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ASYMPTOTICALLY OPTIMAL ADAPTIVE CONTROL WITH
CONSISTENT PARAMETER ESTIMATES*

H. F. CHENf AND L. GUOf

Abstract. For the discrete-time linear stochastic systems with unknown coefficients we give an adaptive
control by which both strong consistency of the parameter estimates and asymptotic optimality for the
tracking system are achieved simultaneously. This is done by disturbing the signal that is to be tracked, and
the disturbance consists of a sequence of random vectors with covariance matrices tending to zero. The
main result is essentially based on some criteria for consistogcy of parameter estimate for the system without
monitoring, which are also demonstrated in the paper. The existence of adaptive control is also discussed.

Key words, stochastic system, parameter estimate, strong consistency, adaptive tracking, asymptotic
optimality
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1. Introduction. Since /str6m and Wittenmark [1] introduced the self-tuning
regulator, much work has been devoted in recent years to the parameter-adaptive
control and to the related parameter estimation problem. For the adaptive tracking
problem, Goodwin, Ramadge and Caines [15] and Sin and Goodwin [21] have
established the global convergence of the system ond the asymptotic optimality of the
tracking error by use of the stochastic gradient and the modified least squares
algorithms, respectively. On the other hand, for linear stochastic systems without
monitoring there are different conditions guaranteeing the strong consistency of esti-
mates for the unknown system coefficients by invoking various approaches such as the
probabilisitic method (Ljung [18], Moore [20], Solo [22]), the ordinary differential
equation method (Ljung [19], Kushner and Clark [17]) and the combined treatment
(Chen [5], [6], [8]). But the crucial point in these different conditions is almost the
same factmthe persistent excitation condition, which means that for the matrix
Y- i-- io consisting ofthe stochastic regressors 0i the ratio of its maximum to minimum
eigenvalues is bounded. Unfortunately, it does not always take place for the system
with asymptotically optimal adaptive control given in Goodwin, Ramadge and Caines
[15] and Sin and Goodwin [21], as shown in Becker, Kumar and Wei [2].

In order to get the consistent estimate for unknown parameters the adaptive control
law is disturbed by a random noise introduced artificially (see Caines and Lafortune
[3], Chen [7], Chen and Caines [9]). With such a treatment it turns out that the estimate
is strongly consistent but the tracking error differs from its minimal value by an
additional term caused by the random noise added to the adaptive control law.

However, all these facts do not mean that there is no adaptive control law forcing
the long run average of the tracking errors to be minimal and, at the same time, making
the parameter estimate strongly consistent, since the asymptotically optimal adaptive
control law is not unique.

In this paper, we first give an adaptive control by which both strong consistency
of the estimates and optimality for the tracking system are achieved simultaneously.
The main idea is that the asymptotically optimal adaptive control is disturbed by a
random vector sequence with vanishing covariance matrices, in contrast to the work
of Caines and Lafortune [3], Chen and Caines [9] and Chen [7], where the disturbance
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ADAPTIVE CONTROL WITH CONSISTENT ESTIMATES 559

is of constant covariance matrix. As a result the matrix ’i=1 (Oi(Oi mentioned above is
ill-conditioned; hence no persistent excitation-like condition can be applied to guaran-
tee consistancy for estimates. However, recently the authors have obtained some new
results (Chen and Guo 10], 11], 12]), establishing the strong consistency ofparameter
estimates for systems with i= (i( ill-conditioned, and it appears that they are suitable
to the analysis of the case of adaptive control with vanishing disturbances and make
the system asymptotically optimal and the parameter estimates strongly consistent.

2. Statement of the problem. Let (fl, , P) be a probability space with a family
{.} of nondecreasing sub-tr-algebras. Consider the following stochastic control
system:

(2.1) yn+Alyn_l+. .+Apyn_p=BlUn_l+. .+Bqun_q+wn+Clwn_l+ "-lLCrl4In_r

where y,, u, and w, are the m-, l- and m-dimensional output, input and driven noise,
respectively, and p->l, q_>-l, y,=w,=0, u,=0 for n<O. A, Bj, Ck (i=l...p,
j 1 q, k 1 r) are the unknown matrices.

Assume that u and w, are ,-measurable and

(2.2) E(II w. I1 1 ’n--1) <- cor_,
with constants co>O, e[O, 1) and r,_ defined later on by (2.9).

