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Control of Nonlinear Uncertain Systems by Extended PID
Cheng Zhao and Lei Guo , Fellow, IEEE

Abstract—Since the classical proportional-integral-derivative
(PID) controller is the most widely and successfully used ones in
industrial processes, it is of vital importance to investigate theo-
retically the rationale of this ubiquitous controller in dealing with
nonlinearity and uncertainty. Recently, we have investigated the
capability of the classical PID control for second-order nonlinear
uncertain systems, and provided some analytic design methods
for the choices of PID parameters, where the system is assumed
to be in the form of cascade integrators. In this article, we will
consider the natural extension of the classical PID control for
high-order affine-nonlinear uncertain systems. In contrast to most
of the literature on controller design of nonlinear systems, we do
not require such special system structures as normal or triangular
forms, thanks to the strong robustness of the extend PID controller.
To be specific, we will show that under some suitable conditions
on nonlinearity, and uncertainty of the systems, the extended PID
controller can semiglobally stabilize the nonlinear uncertain sys-
tems, and at the same time the regulation error converges to zero
exponentially fast, as long as the control parameters are chosen
from an open unbounded parameter manifold constructed in this
article.

Index Terms—Affine nonlinear systems, diffeomorphism, nor-
mal form, proportional-integral-derivative (PID) control, regulation,
system uncertainty.

I. INTRODUCTION

Over the past 60 years, remarkable progresses in modern control
theory have been made, e.g., numerous advanced control techniques
including optimal control, robust control, adaptive control, nonlinear
control, intelligent control, etc., have been introduced and investigated.
However, the classical PID (proportional-integral-derivative) controller
(or its variations), which has nearly 100 years of history, is still the most
widely and successfully used one in engineering systems by far (see,
e.g., [2] and [26]), which exhibits its lasting vitality.

In fact, a recent survey [26] shows that the PID controller has much
higher impact rating than the advanced control technologies and that
we still have nothing that compares with PID. However, it has also been
reported that most of the practical PID loops are poorly tuned, and there
is strong evidence that PID controllers remain poorly understood [25].
Therefore, as pointed out in [1], better understanding of the PID control
may considerably improve its widespread practice, and so contribute to
better product quality. This is the primary motivation of our theoretical
investigation of the PID controller.

As is well-known, the PID controller has been investigated exten-
sively in the literature by numerous control scientists and engineers.
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Except for a few related studies (e.g., [4], [17], and [20]), most existing
works focus on linear systems (e.g., [1], [2], [9], and [27]), albeit almost
all practical systems are nonlinear with uncertainties. Therefore, to
justify the remarkable effectiveness of the PID controllers for real world
systems, one has to face with nonlinear uncertain dynamical systems
and to understand the rationale and capability of this controller.

Recently, we have given a theoretical investigation for the con-
vergence and design of PID controller for a basic class of nonlinear
uncertain systems (see [21], [31], and [32]). For example, in [31],
we have shown that for second-order nonlinear uncertain dynamical
systems, one can select the three PID parameters to globally stabilize
the closed-loop systems and at the same time to make the output of
the controlled system converge to any given setpoint, provided that the
nonlinear uncertain functions satisfy a Lipschitz condition. Moreover,
necessary and sufficient conditions for the selection of the PID param-
eters have also been discussed and provided in [32]. These results have
demonstrated theoretically that the classical PID controller does indeed
have large-scale robustness with respect to both the uncertain system
structure and the selection of the controller parameters. However, in
the work of [31] and [32], we have only considered second-order
uncertain nonlinear systems where there is no uncertainty in the control
channel.

Actually, in the area of nonlinear control, extensive researches have
been conducted on the controller design (e.g., [10], [11], [13], [15],
[16], [18], and [22]). For examples, the active disturbance rejection
control method (e.g., [12] and [29]), the backstepping approach for pure
feedback forms in [22], the extremum seeking methods for nonlinear
uncertain systems (see, e.g., [20] and [28]), and many other interesting
design methods for certain triangular forms (see, e.g., [10], [12], [14],
[15], and [29]), as well as for feedforward nonlinear systems (see,
e.g., [24]). We remark that for general affine nonlinear systems, the
feedback linearization method may be used, but that needs the full
knowledge of the nonlinear functions and usually gives local results
(e.g., [6] and [11]). To get global or semiglobal results, global normal
forms are usually used directly or assumed to be transformed into it
for the investigation of nonlinear systems (see, e.g., [4], [7], [17], and
[23]).

In this article, we will consider a general class of single-input and
single-output (SISO) affine nonlinear uncertain systems, and investigate
the natural extension of the classical PID controller. We will show that
for a large class of n-dimensional SISO affine nonlinear uncertain sys-
tems, an (n+ 1)-dimensional parameter manifold can be constructed
explicitly, from which the extended PID controller parameters can
be arbitrarily chosen to semiglobally stabilize the nonlinear uncertain
systems with the regulation error converging to 0 exponentially, even if
the system may not be transformed into a global normal form, thanks
to the strong robustness of the extended PID controller as will be
demonstrated in this article.

The rest of this article is organized as follows. In Section II, we
will introduce the problem formulation. The main results are presented
in Section III. Section IV contains the proofs of the main theorems.
Section V will conclude this article with some remarks.
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II. PROBLEM FORMULATION

A. Notations

We first introduce some notations and definitions to be used through-
out this article.

Let x be a vector in the n-dimensional Euclidean space Rn, P
be an m× n matrix, and xT , PT denotes the transpose of x and P ,
respectively. Also, let ‖x‖ denote the Euclidean norm of x, and ‖P‖
denote the operator norm of the matrix P induced by the Euclidean
norm, i.e., ‖P‖ = supx∈Rn,‖x‖=1 ‖Px‖, which is known to be the
largest singular value of P.

Denote R+ = [0,∞).
Let z(t) be a function of time t, then ż(t) denotes the time derivative

of z(t). For simplicity, we oftentimes omit the variable twhenever there
is no ambiguity in the sequel.

A map Φ : Rn → Rn is called a global diffeomorphism on Rn if
it is both injective and surjective, and both Φ and its inverse mapping
(also denoted by Φ−1 for simplicity) are continuously differentiable.

