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Convergence rate of least-squares identification and adaptive control
for stochastic systems]

HAN-FU CHENt and LEI ouor

The strong consistency and the convergence rate of least-squares identification for
the multidimensional ARMAX model are established under some decaying excit
ation conditions which are satisfied if both input and output do not grow too fast
and the attenuating excitation technique is applied. The parameter-identification
results are applied to adaptive-control systems with a quadratic loss function. The
rate of convergence of the loss function to its minimum is also obtained.

l. Introduction
Consider a stochastic system with m- and I-dimensional output and input

respectively that is driven by an m-dimensional martingale difference sequence
{w.,3"'.}, where {3"'.} is a family of non-decreasing o-algebras:

A(z)y. = B(z)u. + C(z)z., n ~ O} (I)

y. = u. = w, = 0, n < °
where A(z), B(z) and C(z) are matrix polynomials in the shift-back operator z:

A(z)=I+A.z+ ... + ApzP

B(z) = B.z + B2z
2 + ... + Bqzq

C(z)=I+C.z+ ... +C,z"

with unknown matrix coefficient

8=[-A. -Ap B. Bq C,

which may be estimated by various recursive algorithms.

C,J' (2)

•
For consistency analysis of the estimate 8., the matrix L ¢;¢) consisting of the

i=1

stochastic regressors for system (I) is of great importance. In earlier works (e.g. Ljung
1976, Moore 1978, Solo 1979) the persistent excitation condition-that the ratio of

•
the maximum to the minimum eigenvalues of L r/J;r/J) is bounded-is the key to

i=l

guaranteeing strong consistency. In Chen and Guo (1985 a) we have shown that for
strong consistency of 8. given by the stochastic-gradient algorithm this ratio should

not grow faster than (lOg it 11r/J.l1 2
)' +d with c5 > 0, and if it does not grow faster than

(lOg itl 11r/J.l1 2)'/4then 0. converges to 8 almost surely under some reasonable
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1460 H.-F. Chen and L. Guo

conditions on the system noise C(z)w. (Chen and Guo 1985 b). But, as pointed out in
Chen and Guo (1985 a), this does not exclude the possibility of strong consistency of
estimates given by algorithms other than the stochastic-gradient one under a growth
rate faster than that mentioned above. In fact, the least-squares estimation is such an
algorithm (Chen 1982, Lai and Wei 1982). Lai and Wei showed that for a single
input-single-output system with uncorrelated noise the least-squares estimate is

•
strongly consistent ifthe minimum eigenvalue of L </J.q>i goes to infinity faster than the

i= 1

•
logarithm of the maximum eigenvalue of L </Ji</Ji. This is probably the weakest

j=l

condition for strong consistency of estimates for e (Lai and Wei 1982).
In this paper we first give results similar to those given in Lai and Wei (1982), but

for the multidimensional system and with correlated noise. Then, using these results,
we show that the least-squares estimate converges to the true parameter if both the
input and output do not diverge too fast and if the attenuating excitation technique is
applied to the control. Finally, we apply parameter-estimation results to an adaptive
control system with quadratic cost and give the rate of convergence of the cost to its
optimal value.

In the present paper we mean by the least-squares estimate the one given by the
following recursive algorithm (Chen 1985):

(3)

(4)

(5)

with Po = dl, d = mp + Iq+ mr for convenience and with eo arbitrary.
It is clear that

(6)

We introduce the vector

cf>~ = [y~ .,. Y~-p+t u~ ... U~-q+l w~ ... W~-r+lr (7)

which, in contrast with </J., is unavailable but is free of the estimate {e.}.
n-l n-l

Denote by -i::';n and -i~7n the minimum eigenvalues of L </Ji</Ji + lid and L </J?</J?'
i=O i=O

+ lid respectively, and set

"-1 n-I

r.=I+ L 11</J;11 2
, r~=I+ L 11</J?11 2

i=O i=O
(8)

2. Convergence rate
In this section we first express the estimation error e. - e in terms of r; and ).::';n

with no condition imposed on the growth rate of -i::';n or r •. Then we derive the similar
expressions with -i::'in and r; replaced by -i~7n and r~.
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Least-squares identification for stochastic systems 1461

Theorem I
For system (I) assume that (a) the driven noise {W., 3";,} is a martingale difference

sequence with respect to a family of non-decreasing a-algebras {3";,} and

sup EI]wn + IIIP I3";,] < ex) a.s. with {J ~ 2
n~O

(b) Un is 3";,-measurable; and (c) C - I (z)-!I is strictly positive-real. Then as n -+ ex) the
estimation error produced by (3)-(5) is expressed by

((
lOg r ) 1/2)

(i) 110. - 011 = 0 A.;:'i: a.s.