Let z be the shift-back operator and set

(2.3) A(z) I +Az +. + Apz p,
(2.4) B(z) B + B2z +. + Bqzq-l,

(2.5) C(z) I + Cz +" + Cz’,

(2.6) 0= I-A1 A,B,...B,C,... C].

Denote by 0, the nth estimate for 0, and let 0, be given by

(2.7) 0.+1 On + q"-n (y+l- nOn)
r,

with

(2.8) cp, [y,, Y-I,""", Y-p+,, u’,,...

(2.9) r. 1+ I1,11 =, ro= 1.
i=1

The initial values 0o and o are arbitrarily chosen.
Under reasonable conditions Goodwin, Ramadge and Caines [15] proved the

global convergence and asymptotical optimality of the tracking system with u, defined
from

(2.10) 0, o. y,*+,

(2.11) lim
1

< lim
1

IlY, < a.s.
n-oo rl i=1 n-<x3 l i=1

(2.12) lim
1

(Yi-Y*i)(Yi-Y*)" R a.s.
nx3 /’/ i=1
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560 H.F. CHEN AND L. GUO

However,. in this case the estimate 0, may be inconsistent (Becker, ,Kumar and
Wei [2]). It can be easily explained by the following example. Let y,* 0 and 00o> O0.,

Then we have

hence

0..--0, 0.(0./ 0.)= 0"y./=0;
r,,

oo. o_,o,,_ +(o,,-o,,_,)(o,.-o,,_,)

0,0o+ (o,-o,_)(o,-o,_)>-OOo> oo.
i=1

In order to achieve strongly consistent parameter estimates, Caines and Lafortune
[3], Chen [7] and Chen and Caines [9] added a disturbance with covariance matrix

RI> 0 to the reference sequence {y,*}. In this case 0, tends to 0 but the long run
average of the tracking errors differs from its minimum value R by an additional term

RI:

lim
1

(y,_y,i)(y,_y/,) R + R, a.s.
n-+oo n i=1

It is natural to ask: Is it possible to achieve simultaneously both asymptotic
optimality of the adaptive tracking system and the strong consistency of parameter
estimates? To answer this question is the topic of the paper.

3. Main result. We first define adaptive control for the tracking system. Let {ei}
be an m-dimensional i.i.d, sequence which is independent of {w,} with properties
Ee,e f I, E

Without loss of generality we assume ,, cr{w, <= n; e.,j <= n}.
Unlike (2.10) we define adaptive control from the equation

(3.1)

where {y,*} is a bounded deterministic reference sequence and

e,,
’’n >= 2.(3.2) v, 0, v, log’/8 n

(The existence of u, satisfying (3.1) or (2.10) is discussed in Appendix 1.)
The disturbance v, in (3.1) is designed to have a vanishing covariance matrix in

order to make tracking error asymptotically minimal, but for this the system loses the
persistent excitation property which is of crucial importance in the analysis of Caines
and Lafortune [3], Chen [7] and Chen and Caines [9].. To overcome this difficulty is
the main task of the present paper.

We need the following conditions:
(A,) C(z)-1/21 is strictly positive real;
(A2) B, if of full rank and zeros of det B-B(z) lie outside the closed unit disk;
(A3) B-A(z) and B-B(z) are left-coprime and B-Bq is of full rank;
(A4) {w,} is a mutually independent sequence with Ew,=O; sup, Ellw,[[4+ <oo

for some 8 > 0 and

(3.3) lim
1

WiW R > 0 a.s.
n-x /’/
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ADAPTIVE CONTROL WITH CONSISTENT ESTIMATES 561

THEOREM 1o Forsystem (2.,1)-(2,.2) let theparameter estimate be given by (2.7)-(2.9)
and let the control be defined by (3,1) and (3.2).,If conditionsA1-A4 are fulfilled, then
the tracking system is asymptotically ,optimal and the estimate is .strongly consistent, i.e.,
(2,11) and (2,.12) take place and O, O. a.s.

The proofof this theorem is ,given in 5. For this we need some criteria for strong
consistency of parameter estimate for systems without monitoring.

4, Parameter estimation for systems without monitoring. In contrast to . we define
an estimate-free vector t#"
(4,.1) o, =[y,]... Y,-,+1, u, n--q+l, ,Wn’’" Wn-r+l]

and set

(4.2)

(4.3)

Then we have

(4.4)

(4.5) y+a 0 q.+

and

r.

hence

(4.6)

r

with

(4.7) , 0- O,.