Consider the following SISO affine nonlinear system

{
ẋ = f(x) + g(x)u

y = h(x)
(1)

where f, g : Rn → Rn, h : Rn → R are sufficiently smooth unknown
nonlinear mappings.

The mappings f, g are called smooth vector fields on Rn. Let the
coordinates of x be xi and the components of f and g be fi and

gi, respectively, i = 1, . . . , n. Define Lfh(x)
�
=

∑n
i=1

∂h
∂xi

(x)fi(x),
which is called the Lie derivative of h along with the vector field

f . Let us further denote LgLfh(x)
�
=

∑n
i=1

∂Lfh

∂xi
gi(x), Lk

fh(x)
�
=

LfL
k−1
f h(x), k ≥ 1, with L0

fh(x)
�
= h(x).

Denote R = R ∪ {−∞,∞} and denote R
n
= R × · · · × R is the

n−ary Cartesian power of R. We call x∗ is a point at infinity if x∗ ∈
R

n\Rn, i.e., at least one component of x∗ is ∞ or −∞.
Let Φ : Rn → Rn and x∗ be a point at infinity. If

limx∈Rn,x→x∗ Φ(x) exists and finite, then we denote Φ(x∗)
�
=

limx∈Rn,x→x∗ Φ(x). For z ∈ Rn, we denote Φ−1(z)
�
= {x ∈ R

n
:

Φ(x) = z}.

B. Control

Let y∗ ∈ R be a given setpoint. Our control objective is to design
a robust feedback controller u(t) to achieve asymptotic regulation
limt→∞ y(t) = y∗.

The challenges of this problem attribute at least to the following two
facts: First, the feedback linearization method cannot be used because
the nonlinear functions are unknown. Second, the traditional design
methods such as backstepping cannot be applied because the system is
not in a global normal or triangular form.

This article is motivated by our recent theoretical investigation on
the classical PID control [32], where it was shown that for a basic
class of second-order nonlinear uncertain systems, the classical PID
control can globally stabilized the system as long as the upper bounds
of the partial derivatives of the system nonlinear function are known as
a prior. For dynamical systems with relative degree ≥ 3, the classical
PID control cannot achieve global stabilization in general, even for
linear time invariant systems [31]. These facts inspires us to consider
the following natural extension of PID (called extended PID controller),

defined by

u(t) = k1e(t) + k0

∫ t

0

e(s)ds+ k2ė(t) + · · ·+ kne
(n−1)(t) (2)

where e(t) = y∗ − y(t) is the regulation error, ė(t), · · · , e(n−1)(t) are
the time derivatives of e(t) up to the (n− 1)th order, which are assumed
to be available for simplicity.

From the definition (2), we know that the extended PID controller
is an output feedback of simple structure and its design does not need
the precise model of the plant (1). The control variable u(t) is simply a
weighted linear combination of the proportional, integral, and derivative
terms of the system regulation error, where the weighting parameters
(k0, k1, . . . , kn) are called extended PID parameters.

We remark that if the nonlinear system is in the normal form of
cascade integrators or can be transformed into this form globally, then
it may be natural to consider the extended PID control as defined above,
and [17] appears to be a pioneer work in this direction. However, for
the general nonlinear system (1) to be considered in this article, where
the coordinate transformation may not be a global diffeomorphism, a
key problem here is: Does the extended PID controller still regulate
the nonlinear systems (1) globally or semiglobally? On the other hand,
only qualitative design methods for the parameters are given in [17]
and the tuning rules are of high gain. Therefore, another key problem
is can we provide a concrete design method for the (n+ 1)-extended
PID parameters?

We will address this problem in this article by investigating the
capability together with the design of the extended PID controller (2)
for the uncertain nonlinear system (1). We will rigorously show that the
extended PID controller can indeed achieve our control objective, even
if the systems may not be transformed into the normal form globally.

C. Assumptions

First, we introduce some notations. Define

Φ(x)
�
= (h(x), Lfh(x), . . . , L

n−1
f h(x))T . (3)

Let y∗ ∈ R be the setpoint. Denote

z∗
�
= (y∗, 0, . . . , 0)T ∈ Rn (4)

and define H : Rn → R2 as follows:

H(x)
�
= (F (x), G(x)) (5)

where

F (x)
�
= Ln

fh(x), G(x)
�
= LgL

n−1
f h(x). (6)

Assumption A: System (1) has uniform relative degree n, i.e.,
LgL

i
fh(x) = 0, i = 0, . . . , n− 2;G(x) 
= 0, ∀x ∈ Rn. Furthermore,

the sign of G(·) is known and G(x) is uniformly bounded away from
zero. Without loss of generality, we assume that G(x) ≥ b > 0 for any
x ∈ Rn.

Remark 1: By Assumption A, we know that JΦ(x) is invertible
for any x ∈ Rn, where JΦ(x) denotes the Jacobian matrix of Φ,
(see, e.g., [11]). Under the new coordinates z = Φ(x), the system (1)
transforms into the normal form of cascade integrators{

żi = zi+1, i = 1, . . . , n− 1

żn = a(z) + b(z)u
(7)

locally. However, the system (1) may not be globally transformed in to
the normal form (7), unless the n vector fields (−1)i−1adi−1

f̃
g̃(x), i =
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1, . . . , n are complete, where f̃(x) = f(x)− F (x)g(x)
G(x)

and g̃(x) =
g(x)
G(x)

(see [11]).
To provide a concrete design method for the extended PID param-

eters, we need some additional knowledge of the uncertain functions.
It turns out that the growth rate of some certain unknown functions
need be known as a prior in designing the extended PID parameters.
Let τ1, τ2 be two known increasing functions from R+ to R+ with
lim supr→0

τ2(r)
r

< ∞, we introduce the following Assumption B to
measure the size of uncertainty.

Assumption B: The functions Φ and H defined, respectively, by (3)
and (5)–(6) satisfy

‖Φ(x)‖ ≤ τ1(‖x‖), ‖H(x)‖ ≤ τ1(‖Φ(x)‖), ∀x ∈ Rn

and there existsx∗ ∈ Φ−1(z∗) such that the “gap” ofH atx∗ is bounded
by that of Φ in the sense that

‖H(x)−H(x∗)‖ ≤ τ2(‖Φ(x)− Φ(x∗)‖), ∀x ∈ Rn.