(ii) liOn - 611 = o(COg rn(l:~:og rn
)' ) 1

/2)
a.s., Vc > 1,

Proof

Set

6n = 6 -6n

It is clear that

if {J > 2

if {J = 2

(9)

(10)

(11)

(12)

so to prove the theorem it is sufficient to show that

-, -I - {0(IOgrn+1)
tr 6n+,Pn+16n+1 =

O(logrn+1 (log log rn+I ) ' )

The proof is divided into 3 lemmas.

a.s.

a.s.

if {J > 2

if {J = 2
(13)

Lemma I

Under the conditions of Theorem I there is a constant ko > 0 such that

triJ~+IP;;}len+l<;;;O(l)-ko f. Ile:+ 1 <Pif -2 f. W;+le:+ 1<Pi a.s. for n~O
i=O i=O

Proof

Set

(14)

By (3) and (4) it is easy to see that

y~+ I - <p~6n+ I = y~+ 1 - <p~[6n + anP.<pn(Y~+ 1 - <p~6n)]

=(l-an<p~Pn<pn)(Y~+1 -<p~On)=an(Y~+1-<p~6.) (15)

By (1) and (5) we have

C(z)~n+ 1 = Yn+ 1 + (C(z) - I)(Yn+ 1 - 6~+ 1 <Pn) - 6~+ 1 <Pn - C(Z)Wn+1

= -(A(z) - I)Yn+ I + B(z)un+ (C(Z) - I)(Yn+ 1 - 6~+ 1 <P.) - 6~+ I rP.

= 6'<Pn - 6~ + 1 <Pn = e~ + I <Pn (16)
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1462 H.-F. Chen and L. Guo

Since C - I (z)-!I is strictly positive-real, there are constants ko > 0 and k, ;;;0 0
such that

By (15) we can rewrite (3) as

s.. 1 = On - PncPn(~~+ 1 + w~+ tl
From this and (6) it then follows that

tr 0k+1 p;:+IJik+l = tr 0k+lcPkcPkOk+1 +trOk+lp;:IOk+1

(17)

(18)

= IlcPkOk+ 1f + tr [Ok - PkcPk(~k+ 1+ Wk+ I)]' P;: 1

x [0,. - PkcPk(~k+ 1 +Wk+ tl]

= II cPk 0k+ 1f - 2(~k+ 1+ Wk+ tl0kcPk + cPkPkcPk 11~k+ 1+ Wk+ 111 2

+ tr 0kPk-10k

= IlcPkOk+ 111 2
- 2(~k+ 1+ Wk+ 1)[Ok+ 1+ PkcPk(~k+ 1 + Wk+ 1 )]'cPk

+ cPkPkcPk 11~k+ 1+ Wk+ 111 2+ tr O;.pk- 1 s.
~ tr OkP;: 1Ok + IIOk+ 1cPk 11 2

- 2~k+ 1Ok +1cPk - 2Wk+ 1Ok+ 1cPk
- 1- - 1 - - 2=tr8kPk- 8k-2[cPk8k+1(~k+1-2(1 +kO)8k+lcPd] -koI18k+ 1 cPkll

(19)

Summing both sides of (19) from 0 to n and using (17), we conclude that

tr ii~+ 1 p;;).iin+, ~ tr 00Po1 00 - 2sn+ 2k, - ko f 1I0i+, cPi 11 2
- 2 f wi+ ,Oi+ 1 cPi

i=O i=O

o

Lemma 2

Under the conditions of Theorem I,

tr 0:.+, p;;) 10n+' ~ 0(1)+o(.to aicPi PicPi II Wi+' 11 2
) a.s. (20)

Proof

From Lemma 2 of Chen and Guo (1985 c) for any §,,-measurable matrices M n , we
have

itMiWi+ 1 = o((t IIM;i12r
2
(IOg(t IIM il1 2+ e)r

H

' ) a.s, pO (21)

(see also Lai and Wei 1982). This estimate will be used in the sequel without
explanation.