Let the matrix (n, i) be recursively defined by

(4.8) (n+ 1, i)=(I-iq’[)dP(n, i),
\ /r

Then from (4.6) it follows that

.cb(i, i) L

(4,9) On+, =*(n+l,O)/o+ dP(n+l,j+l)P3q*O- dP(n+l,j+l)qw)+l,
=o r j.=o r

from which we see that the behavior of (n, 0) is of great importance for consistency
of parameter estimates.

LEMMA 1. For the system and algorithm defined by (2.1)-(2.2) and (2.7)-(2.9) if
condition A1 holds, then

(4.10) y’. ""+’"< oo a.s.;
n=0 rn

moreover, if conditions A2 and A4 hold and (2,10) or (3.1) is satisfied, then r, -->c, and

(4.11) E I1,/111 = o.
il i=O n--,
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562 H.F. CHEN AND L. GUO

Proof. In Chen and Caines [9] and Chen [7], (4.10) and (4.11) are proved for
with the constant covariance matrix, but they can be verified by the same argument
used there.

LEMMA 2. For the system and algorithm defined by (2.1)-(2.2) and (2.7)-(2.9) if
condition A holds then (n, 0) 0 implies 0 19 a.s. for any initial alue 0o.
For the special case of r =0, the converse assertion is also true, i.e., if 0 _,oo 19 a.s.

for any o then (n, O) ,-.og 0 a.s.

Proof. The first step is to show

(4.12) E
i--o ri

for any vector sequence {p,} with (n, i) and r, related by (2.9) and (4.8), where d
is the dimension of

Then by (2.2) and (4.12) we can prove that the last term of (4.9) goes to zero if
(n, 0).,_, 0. Finally, by (4.10) and (4.12) the second term on the right-hand side of
(4.9) also converges to zero if (n, 0) ,_. 0. This is just a sketch proof for the first
conclusion. For detailed proof we refer to Chen and Guo [ 12]. The second conclusion
can be easily seen from (4.9). 7,1

LEMMA 3. If r. o, lim. r./r._ < oo and there exist quantities No and M
possibly depending on to such that

(4.13) Anax____< M(log r.) /4 a.s. Vn >= No;
min

then P( n, O) O, where A and A rain denote the maximum and minimum eigenvalue

of the matrix .i= tpitp + (1/d)I respectively and d denotes the dimension of
Proof. We only give a sketch of the proof and refer readers interested in details

to Chen and Guo 10], [ 11 ].
The key point is to find a function m(t) such that m(t) ,_. oo and-

l[6P(m(N+ka)’m(N+(k-1)a))[[ -k ’k>l=

for some N, a > 0,/3 > 0 and c > 0. If it has been done, then

k

II(m(N+ ka), 0)11 17 II(m(N+ ia), m(N(i- 1)a))[[. II(m(N), 0)11
i==

1- ; O;
i--1 koo

hence O(n, 0) ----- 0 since []O(j+ 1 J)ll -< 1 for all j.
It appears that the following defined function can serve as the desired one:

m(t)=max[n" t,<--_t],

=2 r(log r)

Remark 1. Lemma 3 is a purely algebraic result, namely, it is true for any vector
sequence {q.}, only if (n, 0), tp. and r. are related by (2.9) and (4.8).
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ADAPTIVE CONTROL WITH CONSISTENT ESTIMATES 563

Remark 2. There exists an example (see Chen and Guo [ 13]) showing that Lemma
3 is no longer true if condition (4.13) is replaced by a more general one:

A -< M(log r, a > 0.

This means that, in order for the estimate given by (2.7) to be consistent, the condition
number of i= pip +(1/d)I is allowed to diverge at a rate of (log rn) /4, but not
faster than (log

LEMMA 4. Let {p}, {o2..} and {,.} be the vector sequence satisfying conditions
p . P2. + and

(4.14)
n=0 rln

Then (n, O) 0 if and only if 2(n, 0) .,. 0, where by definition

p(n + l, O)=(I-Vv)cp(n, O),
tin

,,(o,o)=4

Proof. Without loss of generality we assume that II  ll 1.
Suppose (n, O) ,_, O; then from the following chain of equalities"

det(n+l,0)=det lI P(i+l,i)= det I------
i=0 i==0

rI r,,_,
(1 -I111

1
(1 I1  11

i’1 rli rln

we see that rln
By (4.14) and the Kronecker lemma we have

(4.15)
rln rln

and by (4.14)