Remark 2: We remark that Assumption B is not restrictive. In fact,
under Assumption A, and suppose the coordinate transformation Φ
is a global diffeomorphism on Rn, then for any setpoint y∗, there
always exists some increasing functions τ1, τ2 from R+ to R+ with
lim supr→0

τ2(r)
r

< ∞, such that Assumption B is satisfied (see As-
sumption B0 in [34]).

Remark 3: It will be shown that the constant b and the upper bound
functions τ1, τ2 play a critical role in designing the extended PID
parameters. Thus, it is an important task to find out the constant b
and the two functions τ1, τ2 in practice. We remark that for uncertain
system in the normal form{

ẋi = xi+1, i = 1, . . . , n− 1

ẋn = a(x) + b(x)u, y = x1

(8)

where a(x), b(x) are both unknown functions. Suppose that

b(x) ≥ b, |a(x)|+ |b(x)|+ ‖Ja(x)‖+ ‖Jb(x)‖ ≤ ρ(‖x‖) (9)

for all x ∈ Rn, where Ja(x) denotes the gradient of a(x), and where
b > 0 is a known constant and ρ : R+ → R+ is a known increasing
function, then for any setpoint y∗ ∈ R, Assumptions A and B are satis-
fied with b = b, τ1(r) = max{r, ρ(r)} and τ2(r) =

√
2ρ(r + |y∗|)r.

The proof is given in Appendix B.
Definition 3.1: Denote S′ as the family of nonlinear systems that

satisfy both Assumptions A and B, i.e.,

S′(b, τ1, τ2) = {(f, g, h) : Assumptions A and B hold}.
A key question is, does the extended PID controller (2) regulate all the
nonlinear systems in S′(b, τ1, τ2) semiglobally? Specifically, for given
R > 0, does it exist (k0, . . . , kn) ∈ Rn+1, such that the regulation error
e(t) converges to 0, for all (f, g, h) ∈ S′(b, τ1, τ2) and for all initial
states ‖x(0)‖ ≤ R?

We point out that, if the uncertain nonlinear system is of the global
normal form (8), then the above question is positive (Corollary 1 in
Section III). However, for the general affine-nonlinear uncertain system
(1), the answer is no! In fact, there exists a triple (b, τ1, τ2), such that any
given extended PID controller parameters and for any R > 0, there al-
ways exist some (f, g, h) ∈ S′(b, τ1, τ2) and initial states ‖x(0)‖ ≤ R,
the solution of the closed-loop system will have finite escape time [34].
Therefore, we need to introduce certain additional assumptions, and it
turns out that the following assumption will be sufficient.

Assumption C: There exists two constants N1 > 0, N2 > 0, such
that the inverse of the Jacobian matrix JΦ(x) satisfies∥∥J−1

Φ (x)
∥∥ ≤ N1‖x‖ log+ ‖x‖+N2, ∀x ∈ Rn (10)

where log+(r)
�
= max{0, log r} for r ≥ 0.

Remark 4: First, we point out that the super-linear growth rate of
‖J−1

Φ (x)‖ in Assumption C cannot be relaxed essentially in general,
(see [34]). Next, we remark that for nonlinear systems already in the
normal form (8), Assumption C is automatically satisfied since the
coordinate transformation mapΦ defined by (3) is identity, i.e.,Φ(x) =
x, ∀x ∈ Rn.

Remark 5: From the proof of Theorem 1 to be given in Section IV,
one can see that Assumption C is used only to ensure that the solution
of the closed-loop control system exists in [0,∞) under the extended
PID control. Hence, if we can show that the solution of the closed-loop
system exists in [0,∞) by using Assumptions A and B, then Assump-
tion C can be removed from Theorem 1. We already know that such an
existence is true when the system (1) can be transformed into the normal
form globally, (see [34]). In the case where the system (1) cannot be
transformed into the normal form globally, we now give an example to
show that Assumptions A and B are satisfied and the solution of the
closed-loop system still exists in [0,∞).

Example 1: Consider the following nonlinear system:⎧⎪⎨
⎪⎩
ẋ1 = − sinx2 cosx2 − sinx2e

−x1u

ẋ2 = sin2 x2 − cosx2e
−x1u

y = θex1 cosx2

(11)

where 0 < |θ| ≤ 1 is an unknown constant. It can be shown that this
control system cannot be transformed into the normal form globally,
(see [3]). Let y∗ = 0 be the setpoint, then Assumptions A and B are
satisfied with b = 1, τ1(r) = er , and τ2(r) ≡ 0. Moreover, it can be
shown that the solution of (11) will exist in [0,∞) for all initial states
under PID control

u(t) = kpe(t) + ki

∫ t

0

e(s)ds+ kdė(t)

as long as the cubic equation s3 + kds
2 + kps+ ki = 0 has three

distinct negative roots (see Appendix B).

III. MAIN RESULTS

Definition 3.2: Denote S as the following class of uncertain systems
described by the triple (f, g, h):

S(b, τ1, τ2) = {(f, g, h) : Assumptions A, B, and C hold}.
Now, we are in position to present the main results.

Theorem 1: Consider the nonlinear uncertain system (1)with the ex-
tended PID controller defined by (2). Then for any given (b, τ1, τ2) and
any givenR > 0, an (n+ 1)-dimensional parameter manifoldΩ can be
constructed, such that whenever (k0, . . . , kn) ∈ Ω, the solution of the
closed-loop control system will exist in [0,∞) and the regulation error
e(t)will converge to zero exponentially, for any (f, g, h) ∈ S(b, τ1, τ2)
and any initial state ‖x(0)‖ ≤ R.

Remark 6: We emphasize that Ω can be constructed based on the
upper bound functions τ1(·), τ2(·), the constant b and R only, and
its concrete construction can be found in the proof of Theorem 1. It
neither depends on the precise information of the nonlinear functions
(f, g, h), nor depends on the initial states. Hence, Theorem 1 demon-
strates that the extended PID has large scale robustness with respect to
both the system structural uncertainties and the selection of controller
parameters.

The following corollary comes immediately from Theorem 1.
Corollary 1: Consider the uncertain nonlinear system (8) with the

extended PID controller (2). Suppose (9) is satisfied. Then for any set-
point y∗ ∈ R and any given R > 0, an (n+ 1)-dimensional parameter
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manifold Ω (only depend on R, y∗, b and ρ(·)) can be constructed,
such that whenever (k0, . . . , kn) ∈ Ω, the regulation error e(t) will
converge to zero exponentially, for any unknown functions a(x) and
b(x) satisfying (9) and for any initial state ‖x(0)‖ ≤ R.