Set
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Least-squares identification for stochastic systems

Obviously, '1. is ff.-measurable and

0.+ 1 = 0.- a.P.4>.(w~+ 1 + '1~)

Then we estimate as follows:

It Wi+l0i+.4>il=lt Wi+l(Oi-ai(wi+l +'1.l4>i P;)4>il
1=0 1=0

,;;; ito ai4>iPi4>iII W;+1 11
2 + l.to Wi+l(Oi - ai'1i4>i Pi)4>;1

= itai4>iPi4>i Ilwi+ 111 2 +o([to II(Oi - ai'1i4>iPi)4>i f J)
= ito ai4>i Pi 4>.11 Wi +1 11 2 + o([to II(Oi+1+ aiwi+14>i PMif J)
=itoai4>iPi4>.II Wi+ 1f +o([t IlOi+ ,4>i 11

2J)
+o([t (ai4>iPi4>Y IIWi+ 111 2J)

whenever cxEd, I). Since ai4>iPi4>i';;; 1, from this we have

1463

and by Lemma I and (22) it follows that

- 1 -tr e~+ 1 P;;+ 1 e.+ 1

,;;; 0(1) - ko.to II~+ 14>i 11 2 +o([toI10i+ 14>i f J) +{to ai4>iPi4>i Ilwi+ 111 2
)

(23)

Noting that cx < I and ko > 0, (20) follows from (23).

Lemma 3

Under the conditions of Theorem I, (13) is true.

o

Proof

By Lemma 2, we only need to estimate the last term of (20). For a matrix X we
denote det X by IXI. From (6) we have

P'"/1 = P;- I + 4>i4>i = Pi- I (I + Pi4>i4>D
lPi-/ll = Ipi- 1111+ Pi4>i4>il =1P.- 11(1+ 4>iPi4>.l

Hence

(24)
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1464 H.-F. Chen and L. Guo

Then, from the definition of a, and (24) we see that

• • 1P:- 1 1- IP.- 1 1 • flP'-.''' dxL a.(p!P·rP= L ,+1 • = L --
i=O I I I I i=O IPi+\ I i=O Ipl-lj IPi~\ I

flP:.'" dx
::;; -;- = log IP;+\I + d logd

IPol1

since Po I = lid.
A similar calculation leads to the conclusions

(25)

for any c> 1 (26)

~ airPi PirP;
L.. II I,<et)

;=0 log \Pi+ II( og log lPi+ II)

Also, we note that

for any c> 1 (27)

Hence

log r.+1 - d log d e; log 1P;111::;; d log r.+1

Case I

If lim r. < co then it follows from (25) and (28) that

00

L airPi PirPi < co
i=O

Then by the martingale convergence theorem we have

00

L airPiPirP/llw;+ 111 2
- E[llw;+ 111 2

\ &';]) < co
i=O

Hence

00

L airPiPirPdlw;+ .11 2 = 0(1)
i=O

Then from Lemma 2 we know that

tr e~+IP.-1.ti.+1 = 0(1)

which verifies (13).

Case 2

(28)

We now consider the case where lim r; = CXJ. IfP> 2 then it follows from (26) that
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Least-squares identification for stochastic systems

whenever fJ' E (2, min (fJ, 4)]. Then by the martingale convergence theorem

f tcP;;j~\ (llwi+111 2- E(llwi+11121~]) < 00
l=O og i+l

From this, by the Kronecker lemma, we have

• •I aicPlPicPill wi+l/l 2= I aicPlPicPiE(IIWi+"121~]+o(loglP;.,''\)
i=O i=O

Hence, by (25) and (28), we conclude.
I aicPl P,cP.llw,+1112 = O(log r.+d

i=O

which together with Lemma 2 implies (13) for the case where fJ > 2.
If fJ = 2 then by (27) and the martingale convergence theorem we see that

f (I IP lal;~lP'ii IP '1l'(/lwi+lf-E(/lWi+11121~])<00
.~O og i+l og og i+l

1465

(29)

Noting that sup E(llw.+ 111 2 15';.] < 00 and (25), then again by the Kronecker lemma
•

we have

•I aicPlPicPoIlw j + I 11 2 = o(log IP;.,',\ (log log 1P;+',Il')
i=O

which, together with Lemma 2 and (28), yields (13) for the case fJ = 2.

This completes the proof of both Lemma 3 and Theorem I.