(4.16) X ,,,,2< oo.
tl’-O r2n

We immediately verify that

2(n+ 1, O) ,(n + 1, 0)+ 2 l(n+ 1,j+ 1) ) 2(A O)
j=o rj

+ L (n+ 1,j+ 1) 2(j, o)
=o r2

j=0 "lj V rlj v r2j/

By using (4.12) and (4.14)-(4.16) it is not dicult to conclude that (n, 0) . 0implies
2(n, 0) .. 0. e converse implication is proved in a similar way.
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564 ft. F. CHEN AND L. GUO

THEOREM 2. For the system and algorithm defined by (2.1)-(2.2) and (2.7)-(2.9)
if condition A holds and if r. ---",

lim rn/r,_,< and A,,x/Aain_-<M(log rn)/4 Vn>-_N

0 0 0 0n OnAmax/A min r, for all n(or r, ,_.g 3, limn_ r/r,_ < and < M(log 0 1/4 >- N) with N
and M possibly depending on to, then

On > 0 a.s.

for any initial value, where A O,max, / min denote the maximum and minimum eigenvalue of
y=,o o+ (1/ d) I, respectively,, and r, 1 +Ei-I

= with ,. defined by (4.1).
oo Since (4,4), (410) and Lemma 4 can be applied with ,,, .= and, , hence (n, 0) > 0 if and only if 0(n; 0) > 0, where o( 0) is defined

oby (4.8) with , and r, replaced by , ad r,, respeetive}y. Then the conclusions of
the theorem immediately follow from Lemmas 2 and 3.,

5. Proof of Theorem I. To begin with we prove the following lemmas.
LEMMA 5. Let {v,} be defined by (3.2) and let HN(z)=i--0, Hi(N)zi be the matrix

series in shift-back operator z, where the matrix coefficients Hi,(N) may depend upon
but there are constants (independent of to,) k > 0 and k2 > 0 such that

Then

IlH(N)ll
_

kl exp (-k2i) Vi VN>-_ O.

N

lim
lgl/4N

(Ht(Z)Vn)(Hr(Z)Vn,)
Noo N n=l,

lim
1gl/4 N

2 Hi(N)H’(N)
N-,o N i=o j= 10/’j

oo See Appendix 2.
La 6. Let conditio A4 except (3.3) be held and let H()==o H: and

G(z) ,o G:’ be matNx series in shO-back operator ith + , k exp (-ki)
for all O, for some constants k > O, k> O. en there exit e (0, 1) uch chat for
all/>0,= =>0,

lim
1 N

(5.1) - E (H(z)w,,+l_,)(G(z)v,,_,,,)’=O a.s.,

(5.2) lim
1 N

_.." (H(z)w,,+,_t)rI=O a.s.
n=l

for any bounded deterministic sequence {7,}, and

li_.__ 1 N

(5.3) -,o- y [IH(z)Wn’+l-tl[: < a. s;

Proof. See Appendix 2.
Set

(5.4)

(5.5)

(5.6)

H,(z) [B-B(z)]-’B-A(z),

H:(z) H,(z)-[B(B(z)]-’BC(z),

Y.* [Y*n Yn-t,+l,*" (H,(z)y*n,+ 1,)’ nlz)Y-q+2)’
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ADAPTIVE CONTROL WITH CONSISTENT ESTIMATES 565

and

(,5.7) Z=[v.-, v,,-v,

In the following, by min(X) (Amax(X)) We mean the minimum (maximum)
eigenvalue of the matrix X; we have the following.

LEMMA 7. Under conditions of Theorem 1 if

(5.8) lira Amin(lg4 N, )(Y* Y*’+Z.Z) #0 a.s.
N- =1

then

On 0 a.s,

Proof By Theorem 2 we only need to prove o(n, 0) ,_,- 0 a.s. From (2.1) we have

(5.9) u [B’B(z)]-BA(z)y,+I + - +B, B(z)] , C(z)wo+,,

then by (3.1), (4.2), (5.4), (5.5) and (5.9), W defined by (4.1) can be written as

(5.10)

where

(5,.1)

(5.12)

(5.13)

(5.14)

Zd/. [’,,... s._,+,, (H,(z).+,)" (H,( ):.-q+2) 0 O],
=+[.