Remark 7: We remark that the semi-global results in Theorem 1
can also be extend to global ones if the upper bound function τ2 in
Assumption B is a linear function, i.e., τ2(r) = Lr, and G(x) has a
known constant upper bound [34]. Moreover, in the case where the
derivatives of the regulation error are not available, similar results can
also be established (see [34]) by incorporating a differential tracker or a
high-gain observer as used in the literature (see, e.g., [8] and [19]). We
also remark that the case of zero-dynamics, or the case where the control
inputs is nonaffine, would be interesting for further investigation. These
cases may be dealt with by using similar techniques as in [12] and [33],
where the first paper considered the normal form with zero-dynamics
and the second paper considered a class of nonaffine uncertain systems.

IV. PROOFS OF THE MAIN RESULTS

Before proving Theorem 1, we first list some lemmas. Denote λ
�
=

(λ0, . . . , λn) ∈ Rn+1 and define an open unbounded set Ω1 ⊂ Rn+1

as follows:

Ω1 = {λ∣∣2 < λi − 2i < 3, i = 0, . . . , n− 1; λn > 2n+ 2} (12)

and for λ ∈ Ω1, define a matrix P = P (λ) as follows (see [5]):

P =

⎡
⎢⎢⎢⎢⎣
(−λ0)

−n · · · (−λn)
−n

...
...

(−λ0)
−1 · · · (−λn)

−1

1 · · · 1

⎤
⎥⎥⎥⎥⎦ (13)

and denote (d0, . . . , dn)
T be the last column of P−1, i.e.,

(d0, . . . , dn)
T = P−1(0, . . . , 0, 1)T (14)

Lemma 1. (see [34]): Under the above notations, let us define

c1
�
= sup

λ∈Ω1

‖P‖, c2 �
= sup

λ∈Ω1

‖P‖‖P−1‖, c3 �
= sup

λ∈Ω1

√
n(2n+ 1)dn

c4(i)
�
= sup

λ∈Ω1

|(2n+ 1)nλndi| , i = 0, . . . , n− 1 (15)

and denote c0 = max{c1, c2, c3, c4(i), i = 0, . . . , n− 1}, then c0 <
∞.

To introduce other lemmas, we now define a parameter manifold
first. Let c ≥ c0, L > 0, and 0 < b ≤ b be any given constants. We
define the following open unbounded parameter set Ω

L,b,b,c
⊂ Rn+1:

Ω
L,b,b,c

�
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎣
k0
...

kn

⎤
⎥⎥⎦
∣∣∣∣
⎡
⎢⎢⎢⎢⎣

k0
...

kn−1

kn

⎤
⎥⎥⎥⎥⎦ =

1

b

⎡
⎢⎢⎢⎢⎣

∏n
i=0 λi

...∑
i<j λiλj∑n
i=0 λi

⎤
⎥⎥⎥⎥⎦ , λ ∈ ΩΛ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(16)

where ΩΛ is defined by

ΩΛ =
{
λ ∈ Ω1

∣∣λn > (Lc2 +
(
b− b

)
c/b)2 + Lc2

}
. (17)

In the following lemmas, the constant T can be a finite positive
number 0 < T < ∞ or an infinity T = ∞.

Lemma 2: Let Y (t) = (y0(t), . . . , yn(t))
T be a continuously dif-

ferentiable vector valued function on [0, T ). Suppose that there exists
two real valued functionsat and bt which are both defined on t ∈ [0, T ),

such that the following equalities hold for t ∈ [0, T ):{
ẏi = yi+1, i = 0, . . . , n− 1

ẏn = at − bt(k0y0 + · · ·+ knyn)
(18)

where |at| ≤ L‖Y (t)‖ and 0 < b ≤ bt ≤ b, for any t ∈ [0, T ). Then
for any (k0, . . . , kn) ∈ Ω

L,b,b,c
, there exists α > 0 (only depend on

(k0, . . . , kn)), such that Y (t) satisfies ‖Y (t)‖ ≤ ce−αt‖Y (0)‖, ∀t ∈
[0, T ).

Lemma 3: Consider the system of equalities (18) again, but where
|at| ≤ τ2(‖Y (t)‖) and 0 < b ≤ bt ≤ τ1(‖Y (t)‖), for any t ∈ [0, T )
and where τ1, τ2 : R+ → R+ are two increasing functions with
lim supr→0

τ2(r)
r

< ∞. Then for any R > 0, and any (k0, . . . , kn) ∈
ΩL0,b,b0,c with L0 = sup0≤r≤cR

τ2(r)
r

, b0 = τ1(cR), there exists α >

0, such that Y (t) satisfies ‖Y (t)‖ ≤ ce−αt‖Y (0)‖, ∀t ∈ [0, T ), pro-
vided that ‖Y (0)‖ ≤ R.

The proofs of the Lemmas are given in Appendix A.
Proof of Theorem 1:
Step 1: First, notice that e(t) = y∗ − y(t) = y∗ − h(x(t)). There-

fore, by Assumption A, following a standard calculation (e.g., [11]),

we have e(i)(t) = −Li
fh(x(t)), i = 1, . . . , n− 1. Recall F (x)

�
=

Ln
fh(x), G(x)

�
= LgL

n−1
f h(x), we have:

e(n)(t) = −F (x(t))−G(x(t))u(t). (19)

Denote x0(t) =
∫ t

0
[y∗ − h(x(s))]ds, then x0(0) = 0. By the defini-

tion for the extended PID in (2), we know that u(t) = k0x0(t) +
k1(y

∗ − h(x(t)))−∑n
i=2 kiL

i−1
f h(x(t)). Combining this with the

system (1), we know that the solution of the closed-loop system (1)–(2)
with initial state x(0) is equivalent to the solution of the following
(n+ 1)th order autonomous differential equation:{

ẋ0 = y∗ − h(x)

ẋ = f(x) + g(x)(k0x0 + k1y
∗ −∑n

j=1 kjL
j−1
f h(x))