Denote by cP~ the difference cP. - cP~; then by (14)

cP~= (0 '" 0 ~~ ... ~~_'+l]t

Theorem 2

Under the conditions of Theorem I as n ---+ 00:

(i) if fJ > 2 and log r~ = o(A~in) then

/10. -011 =0((lo~.r~)'/21 a.s.
Am,. /

(ii) If fJ = 2 and log r~(Iog log r~)' = o(A~i.) for some c> 1 then

((
lOg r~(Iog log r~)')1/2)

110.-011=0 AO~ a.s.
man

(30)

o

Proof

Since C-1(z) is strictly positive-real it must be stable; then by (16) and (23), and
noting that tr if~ + 1 P;.,' I if. + I ~ 0, we have
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1466 H.-F. Chen and L. Guo

(i) Let f3 > 2; by (29) we see that
.-1

L IIcPl11 2 = O{log r.)
i=O

Hence
.-1

r,« 2r~ + 2 L IlcPl 11 2 = 2r~ + O{log r.)
;=0

and

r, = O{r~)

Further, for any xeR d with Ilxll = I it is clear that

.-1

,,; 2 L (x'cPY +O(log r~)
i=O

Hence

and then

By (32) and (34) we have

The first assertion then follows from Theorem 1.
(ii) If f3 = 2 then from (28), (30) and (31) we have

.-1

L IlcPlI1 2 = O(log r. (log log r. n
i=O

Hence (32) remains valid, and (33) becomes

n-1 n-l

L (X'cP?l2 ,,; 2 L (x'cPY +O(log r~ (log log r~n
i=O i=O

Therefore, under the conditions of the theorem, (34) holds true. Then

log r; (log log r.J' _ (lOg r~ (log log r~)t)
A. -0 'O~

min ""mm

and the second conclusion follows from Theorem 1.

(32)

(33)

(34)

3. Convergence rate of parameter estimation for systems with attenuately excited
control
In a stochastic adaptive-control system a performance index of the long-run

average type is frequently used (see e.g. Goodwin et al. 1981, Chen 1984, Chen and
Caines 1985), for which an external decaying disturbance added to the input or to the
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Least-squares identification for stochastic systems 1467

output of the system does not change the performance index. This is one of the reasons
why we introduced a random dither with covariance matrix tending to zero (Chen and
Guo 1985 b, c) to the system in order to get both optimality of the control and
consistency of the estimate. To be precise, this treatment, called the attenuating
excitation technique, consists of the following. Let {vn} be an I-dimensional mutually
independent random vector sequence and let {vn } be independent of {w.} with
properties

EVn =0, IIV.1I 2
:;;; : : , eE[0'2(t~I)). t=max(p,q,r)+mp-I

(35)

where ([2 is a constant. {vn } will serve as the attenuating excitation source.
Without loss of generality, we assume ff. = a{Wi' Vi' 0 :;;; i :;;; n}. Set

ff~ _ I = a{W;, 0 :;;; i :;;; n, Vj' 0 :;;;j :;;; n - l}

Let ff~ _ I-measurable u~ be the desired control. The attenuating excitation technique
suggests that we take

instead of Un = u~.

Theorem 3

Suppose that

(a) (wn , S';.) is a martingale difference sequence with

sup E(llw.+ 1 liP IS';.)< 00, f3 ~ 2

1 n

lim - L wiwi = R > 0
n-oonj=O

(36)

(37)

(b) C- 1 (z) -!I is strictly positive-real;

(c) A(z), 8(z) and C(z) have no common left factor and A p is of full rank with Ao = I
by defini tion;

(d) The output of system (1) under control

has growth rate

where u~ in ff~_I-measurable and

1 •
- L IIu111 2

= O(n6
)

nj= 1

and where Vn is defined by (35) and

DE[O 1-2£(t+I))
, 2t + 3

(38)

(39)

(40)
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1468

Then

H.-F. Chen and L. Guo

{
o((10:' nr2

)

110 -011=
~ o(COg n(I:: log n)C) 1/2)

for any iXE(1(1 +15), I-(t+ 1)(e+6)].

