm that separately estimates two
parts of the model and obtained the corresponding global
convergence to the true parameter set for the first time.
Furthermore, based on the parameter estimates, we showed
that the data clustering performance is asymptotically the same
as the case where the true parameters are known. We note
that it is difficult to identify the MLR model with more than
two components or with two unbalanced components since the
log-likelihood criterion function becomes a more complicated
non-convex one which does not possess the nice property used
in the symmetric MLR where the local maxima are the true
parameters of the sub-models. For the general MLR, we are
only able to establish a local convergence result [49], and
more research efforts are called for in future investigations.
Besides, there are several interesting problems that need to
be investigated, for example, how to relax the asymptotically
stationary and ergodic assumptions on the regressors, and how
to address the adaptive control problem of MLR models.

APPENDIX |

Lemma 7: [50] Suppose that ¥ and Y are any n x [ and
nxr-dimensional matrices, respectively and W7 W is invertible.
Then we have Y™ U (U7 0)~ 10Ty < YTY.

Lemma 8: [47] Consider the following ODE:
dV (t)
— ==Vt t
- (t) + (),
where lim r(¢) = 0, then we have lim V(t) = 0.
t—o0 t—o0

A. Proof of Some Equalities and Lemmas

Proof of (15): By Assumption 3 and the property of

Gaussian distribution, we have that *7¢ ~ N(O,/B*ZZB*).
(B ) )]

202

By simple calculations, we have ]E[exp ( —
g
W.Thus (15) holds.

Proof of Lemma 1: For the first statement, by Assumptions
1-3, from the stationary and independent properties among
Zk» ¢k and w1, it follows that {dy} approaches a stationary
process asymptotically with bounded fourth moment. Besides,
{dy} is ergodic since each element is ergodic. For the second
statement of this lemma, it is not difficult to obtain that there
exists a sequence of shift transformations {7}} such that
limg_yoo T, = T and T is measure-preserving. Then follow-
ing the proof-line (accompanied with a measure-preserving
transformation) of the result that any measurable function of a
stationary ergodic stochastic process is stationary and ergodic
[36], we obtain the desired result. |

Proof of Lemma 2: Let us first verify Condition B1). For
x € D and z; € U(x, p(x)) (i =1,2), by (19), we have

||Q1(£C1,¢), y) - Ql(‘r27¢a y)“ < R1($,¢,y,p)||$1 - 5172”,

(92)
where
0Q1(x,,y) 0Q1(x, 9, ) }
Ry =
= || SRR 20
] lol? [ y? lolllyl + 1l 81
< aw |10 (G )+

with p(r) being sufficiently small such that any point 7 =
[ B7 vecT(R) |” in the area U(x, p(x)) has the property that
Amin(R) > 0 by the perturbation theorem [51], and the second
-1

inequality holds by 28— = —R~'® R~! [52],
OR™* 1
— l=lIRF"'®@ R = ——,

or | =1 e F =
where ® is the Kronecker product for matrices. Thus by (20)
and (92), we have

||Q($17¢a y) - Q(‘/I"27¢7 y)” S R(I‘,¢7y)”$1 - :CQH’

where R = R; + 1. Thus for fixed ¢ and y, Q(z,d,y)
is locally Lipschitz continuous with respect to x € D, and
Condition B1) is satisfied.

For the verification of Condition B2), since R is defined as
the Lipschitz constant, we only need to verify its upper bound
to satisfy B2), which is quite obvious because ||| yr+1s
orl*y2,, and [[¢x]|* are all asymptotically stationary and
ergodic by Lemma 1 and model (2), and the supremum over
p(z) only concerns with 5 and R and is independent of the
time instant k.

The verification of Condition B3) is straightforward by
Lemma 1 and model (2), and the details are omitted. This
completes the proof of Lemma 2. ]
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Proof of Lemma 3: From the facts that z tanh(z) is an even
function in 2 and Eyw%N(a,n?)—i—%N(—a,a?) [y tanh (%)] =a,
we can easily obtain the desired results. |

Proof of Lemma 5: From the facts that tanh(z? and
ztanh'(z) are bounded for z € R, it follows that 2L g’f’w)
is bounded. Then we have that

dF(c, x) > Of(c,z,w) w?
P B P NN — —\d
dx / oz exp( 202) v

(w + )

:/_Z [tanh (CT) — tanh (y)}
exp ( — %)der/_oo [Wt W (c(wg—; a:))
_ c(wag ?) tanh’ (c(wU; x))] exp (— %)dw

2L (c,z) + La(c, x).