(20)

with initial value [0, xT (0)]T . Since the functions on the RHS of
(20) are smooth, there is a positive constant T > 0 (possibly depend
on x(0)) such that the solution of (1)–(2) exists in [0, T ). Denote

y0(t)
�
= − ∫ t

0
e(s)ds− F (x∗)

k0G(x∗) , y1(t)
�
= −e(t), yi(t)

�
= −e(i−1)(t),

i = 2, . . . , n. By (19), we have ẏn(t) = −e(n)(t) = F (x(t)) +

G(x(t))u(t), and u(t) = −(
∑n

i=0 kiyi(t) +
F (x∗)
G(x∗) ). Therefore, we

obtain {
ẏi(t) = yi+1(t), i = 0, . . . , n− 1

ẏn(t) = at − bt
∑n

i=0 kiyi(t).
(21)

where at
�
= F (x(t))− F (x∗)

G(x∗)G(x(t)), bt
�
= G(x(t)). Denote

Y (t)
�
= (y0(t), . . . , yn(t))

T , Y (t)
�
= (y1(t), . . . , yn(t))

T

it is easy to see that Y (t) = Φ(x(t))− z∗, where z∗ is defined in (4).
Step 2: Next, we will apply Lemma 3 to prove that if the ini-

tial state ‖x(0)‖ ≤ R and the parameters (k0, . . . , kn) ∈ ΩL0,b,b0,c,

where L0
�
= sup0≤r≤cR0

b+τ1(|y∗|)
b

τ2(r)
r

, b0
�
= τ1(cR0 + |y∗|), and

R0
�
= τ1(R) + |y∗|+ τ1(|y∗|), then there exists α > 0, such that

‖Y (t)‖ ≤ ce−αt‖Y (0)‖, t ∈ [0, T ) (22)

where [0, T ) is the maximal existence interval of the closed-loop system
(1)–(2).

By Assumption B, we have ‖H(x∗)‖ ≤ τ1(‖Φ(x∗)‖) =
τ1(‖z∗‖) = τ1(|y∗|). Therefore, |F (x∗)| ≤ ‖H(x∗)‖ ≤ τ1(|y∗|)
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and thus we can obtain

|at| = |F (x(t))− F (x∗)G(x(t))/G(x∗)|
≤ |F (x(t))− F (x∗)|+ |F (x∗)||G(x(t))−G(x∗)|/G(x∗)

≤ |F (x(t))− F (x∗)|+ τ1(|y∗|)|G(x(t))−G(x∗)|/b
≤ (b+ τ1(|y∗|))‖H(x(t))−H(x∗)‖/b
≤ (b+ τ1(|y∗|))τ2(‖Φ(x(t))− Φ(x∗)‖)/b
= (b+ τ1(|y∗|))τ2(‖Y (t)‖)/b ≤ (b+ τ1(|y∗|))τ2

(∥∥Y (t)
∥∥) /b.

(23)

On the other hand, by Assumptions A and B, we have

0 < b ≤ bt = G(x(t)) ≤ ‖H(x(t))‖ ≤ τ1(‖Φ(x(t))‖)
= τ1(‖Y (t) + z∗‖) ≤ τ1(‖Y (t)‖+ |y∗|)
≤ τ1(

∥∥Y (t)
∥∥+ |y∗|). (24)

Since ‖x(0)‖ ≤ R, then by Assumption B, we have

‖Y (0)‖ = ‖Φ(x(0))− z∗‖ ≤ τ1(‖x(0)‖) + ‖z∗‖ ≤ τ1(R) + |y∗|.
Recall that y0(0) = − F (x∗)

k0G(x∗) , we have

∥∥Y (0)
∥∥ ≤ ‖Y (0)‖+ |y0(0)| ≤ τ1(R) + |y∗|+ τ1(|y∗|)

k0G(x∗)

≤ τ1(R) + |y∗|+ τ1(|y∗|)

where the last inequality holds since k0 =

∏n

i=0
λi

b
≥ 1

b
and G(x∗) ≥

b. By Lemma 3, we know that (22) holds.
Step 3: In this step, we will show that if the initial state ‖x(0)‖ ≤ R

and the parameters (k0, . . . , kn) ∈ ΩL0,b,b0,c, then the maximal exis-
tence interval of the solution of the closed-loop system (1) and (2) is
[0,∞), i.e., [0, T ) = [0,∞).

We use the contradiction argument. Suppose that T < ∞ for some
initial state ‖x(0)‖ ≤ R. Therefore, the maximal existence interval of
the solution of (20) with the initial value [0, xT (0)]T ∈ Rn+1 is also
finite. Then it is well-known from the theory of ordinary differential
equations that

lim sup
0≤t<T

∥∥[x0(t), x
T (t)]

∥∥ = ∞. (25)

By (22), we know that ‖Y (t)‖ is bounded on t ∈ [0, T ). Hence, by (23)
and (24), the right-hand side of (21) and the boundedness of ‖Y (t)‖,

it is not difficult to conclude that
∥∥Ẏ (t)

∥∥ ≤ N, ∀t ∈ [0, T ) for some
constant N > 0.

On the other hand, denote z(t) = Φ(x(t)), then ż(t) =

JΦ(x(t))ẋ(t). From ‖ż(t)‖ = ‖Ẏ (t)‖ ≤ ‖Ẏ (t)‖, we obtain

‖ẋ(t)‖ =
∥∥J−1

Φ (x(t))ż(t)
∥∥ ≤ N

∥∥J−1
Φ (x(t))

∥∥ , t ∈ [0, T ). (26)

By Assumption C, we have

‖ẋ(t)‖ ≤ α1‖x(t)‖ log+ ‖x(t)‖+ α2 (27)

for any t ∈ [0, T ), where α1 = NN1 and α2 = NN2. Denote

v(t)
�
= ‖x(t)‖ and D+v(t)

�
= lim suph→0+

v(t+h)−v(t)
h

be the up-
per right-hand derivative of v(t). Then it is not difficult to obtain
D+v(t) ≤ ‖ẋ(t)‖. Noticing that v(t) = ‖x(t)‖, from (27), we have
D+v(t) ≤ ‖ẋ(t)‖ ≤ α1v(t) log+ v(t) + α2, t ∈ [0, T ). By the com-
parison lemma in ordinary differential equations (see, e.g., [18]),
we have

∫ v(t)

v(0)
dη

α1η log+ η+α2
≤ t < T, ∀t ∈ [0, T ), which implies

sup0≤t<T v(t) = sup0≤t<T ‖x(t)‖ < ∞ since
∫ ∞
v(0)

dη
α1η log+ η+α2

=

∞. From this and the fact T < ∞, it is not difficult to
see that sup0≤t<T |x0(t)| = sup0≤t<T | ∫ t

0
y∗ − h(x(s))ds| < ∞.