=[W’’’ W_p+I, (H2(g)Wn+l)z’’’ (Hz(z)Wn_q+2) w... W_r+l]

3,=[Y +Z,,0...0].
By (4.4), (4.10), similar to (4.15) we have

0

(5.15) r= r.-2,=, :+i=1 IIfll ,1.

Then by the Schwarz inequality it follows that

Z IIn’(z)"+’-’ll=< 1
Y Hl n,,ll" ./,-,-, =

n=0 rn n=0 rn i=0 ,i=O

I1+_,_,11
i=O n=0

where the last inequality is obtained because si 0 for i< 0 and the coefficients in
Hi(z)=i=O Hl,Z have the estimates H,i <= k, exp (-k2i), for all => 0, (k, > 0, k2 > 0)
by condition A2. Thus we have established

(5.16) 2 ![ :

,=o r,

and by Lemma 4 we conclude that o(n, 0).:-, -,d 0 iff l(n, 0)
Next, we prove that
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566 H.F. CHEN AND L. GUO

If for some to fl (5.17) were not true, then we would find a subsequence of
eigenvectors "aNk’fNk] for matrix (log1/4 Nk/ Nk) ’..n =l PncP ln with Nk k.,oo 00, OtNk Rmp+lq,
flNk - Rmr and

(5.18) 1

such that

(5.19) a t,, fl N,,)
logl/4 Nk ,,

Nk ,,=l v,,/

Without loss of generality we always assume that this fixed to does not belong to
a possible exceptional set of probability zero. Obviously, a and /3v would be
to-dependent but not necessarily measurable.

Utilizing Lemma 6 one can easily be convinced of the fact

(5.20) lgl/4N N 2 03. 0
n=l Noo

then (5.19) is reduced to

(5.21) (a,N)
lg/" Nk - 2"(at)o.o. ---0,

(5.22) (au, fl)
Nk .=,. kgu k

In view of Lemma 6, (5.8) implies

(5.23) lira I Y+Z)(Y+ Z,)" e 0.

Paying attention to the fact that the last mr elements in are zeros, by (5.22)
and (5.23) we conclude that

(5.24) at O;
k-oo

hence, recalling (5.18) we have

(5.25)

Let

x. [w,, w._,+,, (H2(z)w.+,)"" (H(z)w._,+=)’]

Xn [W Wn_r+

Then o. =[x,", x,’]" and (5.21) implies

1
(5.26)

Nk

Further, we have

(5.27) lim
1 E IIx ll=< a.s.

n--’l
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ADAPTIVE CONTROL WITH CONSISTENT ESTIMATES 567

by Lemma 6, and

(5.28) lim
1 2 2"rXnXn 0

N-oo "- g

by ergodicity.
us from.(5.24) and (5.26)-(5.28) it follows that

lim
1

flxx O,k
which leads to fl 0 by (5.28). Comparing it with (5.25) we obtain a contradiction,

k
which shows the tth of (5.17). refor, there exist ao> 0, No such that

" > ’"ao n >No(5.29) Xmin i 1 ni=1

By (5.12) and Lemma 6 it follows that

lira ll=tr R>O

and

(5.31) lim
1

Iltp, []2 < oo a.s.
n-oo / i----1

From (5.30) and (5.31) it follows that there are positive quantities/3 >_- a > 0 such
that

(5.32) an <-- tin < fin,

which, together with (5.29), yields
n n 1ogl/4Amax/Amin = M tin /n -> No with some M> 0

where A and A in
man denote, respectively, the maximum and minimum igenvalues of

+(1/a)I.n we obtain the required asseion (n, 0) 0 by Lemma
3 and Remark 1.

oofofeorem 1. Since2 (oo (1/log/4 i)I)/i is a convergent maingale,
by the oncker lemma it follows that

(5.33) lira
1 1 1

ov lim I 0.gi/4n n i=1 n n i=210
Similarly we have

1
(5.34) lim Wil) i-- O.

noo

From (3.1) and (4.2) it follows that

(5.35) yn+l :,+ +y*+ + W,+l + v,.

Then (2.11) and (2.12) follow immediately from (4.11), (5.9), (5.33)-(5.35) and condi-
tion A2.