Proof

We first note that

a.s, if f3 > 2

'f c > 1 a.s. if f3 = 2

[
1 - 2e(t + I)] 1 - 2e(t + I)

(t+I)(e+6)+!6«t+l) e+ 2t+3 + 2(2t+3) =t

so the interval (1(1 + 15), 1 - (t + I)(e + 15) is not empty. We also note that

1 2(t + I) 2
1<--< <

1 - e 2t + 1

so we can take y E (1/(1 - e), 2] such that

Ilvv!- !.IIIY

.f E[ I .;, ~: I§"i-I] < 00
1= 1 l

Hence we have

t 1
v·v· --I

00 I I it
" <00L... ."i= 1 I

From this, by the Kronecker lemma and by the fact that.
1 "I 1-,,--+-1-, L... ., 1n i=11 n-cr;> -t;

we conclude that

1 - e "
-- " v·v! -+ I1 -r e L.. I In j=l a-s cc

By (21) and (39) it follows that

it uf'v; = O((J211t4112)"\IOg Ct211t4112 + e)),,2+.)
= O(n(1 H I/2(l ogn)I/2+.), n» 0

Then from (37)-(39), (41) and (42) we know that

r~ = O(n l H)

If we can show that for sufficiently large no

(41)

(42)

(43)

(44)
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Least-squares identification for stochastic systems 1469

then (43) and (44) guarantee the conditions in Theorem 2, and the conclusion of the
theorem follows from Theorem 2.

Clearly, (44) is equivalent to

(45)

We now prove (45) along the lines of the argument used in Chen and Guo (1985 c).
Note that the full rank of Ap implies deg A(z) = p, deg [det A(z)] = mp and

deg [Adj A(z)] =mp - p, since A(z)[Adj A(z)] =det A(z)I. Set

1/1. = (det A(z))¢~

det A(z) = ao + a,z + ... + ampzmp

By the Schwarz inequality and the fact that ¢? = 0 for i < 0, it is easy to see that

(
.). mp

Amin L l/1il/1: = inf L (X'l/1i)2 ,,:; (mp + I) L aJA~in
i=l llxll=li=l j=O

where Amin(X) denotes the minimum eigenvalue of a matrix X. So for (45) it suffices to
show that

(46)

If (46) were not true then there would exist a vector sequence {'I•.},

such that II 'In. II = 1 and

(47)

Let
p-'

Hnk(z) = L (X~:z'(Adj A(z))[B(z) C(z)]
i=O

q-I r-l

+ L p~:zi[det A(z)I, 0] + L Y~:Zi[O det A(z)Im]
;=0 i=O

t

~ "[hj , ft] s. t - ( ) + I= L.. n. gn. Z , - max p, q, r mp -
j=O

(48)

where h~. and g~. are 1-and m-dimensional vectors respectively. Clearly, h~. and g~. are
bounded in k and w (sampling points).

Then (47) means

n.
lim n;" L (h~:Ui + ... + h~:u,_, + g~:Wi + ... + tn:W,_,)2 = 0 (49)

k-e co i= 1

By (21) and (39), it is easy to see that

II
i
t,w,- jv:11 = O(n(' Hl/2(log n)'/2 +n), j:;;' 0

Ilit ui _ jVil1 = O(n(' i-6
1/2(log n)I/2+ n), j > 0

(50)

(51)
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1470 H.-F. Chen and L. Guo

IIJI Wi-iV;11 = 0(n1
/
2(log

n)I/2+"), i» 0 (52)

Because g~. and h~. are bounded and IX> 1(1 +b), from (50)-(52) we know that

(53)

From this and (49) we have

n.
n;a L (h~:vY -+ ° (54)

i= 1 k-oo

"
nk-

a L (h~:u: + h~:Ui-l + ... + h~'.Ui-r + g~:w, + ... + g'.:Wi-Y -+ 0 (55)
i=1 k-oo

Relationships (39), (41), (54) and (55) imply that

Ilh~.I12 = o(n;(1-,-a)) (56)

(57)

(58)

Comparing (58) with (49), we note that n;a in (49) is replaced by nk-a-(,+d) and the
term h~:Ui disappears. Continuing the same argument, we obtain

Ilh~.112 =o(n.(I-,-a-i(dd))), 0~ i ~ t (59)

'Ifintegers SE [1, t + 1] (60)

Since ex ~ 1 - (t + I)(E + b), it immediately follows from (59) that

II h~.11 -+ 0, 0~ i ~ t
k-e cc

For S = t + 1 we have, from (60),

"n- a- (I+ I)(,H) '\' (g0'w. + + "'" W. )2 -+ 0
k ~ "k I ••• 6",( I-I

i=1 k-oo

By (37), from (62) it is easy to conclude that

gi". -+ 0 'Ifintegers j E [0, t]
k~oo

and by (48), (61) and (63) we see

(61)