Therefore, the solution of (20) with initial state [0, xT (0)] satisfy
sup0≤t<T ‖[x0(t), x

T (t)]‖ < ∞,which contradicts to (25). Therefore,
if (k0, . . . , kn) ∈ ΩL0,b,b0,c, then for any initial state ‖x(0)‖ ≤ R, the
solution of the closed-loop system will exist in [0,∞).

Step 4: Since solution of the closed-loop equation exists in [0,∞), we
conclude that (23) and (24) are satisfied in [0,∞). By using Lemma 3
again, we have ‖Y (t)‖ ≤ ce−αt‖Y (0)‖ for any t ∈ [0,∞). Therefore,
we have |e(t)| = |y1(t)| ≤ ‖Y (t)‖ ≤ ∥∥Y (t)

∥∥ ≤ ce−αt‖Y (0)‖, ∀t ∈
[0,∞). This completes the proof of Theorem 1.

V. CONCLUSION

In this article, we have presented a theoretical investigation on the
extended PID controller for a general class of SISO affine-nonlinear
uncertain dynamical systems, and have established some new results
which possess obvious advantages in comparison with the existing
literature. First, we have shown that the extended PID controller has
the ability to regulate the nonlinear uncertain systems (1) semiglobally,
under some fairly general conditions on the nonlinearity and the uncer-
tainty of the systems, which are neither in the conventionally studied
normal or triangular forms, nor assumed to be transformed globally
into them. Moreover, we have provided a concrete design method
for the parameters of the extended PID controller, by constructing
an (n+ 1)-dimensional parameter manifold based on the size of the
system uncertainty, improved the existing related qualitative design
methods. Furthermore, our main results also demonstrate explicitly that
the extended PID controller has large scale robustness with respect to
both the system structural uncertainties and the selection of the (n+ 1)
controller parameters. Of course, many interesting problems still remain
open. It would be interesting to consider extended PID control for
multi-input–multi-output affine nonlinear uncertain systems, and to
generalize our recent results on PID control of coupled multiagent
dynamical systems [30]. It would also be interesting to consider more
complicated situations such as zero-dynamics, saturation, deadzone,
time-delayed inputs, sampled-data PID controllers under a prescribed
sampling rate, etc. These belong to further investigation.

APPENDIX

A. Proof of the Lemmas

Proof of Lemma 2: Rewrite (18) as{
ẏi = yi+1, i = 0, . . . , n− 1

ẏn = −b
∑n

i=0 kiyi + at + (b− bt)
∑n

i=0 kiyi
. (28)

Suppose that (k0, . . . , kn) ∈ Ω
L,b,b,c

and denote A
�
=⎡

⎢⎢⎢⎢⎣
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−bk0 −bk1 −bk2 · · · −bkn

⎤
⎥⎥⎥⎥⎦ . Then (28) can be rewritten

as

Ẏ = AY + (0, . . . , 0, at + (b− bt)(k0y0 + · · ·+ knyn))
T . (29)

It is easy to see that the characteristic polynomial of A
is det(sI −A) = sn+1 +

∑n
i=0 bkis

i. By the definition (16) of
Ω

L,b,b,c
, there exists (λ0, . . . , λn) ∈ ΩΛ such that (bk0, . . . , bkn) =

(
∏n

i=0 λi, . . . ,
∑n

i=0 λi). Therefore, by Vieta’s formulas, we know
that −λi, i = 0, . . . , n are (n+ 1) distinct eigenvalues of A. Hence,
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A is similar to J , where J is a diagonal matrix defined by J
�
=

diag(−λ0, . . . ,−λn).
It is not difficult to get the relationshipAP = PJ , whereP is defined

in (13). To simplify the analysis, we introduce an invertible linear
transformation Y (t) = Pw(t), where w = (w0, . . . , wn−1, wn)

T .
By the relationship Y = Pw (we omit the variable t), we have yi =∑n
k=0(−λk)

i−nwk. Therefore

n∑
i=0

kiyi =
n∑

k=0

(
n∑

i=0

ki(−λk)
i−n

)
wk

=
n∑

k=0

∑n
i=0 ki(−λk)

i

(−λk)n
wk =

1

b

n∑
k=0

λkwk.

The last equality holds since −λk is the root of the polynomial sn+1 +∑n
i=0 bkis

i.
By the relationship A = PJP−1, then (29) transforms into

ẇ = Jw + P−1

(
0, . . . , 0, at + (b− bt)

n∑
i=0

kiyi

)T

. (30)

Recall that (d0, . . . , dn)T is the last column of the matrix P−1, and by∑n
i=0 kiyi =

1
b

∑n
i=0 λiwi, (30) becomes

ẇk = −λkwk + dk

(
at +

b− bt
b

n∑
i=0

λiwi

)
, k = 0, . . . , n. (31)

Now, we consider the following quadratic Lyapunov function:
V (w(t)) = 1

2

∑n
i=0 w

2
i (t) =

1
2
‖w(t)‖2.

Then it is easy to compute the time derivative of V V̇ (w(t))
�
=

dV (w(t))
dt

as follows:

V̇ (w(t)) = −
n∑

i=0

λiw
2
i +

n∑
i=0

diwi

(
at +

b− bt
b

n∑
i=0

λiwi

)

= −
n∑

i=0

λiw
2
i︸ ︷︷ ︸

I

+

( n∑
i=0

diwi

)
at︸ ︷︷ ︸

II

+
b− bt

b

n∑
i=0

diwi

n∑
i=0

λiwi︸ ︷︷ ︸
III

. (32)

Next, we proceed to estimate (32) term by term.

Denote (w0, . . . , wn−1)
T �
= w. Since λi > 2, i = 0 · · · , n− 1, the

first term

I = −
n∑

i=0

λiw
2
i ≤ −2‖w‖2 − λnw

2
n. (33)

By Lemma 1, we have ‖P‖ ≤ c, therefore

|at| ≤ L
∥∥Y ∥∥ = L ‖Pw‖ ≤ Lc‖w‖ ≤ Lc(‖w‖+ |wn|).