Since tanh( ) is odd and increasing, we have for z > 0,
Ll(c x) =27 [ta h(c(w+w)) tan h(M)} exp (—
w? Jdw > 0. Moreover, for z > 0 and w > 0, we have

202 5
exp ( — (WQ;S) ) > exp(— %) By this inequality and
the fact ztanh'(z) is an odd function in z, it follows that
oo w—z)2
Lo(e,x) = 2[5 2 tand (5#) [exp ( — “5555) — exp (~
2
%)]dw > 0. Lemma 5 thus is proven. [ ]

Proof of (52): We just provide the proof for the first part
of (52), ie., @20 < 0if 0 < b3(t) < ||5*[|, and the second
part can be obtalned by following a similar way. By (25),
(42) and (55), we have [Jua(t) (R (2) — e DB <

—tl

e o (p1+cob) = £ et Denote S(B(t)) = g ha(B(t)—

éae” t. By (48), we have db;t( <-h (t)S(B( t)). To prove
dbgt(t) < 0, it suffices to show that S(ﬂ( )) >0 fort > 0.
From Lemma 5 and its proof, it is clear that there exists a
positive constant m; such that for any = > 0, ¢ > 0, we have

0 < o) < 5, Then by (50), we have

WO 2 [
db3 (t) 270 Jay (£)>0 Jaz(£)>0 ©3)
dF (c(t),x(t))|_ _
aup | (D), 2() (a1 (1), as(t))das (t)dar (t) < &,
() dz(t)
where ¢; = ;0\/@;0 Besides, we have |dh2(B(t))| = w;;gg(g)) x
dbz(t &y 18 ”\S( B(t))|. Denote ¢3 = HB I, we have
dS(p(t dh t .
(6( )) — CO—I 2(6( )) —l—ége_t > —53|S(ﬁ(t))| +é2e—t
dt dt
Thus we can obtain 45 (5( t))|s B(£))=0 > cae”t > 0. Using

the equality S(3(0)) > 0 derlved from (55), it is clear that

S(B(t)) >0 for all t > 0. [ |
Proof of Lemma 6: The lemma can be obtained similarly to
Lemma 2, and proof details are omitted here. ]

Proof of B 8* - 0: We prove 8 3* — 0 by contradiction.
Firstly, for 2 = [B7 vec"(R)]” € Da, from (29),
(31) and (55), we have that if 0 < [578*| < b and
IR — col| < e, then there exists a positive constant
a such that B7B3*B*"R-'f(B) > «alf7B*| > 0.
For any integer n > 0 and any A > 0, we define

m(n,A) = max{m : > 1 < A} If gip* — 0,
then by (70), for sufficiently large n, there exist positive
constants d1, 02 and d3 such that 6; < |B75%| < 02 < by
and ||Bn, — Bull < 93 for m € [n,m(n,A)]. It is clear
that d3 can be sufficiently small when A is sufficiently
small. Besides, by (65), we have ||R, — col| < e for
large n, and then we have B78*B*" R, 1f(B.) > &«
for large n. Secondly, from (18) and (21), we have

Bnn.a)+1 = Bn + i mima) 1Q1(xis dirYiv1) = PBn +
ZQ(S’A) %Rnlf(ﬂn) + Ll(n, A z,) + La(n, A, z,), where
Ly(n, A,zn) = ST LQy (0, 61,wir1) — By F(Ba)]

and Lo(n,A,z,) = ZQ(S’A)%[Ql(%,@,yiH) -
Ql(xmqsmyiﬂ)]-

By Lemma 2 and the boundedness of
,, in (65) and (66), we have + L1 (n, A, z,) — 0 as n — oo,
and |La(n, A, x,)| < RiAmaXpepm,mn,a)t|Tm — Tnl} <
R163A. Thus it is evident that |B77‘-a(n,A)+lﬁ*| >
|6;;ﬂ*| + %51@A — O(A) — R153A > |ﬂ;6*| > §; for
sufficiently small A and large n. Thus there exists a
subsequence |37 3*| with a positive lower bound %, which
contradicts with 8] 3* — 0. This completes the proof. |
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