(62)

(63)

From here, by use of Condition (e), exactly the same argument as used in Chen and
Guo (1985 c) leads to a contradiction. Thus (46) is verified and the proof is completed.

o
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Least-squares identification for stochastic systems 1471

4. Application to adaptive control
We now apply the results obtained to the following adaptive-control problem with

quadratic loss function:

____ In-'
J(u) = lim In(u). In(u) = - L (YiQ'Yi + UiQ2 U;)

e-e co n i=O

where Q, ~ O. Q2> O.
We present System (I) in the state-space form

Yk=Hx.. xo=[Yo 0 ... 0]

where

-AI I

-A 2 0 ·0 8{]A=
I

-A, 0 0

C=[I q ... C:_,]. H = [I 0 ... O]}m
'---y---J

ms

(64)

(65)

(66)

(67)

(68)

with s = p V q V (r + I) and Ai = O. B, = O. Ck = 0 for i > P. j > q. k » r.
Denote by Ai. Bj and q the estimates given by On for A" B, and C. respectively,

i = I, ...• p,j = I, ...• q and k = I•...• r. and estimate the state x, by the adaptive filter

xn+' = Anxn+ Bnun+ Cn(Yn+ 1- H Anxn- H BnUn)} (69)
Xo = [Yo 0 ... 0]'

where An. Bn and c, are defined by (67) and (68) with Ai' B, and Ck replaced by their
estimates Ai, Bj and q respectively, i= I •...• p.j= I•...• q and k= I•... ,r.

Set

t; = -(B~SnB. + Q2)-' B~SnAn (70)

where S; is defined recursively by
... A .. ... .. .. 1'" ..

S. = A~S._IAn - A~Sn-IBn(Q2 + B~Sn_IB.)- B~Sn-,An + H'Q1H (71)

with an arbitrary initial value So ~ O.
Define stopping times {,d. {O".} with

1=,,<0"1<'2<0"2<'"

such that

(72)

(73)
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1472 H.-F. Chen and L. Guo

We now define the adaptive control u: as

with

0_ {L. if n belongs to some [r k , Uk)

Ln
- 0 if n belongs to some [Uk' r k+ 1)

where u. is defined by (35).
It is worth noting that u: can really be recursively computed in real time.
It is shown in Chen and Guo (1985c) that

inf J(u) = tr SCRe
n.V

where S is a positive-definite matrix satisfying

S = A'SA - A'SB(Q2 + B'SB)-I B'SA + H'Q1H

and by definition

u = {u: itIluif = O(n), Ilun 11 2 = o(n) a.s. as n-+ <Xl}

Theorem 4

Suppose that for System (I) the following conditions are fulfilled:

(a) {W.,!l'.} is a martingale difference sequence with properties

supE(lIw.II~I!l'._d<co a.s. if {3;:,2
n

(74)

(75)

(76)

(77)

(78)

where R is a positive-definite matrix and p > 0;

(b) A p is of full rank (Ao = I by definition) and A(z) is stable;

(e) C- I (z) - tI is strictly positive real;

(d) (A, B, D) is controllable and observable, where D is any matrix such that
D'D=H'Q1H.

Then under the adaptive control {u:} given by (74), the following convergence rates
hold as n -+ <Xl:

{

((
lOg n)1/2)o LL if{3>2

n'
119. - 911 =

O((IOg n(l0ng.IOg nl')1/2) a.s., vc » I, if {3 = 2

for any C( E (t(1 + 0), 1- (t + 1)(6+ 0)], and

IIJ.(u·)-trSCRC'II=O(n-(PA')) a.s.

where p /\ 6 = min (p, 6).

(79)

(80)

(81)
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Least-squares identification for stochastic systems 1473

Proof

By an argument similar to that used in the proof of Theorem I of Chen and Guo
(1985 c), it can be shown that the following properties hold true:

(i)

(ii)

(see Lemma 4 of Chen and Guo 1985 c);

S. -> S a.s.

(82)

(83)

(see Lemma 5 of Chen and Guo (1985 c);

(iii) there is a "0 such that
(84)

(see Lemma 6 of Chen and Guo 1985 c);

(iv) Ilxk+ dl2+ Ilxu 1- Xk+ If = 0(1) + O(t/k-i(llwi + 111 2+ Ilvi f)) (85)

with °<)1 < I (see (57) of Chen and Guo 1985 c);