On the other hand, by Lemma 1 and the fact c ≥ c0, we also have
|di| ≤ c

(2n+1)nλn
< c√

nλn
, i = 0, . . . , n− 1, and |dn| ≤ c

(2n+1)
√
n
<

c. Therefore, we have

|
n∑

i=0

diwi| ≤ c

(
n−1∑
i=0

| wi√
nλn

|+ |wn|
)

≤ c

(‖w‖
λn

+ |wn|
)
.

As a consequence, we have the following upper bound for the second
term:

II ≤ ∣∣( n∑
i=0

diwi

)
at

∣∣ ≤ Lc2(‖w‖+ |wn|) (‖w‖/λn + |wn|)

≤ Lc2
(‖w‖2/λn + 2‖w‖|wn|+ |wn|2

)
. (34)

Finally, we proceed to estimate the third term. Since dn =
λnn∏n−1

i=0
(λn−λi)

> 0, it is easy to get

III =
b− bt

b

n∑
i=0

diwi

n∑
i=0

λiwi ≤ b− bt
b

{
n−1∑
i=0

diwi

n−1∑
i=0

λiwi

+ dnwn

n−1∑
i=0

λiwi +

(
n−1∑
i=0

diwi

)
λnwn

}
.

Since we know that |dn| ≤ c
(2n+1)

√
n

, |di| ≤ c
(2n+1)nλn

,
i = 0, . . . , n− 1, and 0 < λi < 2n+ 1, i = 0, . . . , n− 1, and∑n−1

i=0 |wi| ≤
√
n‖w‖, we can easily get the following three

inequalities:∣∣∣∣ n−1∑
i=0

diwi

n−1∑
i=0

λiwi

∣∣∣∣ ≤ c

nλn

( n−1∑
i=0

|wi|
)2

≤ c

λn

‖w‖2;

∣∣∣∣dnwn

n−1∑
i=0

λiwi

∣∣∣∣ ≤ c(2n+ 1)
√
n

(2n+ 1)
√
n
|wn|‖w‖ = c|wn|‖w‖;

∣∣∣∣
( n−1∑

i=0

diwi

)
λnwn

∣∣∣∣ ≤ c

(2n+ 1)
√
n
‖w‖|wn| ≤ c‖w‖|wn|.

Therefore, the upper bound of III can be estimated as

III ≤ (b− b)
(
c‖w‖2/λn + 2c|wn|‖w‖) /b. (35)

Denote m = Lc2 +
(b−b)c

b
. Combining (33)–(35), we have

V̇ (w) ≤ (m/λn − 2)‖w‖2 + 2m‖w‖|wn| −
(
λn − Lc2

)
w2

n. (36)

Since (λ0, . . . , λn) ∈ ΩΛ, we can see λn > max{2n+ 2,m2 + Lc2}.
If m ≤ 1, then λn > 2n+ 2 > m; if m ≥ 1, then λn > m2 + Lc2 >
m. Therefore, λn > m always holds whenever (λ0, . . . , λn) ∈ ΩΛ. As
a consequence, we have

V̇ (w) ≤ −‖w‖2 + 2m‖w‖|wn| − (λn − Lc2)w2
n. (37)

Since λn > m2 + Lc2, we conclude that V̇ (w(t)) ≤ −α‖w(t)‖2 for
someα > 0, i.e., V̇ (w(t)) ≤ −2αV (w(t)). Therefore, by the compar-
ison theorem, we have V (w(t)) ≤ e−2αtV (w(0)) for t ∈ [0, T ).

Finally, we estimate the upper bound of ‖Y (t)‖ as follows:∥∥Y (t)
∥∥ = ‖Pw(t)‖ ≤ ‖P‖‖w(t)‖ = ‖P‖

√
2V (w(t))

≤ ‖P‖
√

2e−2αtV (w(0)) = e−αt‖P‖‖w(0)‖
≤ e−αt‖P‖‖P−1‖∥∥Y (0)

∥∥ ≤ ce−αt
∥∥Y (0)

∥∥ . �

Proof of Lemma 3: It suffices to show that if the parameters
(k0, . . . , kn) ∈ ΩL0,b,b0,c, then for any T0 < T we have∥∥Y (t)

∥∥ ≤ ce−αt
∥∥Y (0)

∥∥ , ∀t ∈ [0, T0).

Denote a
�
= sup0≤t≤T0

‖Y (t)‖, L′ �
= sup0≤r≤a

τ2(r)
r

, b′
�
= τ1(a).

It is easy to verify that |at| ≤ τ2(‖Y (t)‖) = τ2(‖Y (t)‖)
‖Y (t)‖ ‖Y (t)‖ ≤

L′‖Y (t)‖ and b ≤ bt ≤ τ1(‖Y (t)‖) ≤ τ1(a) = b′ for t ∈ [0, T0).
Therefore, by Lemma 2, we have ‖Y (t)‖ ≤ ce−αt‖Y (0)‖ for t ∈

[0, T0) whenever the parameters (k0, . . . , kn) ∈ ΩL,′b,b,′c. As a con-
sequence,a = sup0≤t≤T0

‖Y (t)‖ ≤ c‖Y (0)‖ ≤ cR and b′ = τ1(a) ≤
τ1(cR), which implies L′ ≤ L0, b

′ ≤ b0.
The final thing we need to prove is ΩL0,b,b0,c ⊂ ΩL,′b,b,′c.

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on July 30,2021 at 03:33:32 UTC from IEEE Xplore.  Restrictions apply. 



3846 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 8, AUGUST 2021

From (16)–(17), we know that

Ω
L,b,b,c

�
=

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
k0
...

kn

⎤
⎥⎥⎦
∣∣∣∣
⎡
⎢⎢⎣
k0
...

kn

⎤
⎥⎥⎦ =

1

b

⎡
⎢⎢⎣
∏n

i=0 λi

...∑n
i=0 λi

⎤
⎥⎥⎦ , λ ∈ Ω1 ∩Ω2

⎫⎪⎪⎬
⎪⎪⎭

where Ω1 is defined in (12) and

Ω2 =
{

λ ∈ Rn+1
∣∣λn >

(
Lc2 +

(
b− b

)
c/b

)2
+ Lc2

}
. (38)

From (12), it is easy to see that Ω1 does not depend on L, b, b and c. By
(38), we know that Ω2 depends on L, b, b, c, i.e., Ω2 = Ω2(L, b, b, c).
It is easy to see that if b and c are fixed, then Ω2 gets smaller for larger
L, b. Therefore, we have ΩL0,b,b0,c ⊂ ΩL,′b,b,′c. Notice that α can be
chosen independent of T0 and T0 is arbitrary, we complete the proof of
Lemma 3.