Thus we only need to prove 0, ) 0 a.s. By Lemma 7 it suffices to verify that

(5.36) lim ’min Z,,Z 0 a.s.
N--’-’ N
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568 H.F. CHEN AND L. GUO

If (5.36) were not true, then there would exist a subsequence of eigenvectors
ark e Rmp+tq for matrix (log1/4 gk/Nk) fnl ZnZn with Nk O0 and

k-oo

(5.37) IlaNkl"l 1 Vk>=l

such that

log1/4 Nk ’ Z.Z,aN O.(5.38)

a. Write and a in theWithout loss of generality we suppose
component form

aN,,=Ca(Nk). ap+q(Nk)], a =[al a,+q]
with ai(Nk), ai being m-dimensional and a,+j(Nk), a,+j /-dimensional vectors, i=
1 .p, j= 1 q,

Set
H,, z) (N),z +,.. +, a,(

(5.39) + ol+,(Nk)nl(z)+ + ol+q(Nk)JIi(g)zq-1

(5.40)

a__ , h:( Nk)z’,
i=0

q--H(z) a z +a,zt’ + otp+,n(z) +’’" + otp+Hr(z)z

a__ h,z i.
i=0

We note that ar and hence Hr(z) may depend on to,. but by condition A2 and
(5.,37) it is clear that there are constants c, > 0, c2 > 0 such that IIh,(N)ll-<- exp (-c2i)
for all >- 0, for all k -> 0. Then Lemma 5, can be applied, and from (5.,38), (5.39) we have

0= lim
lg/* Nk ,,, [a’(Nk)V,_ +" "+ a(Nk)V,_, + a+l(Nk)H(z)v, +"

ko Nk
+ a+q(Nk)H,(z)v,,_q+a]

lira
lg/’ Nk , [(a((Nk)z+’’ "+a,(Nk)z’+a+(Nk)H(z)+

k--> Nk n=l

+ a,+,(N,)H,(z)zq-’)v,]
log1/4 N

lim E (Hk(z)v,,)(HN(z)v,,)
k Nk n=l

lim
1gl/4 Nki__ h;(Nk)

1
k.-.oo Nk ,=2, Iog1/’* n

which implies that

lim E
koo i=0

and hence Yi=o []hi[[2= 0 by the dominated convergence theorem; therefore H(z)= O.
Setting z 0 and paying attention to the fact that Hi(0)(= B) is of full row rank we
see ap+lB =0 and so a+l, =0. Then it follows directly from (5.40) that

(5.41) (a’+az+. .+azt’-’)=-(a’p+2+. .+a+qz’-2)Hl(Z).
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ADAPTIVE CONTROL WITH CONSISTENT ESTIMATES 569

In view of condition A3, applying Lemma 6.6-1 of Kailath [16] to (5.41) we know
that there exists a polynomial with vector coefficients f(z):

f(z) --fl +f2z +’’" +fszs-1, s > 1,

such that

a++ + a+qzq-) f(z)B(B(z)
(5.42)

(f; +.., +f[z-’)(B-B, +... + B-Bqzq-’)
From here it is easy to conclude that f =0 (1 =<i <- s) since B-Bq is of full rank

by condition A3, then ap+ 0 by (5.42), and then a 0 by (5.41) (1 =<j <- q, 1 -<_ =< p).
Thus a =0, and a

_
0, thus contradicting (5.37). Hence (5.36) holds. I-i

6. Concluding discussion. In order to get optimality in both tracking and estimating
we have added to {y,*} a random disturbance with covariance matrix tending to zero,
but, intuitively, the disturbance may harm the tracking if time is bounded. However,
all assertions of Theorem can remain valid for u, defined from (3.1) with v, deleted
(i.e. from (2.10)) if the reference signal y,* itself is "complicated" enough in the sense
that

(1og-----/4 Nn )(6.1) lim /min y,, y,,z s 0.
N-

This remark can easily be seen from Lemma 7.
For the single-input and single-output system it is easy to show that for (6.1) it

suffices to require condition As and

(6.2) lim Am, [y* *.yn_p_q+l]’[yn*...y*__q/] e0.

Recently, for multidimensional and random {y*} we have obtained conditions
similar to (6.2) in order that all conclusions of Theorem 1 hold by applying u defined
from (2.10). It will be published elsewhere.