(v)
I •
- L IIxdl 2 =0(1) a.s.
";=1

(86)

(see (62) of Chen and Guo 1985 c);

and finally from both (49) and (59) of Chen and Guo (1985 c) we have

(vi) ~it II Xi - Xi 11 2= O(~) + 0G J, 1I 0if(llxdl 2+ IIwi+ ,/12 + IIViIl2)) (87)

Since A(z) is stable, from (82), (74) and (I) we see that

I •
- L II Yi 11 2 = O(n6

)
"i=1

From Theorem 6.2-6 of Kailath (1980, p. 366) it can be concluded that the
controllability of (A, B) implies that A(z) and B(z) have no common left factor.
Hence Theorem 3 is applicable and (79) and (80) are verified. Thus we only need to
establish (81).

By a standard treatment (see e.g. Chen 1985), from (65), (66) and (77) we have

"-1 n-l

J.(u)= L (y;QIYi+U;Q2U;)=XOSXO-X~SX.+ L W;+,C'SCWi+'
i=O ;=0

11-1 n-l

+ 2 L (AXi + Bu,)' SCWi+ I + L (u, - Lx,)'(Q2 + B'SB)(ui - Lx;) (88)
i=O ;=0

where
L= -(B'SB+Q2)-IB'SA

From (35) and (85), we have

(. (~'.+I Ilw.112 ~i. IIW.112))Il xk+1 112 =0(1)+0 .L Ilk-'i J=I. J _ J=I. J

l= 1 I I

= 0(1) + o( t )1k-ii~) = 0(1) + O(k'-
p

)
i=O ,P
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\474

hence

and

H.-F. Chen and L. Guo

Ilx.1I
2

= O(n- P ) a.s.
n

\.-1
- L wl+,CSCwi+l-trSCRC'
n;=o

(89)

(90)

Since O• .... 0 and S. is bounded, it is not difficult to see that

S.+ 1 - S = (A + BK.)'(S. - S)(A + BL) + E.

Here

K. = -(Q2 + B'S.B)-1 B'S.A

[s,II =0(110.1\) =0C~/4)

where the last estimate follows from (79), (80) and the fact that IX> t.
Noting that A + BL is stable and K..... L by (83), we have

liS. - S\\ = O()/4)

IlL? - LII = 0C~/4)

by (84).
We now estimate the last term in (88):

in which

.-1

L Ilvil1
2 =O(n'-')

t e t

(9\)

(92)

(93)

(94)
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Least-squares identification for stochastic systems 1475

Similarly, we have

~t~ IIL?(Xi - xo)11 2 = 0Ct~ Ilxi - xif) = o(n
1

/
2

)

by (87) and .tl 118;11 211x;l1 2= o(t/-l/21IX;l12) = o(n1
/
2

) .

Combining (88)-(96), we conclude that

J.(ua
) - tr SeRe' = O(n- P + n-' + n- 1

/
2

)

=O(n- P + n-') = O(n-1p A , )) a.s.

(96)

S. Conclusion
We have presented the convergence rates of both the parameter estimate and the

quadratic index when the least-squares (LS) algorithm is applied. Comparing with the
stochastic-gradient (SG) algorithm (Chen and Guo 1985 b, c), we have found that the
LS algorithm is not as simple as the SG one, but gives better results in the following
sense.

(i) We have not given the convergence rate for SG algorithm; but we have done so
for the LS algorithm.

(ii) For strong consistency of the SG algorithm it is supposed that

~:~x = O«log .?c::'ax)1/4)
moo

which means that log l::'ax and log l::'in are of the same order, while for the LS
algorithm we only require that

log .l::'ax -+ 0 for fJ> 2
Amin n- 00

(iii) When adaptive control with the attenuating excitation technique is applied
for strong consistency of parameter estimates, the growth rate of (Iln)I:i=1 (1Iy,,/2
+ II u; 11 2

) should be limited by O«log n)") for the SG algorithm, but for the LS
algorithm the order is increased to nO. The covariance matrix of the excitation source
from I flog' n for the SG algorithm is reduced to I In' for the LS algorithm. This means
that the LS algorithm can give a better approach to the optimal value of the quadratic
cost.
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1476 Least-squares identification for stochastic systems

It is clear that the LS algorithm can be used to solve the stochastic adaptive

tracking and pole-zero assignment problems.
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