B. Proof of Remark 3 and Proof of Example 1

Proof of Remark 3: For nonlinear systems already in the normal
form (8), then Φ(x) = x, F (x) = a(x), G(x) = b(x), x∗ = z∗ and
Assumptions A and B reduces to

b(x) ≥ b, ‖x‖ ≤ τ1(‖x‖), ‖H(x)‖ ≤ τ1(‖x‖), (39)∥∥H(x)−H(z∗)
∥∥ ≤ τ2(‖x− z∗‖), ∀x ∈ Rn. (40)

Since H(x) = (a(x), b(x)), we have ‖H(x)‖ ≤ |a(x)|+ |b(x)|.
From (9), we know that ‖H(x)‖ ≤ |a(x)|+ |b(x)| ≤ ρ(‖x‖).
Therefore, if we denote τ1(r) = max{r, ρ(r)}, then (39) is
satisfied. On the other hand, by the mean value theorem, we have
a(x)− a(z∗) = Ja(θ(x− z∗) + z∗)(x− z∗) for some 0 ≤ θ ≤ 1
and therefore |a(x)− a(z∗)| ≤ ‖Ja(θ(x− z∗) + z∗)‖‖x− z∗‖ ≤
ρ(‖x− z∗‖+ |y∗|)‖x− z∗‖, the last inequality holds since
0 ≤ θ ≤ 1 and ρ is increasing. Similarly, we have |b(x)− b(z∗)| ≤
ρ(‖x− z∗‖+ |y∗|)‖x− z∗‖. Therefore, we have ‖H(x)−H(z∗)‖ ≤√
2max{|a(x)− a(z∗)|, |b(x)− b(z∗)|} ≤ √

2ρ(‖x−z∗‖+|y∗|)
‖x− z∗‖. If we denote τ2(r) =

√
2ρ(r + |y∗|)r, then (40) is

satisfied. Finally, it is easy to see that τ1(r) = max{r, ρ(r)}
and τ2(r) =

√
2ρ(r + |y∗|)r are two increasing functions, and

lim supr→0 τ2(r)/r = lim supr→0

√
2ρ(r + |y∗|) = √

2ρ+(|y∗|) <
∞, where ρ+(|y∗|) denotes the right limit of ρ at |y∗|.

Proof of Example 1: By simple calculations, we have

Φ(x) = (θex1 cosx2,−θex1 sinx2), F (x) = 0, G(x) = 1.

Obviously, Φ is not a global diffeomorphism since Φ(x1, x2 + 2π) =
Φ(x1, x2) for any (x1, x2) ∈ R2. It is easy to see that ‖Φ(x)‖ =
θex1 ≤ e‖x‖, ‖H(x)‖ ≤ 1, x∗ = (−∞, 0) and H(x)−H(x∗) = 0.
Therefore, both Assumptions A and B are satisfied with b = 1, τ1(r) =
er , and τ2(r) ≡ 0. Denote y0(t) =

∫ t

0
−y(s)ds, y1(t) = −y(t) =

−θex1 cosx2, and y2(t) = −ẏ(t) = θex1 sinx2, then u = kiy0 −
kpθe

x1 cosx2 + kdθe
x1 sinx2. Therefore, we have⎧⎪⎨

⎪⎩
ẏ0 = −θex1 cosx2

ẋ1 = η1(x)− kiy0 sinx2e
−x1

ẋ2 = η2(x)− kiy0 cosx2e
−x1

(41)

where η1(x) = (kpθ − 1) sinx2 cosx2 − kdθ sin
2 x2 and

η2(x) = sinx2
2 + kpθ cos

2 x2 − kdθ sinx2 cosx2 are bounded
functions on R2. Suppose that the solution of the closed-loop equation
only exists in [0, T ) for some initial statex(0) and for some 0 < |θ| ≤ 1
with T < ∞. Then the maximal existence interval of (41) with initial

value [0, x(0)] is also [0, T ). Since ẏ2 = −kiy0 − kpy1 − kdy2,
therefore [y0(t), y1(t), y2(t)]

T in bounded in [0, T ). Therefore, from
(41), we know e−x1(t) is unbounded in [0, T ). Otherwise the RHS
of (41) will be bounded, thus (y0(t), x1(t), x2(t)) is bounded in
[0, T ), which contradicts to that the solution of (41) only exists in a
finite interval. Therefore, there exists a sequence tn → T , such that
ex1(tn) tends to 0 as n → ∞. Since ‖(y1(t), y2(t))‖ = θex1(t),
therefore we have limtn→∞ y1(tn) = limtn→∞ y2(tn) =
0. On the other hand, denote [y0(t), y1(t), y2(t)]

T =

P [w0(t), w1(t), w2(t)]
T , where P =

[ λ−2
1 λ−2

2 λ−2
3

λ−1
1 λ−1

2 λ−1
3

1 1 1

]
and

λ1, λ2, λ3 are the roots of s3 + kds
2 + kps+ ki = 0. Then,

[y0(t), y1(t), y2(t)]
T = P [eλ1tw0(0), e

λ2tw1(0), e
λ3tw2(0)].

Recall y0(0) = 0 and limtn→∞ y1(tn) = limtn→∞ y2(tn) = 0,

thus
[ λ−2

1 λ−2
2 λ−2

3
λ−1
1 eλ1T λ−1

2 eλ2T λ−1
3 eλ3T

eλ1T eλ2T eλ3T

][w0(0)
w1(0)
w2(0)

]
=

[ 0
0
0

]
. This implies

[w0(0), w1(0), w2(0)] = [0, 0, 0] since the coefficients matrix is
invertible. Therefore, y1(0) = y2(0) = 0. This is impossible since
‖(y1(0), y2(0))‖ = ex1(0) > 0. �
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