Appemlx 1. Existence f dpfive
LEMMA. (1) LetA andB be two matrices ofdimensions m x n and n x m, respecively.

Then the following equality takes place

det I, + AB) det I + BA)
where I,, means the n x n identity matrix.

(2) Provided x and x are independen random variables, chert

sup P(xl + x2= a) <=min { sup P(x a), sup P(x2= a)}.aR aR aR

Proof. (1) By taking determinants for both sides of the following matrixidentity:

I., -A I, 0 r. +A

the desired equality is immediately verified.
(2) Denote by F(x), F2(x), F(x) the distributions ofx, x, x + x, respectively.

Clearly we have

F,(x)=2FI(X-y)dF2(y)
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570 H.F. CHEN AND L. GUO

and

FiE(X+) f FI((x-y)+ dFE(y)

by the dominated convergence theorem.
Then for any a R

P(xi + x2 a) F12(a+)- Fi2(a) I_ [Fl((a -y)+ )- Fi(a -y)] dF2(y)

I_ P(x a- y) dF2(y) <- sup P(xl a) I?o
sup P(x a).
aR

Similarly, we have

P(x + x2 a) <- sup, P(x2 a)
aR

and thus the desired result follows.
THEOREM. Assume m <-_ and {Wn} and {On} are two sequences ofmutually indepen-

dent random vectors and the components of w, are independent and with continuous

distribution functions. Then for any n >= 1 there exists Un satisfying (3.1) if the initial
values are appropriately chosen. Further, this u, is unique if and only if m I.

Proof. Let Ai,, Bj,, Ck,, i= 1...p, j= 1...q, k= 1"." r be the matrix com-
ponents of On, i.e.,

Set

O I-A1. Ap,,OBE,,. B,,C,,.. C.],

and

qS,=[y, y,_,+,, O, u_o+i, y’,,-q_O,,_, yZn--r+i--n--rOn--r]"Un--1

Equation (3.1) is equivalent to

(A.1)

First let m I. For this case we only need to prove that Bln is invertible a.s. In
g: ---rfact, if this is true, then from (A. 1) u, is uniquely defined by u, Bi, (Y,+l + V, ),

which obviously is ,-measurable. (In adaptive tracking cases we take
tr{w,, v,, -< n}.)

From (2.7) and (4.2) we obtain

1
(A.2) B,,,+i Bi,, +--(s,,+ + W,+l)U,.

rn

It is easy to take initial values Oo, 0o such that Bil is invertible; for example, take

Uo 0 and Bio invertible.
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ADAPTIVE CONTROL WITH CONSISTENT ESTIMATES 571

We now inductively prove that B1. is nondegenerate for any n => 0. Assuming B1.
is nonsingular a.s., we show that B.+ is also. In other words, we need to prove that
P(N) 0 implies P(DNc) 0, where

N& {toldet B,. 0}, D & {toldet B,.+, 0).

Suppose that the opposite were true, i.e., P(N)= O, but P(DN) > O.
From (A.2) we have

det (Bn+--1 (n+l+w+)u:)=0 VtoDN

but det B1. rs 0 for to DN; hence

or

det (I +lB-ln(n+l + Wn+l)U) =0r,
Vto DN

det(l+l -1 + 1))=0u.B1. (n+l w.+
r.

by part (1) of the lemma.
Then we have

(A.3) u.B,-.(s.+, + w.+,) -r. Vto e DN

and consequently,

(A.4) u.B, ys 0 Vto DN

Vto DN

since r, _-> 1.
We denote by ai(to) and Wn+l, the components of UBl-l,, and Wn+ respectively, i.e.,

(A.5) uB-1 [1((o) ’’’,In

(g.6) Wn+ [Wn+l,1, Wn+l,m] "r.

Then from (A.3), (A.5) and (A.6) we have

(A.7) E a,(to)w.+,,+r.+u.Bl,,S.+l =0 VtoDN.
i=1

From (A.4) and the assumption P(DN) >0 we would have some a((o) and a
subset D1 c DN such that

(A.8) a,((o) 0 tto D1, P(D,) > 0.

Without loss of generality, we assume l, and define the random variable z(to):

I 1 [ ti(9)Wn+l,i+rn+u-lB-lnn+] to D1,
Z(tO) al(m) i=2

O, to D,

which is clearly independent of W+l,. By part (2) of the lemma, it follows that

(A.9) P(w.+l, + z(to)=0)=0.

However, (A.7) and (A.8) would yield

(A.10) P(Wn+IA + z(to) =0) _-> P(D1) > 0.
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572 H.F. CHEN AND L. GUO

The contradiction obtained proves P(DNc) 0, and hence the nonsingularity of B.n+

Now assume m </.
Let

l--m l-m

BnA[Bn, Bn]}m, u, =[Un
From (A.2) we see

B11,+ Blln +--1 (:,,+1 + wn+)ul,.
By an argument similar to that given for the m =l case we can prove that Bn is

invertible a.s. for any n _-> 1 if Oo, 0o are adequately chosen. Then (A.1) is equivalent to

(A.11) [I, (B,,)-Bn]un (Bn)-l(y,*+ + vn -/i, 3n)
or

2 (Bn)-I , --z-tln q- (Bn)-B2nUn (Yn+l q- l;n

Obviously, the solution of (A.11) can be expressed by

(Yn+l q" l;n nn Bnu2n)
Un 2 a.s.

Un
2with any (/-m)-dimensional and 3:.-measurable Un. This means that for the case

m < the control un satisfying (3.1) exists but it is not unique. 13
Remark. Recently Caines and Meyn [4] also have shown the existence of un

satisfying (2.10) for a one-dimensional case but under conditions different from those
imposed here.

Set

Appendix 2. Proof of lemmas.
Proof,of Lemma 5. Due to the assumption Vn 0 for n < 0, we have

, (HN(z)Vn)(HN(z)Vn)"= E Hi(N) Vn_,Vn_S H;(N)
h=l i,j=O n=l. Hi(N) , Dn_iDzn_j H(N).

i,j=O =max(i,j,1)

N

s,,,(i, j) E v,,_,v_s
=max(i,j,1)

Rn Evnv n 1/4
Y/

I, n > 1,

[o,

Clearly, SN(i, j) is a martingale and by Burkholder inequality (Chow and Teicher
[14]), Cr--inequality and Schwarz inequality we have

( /N ) 1+(/4)

EIISN(i,J).I[2+/2<=c,E E IlVn-,V:-s-5oen-.i[I 2

=max(i,j,1)

N

<= Cl N’/4E E IlVn-iVzn-j ijRn-ill 2+(’/2)

=max(i,j,1)

<= c2N+’5/4 for any 0, j 0 and some Cl > 0, c2 > 0.
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ADAPTIVE CONTROL WITH CONSISTENT ESTIMATES 573

From here and the Hflder inequality it follows that for any e > 0 and

+ (a/2)’ ,’

P 2 e-i+)llS(i,j)ll>N’" e
i,j=O

1 ( )2+(/2)

e2+(/2)N,(2+(/2))E 2 e-k(i+)llS(i,j)ll
i,j =0

1
C3N(+(/))E E (e-g(i+J))l+(/4)llSN(i,J)[[2+(/2)

,j=o

1
c4 ..+(/_+/4) for any N 1 and some constants c3 > 0, c4 > 0.
1.....-.

Then by the Borel-Cantelli lemma we see

(A.12) lim 1 H(N)SN(i,j)H(N)
N 11" i,j =0

Finally, we obtain the desired result

N

lim
lgl/4N

E (Hrv(z)vn)(HN(z)v,,)"
N-o N n=l

lim
lgl/4N

E (H(N)S(i.j)H(N)
N--, N i,j=o

N

+ lim
10gl/4 N

E H(N) , 8oR._,Hs (N)
N-..oo N i,j=O n=max( i,j,1)

N N

lim
10gl/4 N

E Hi(N) E Rn_iH(N)
N i--o n=max(i,1)

lim
1gl/4 N

Ho(g) Y R,,Ho(N) + Hi(N) Y R.H(N)
Nx N n=l i=1 n=0

lim
10gl/4 N[N-.o N

Ho(N) , R,,H;(N)

+ E Hi(.N) R.+Ro- E
i=1 =1 n=N-i+l

N N

lim 1ogl/4,,T N ., Hi(N) ., R,,H(N).
N-oo 1 i=0 n=l

Proof of Lemma 6. Set
N

SN(i,j) a__ E Wn+l--l--iVZn--m--j
rl=l

Similar to the proof of (A.12), one can easily be convinced that

lim
1

r--. E HiS(i,j)G;=O,

which is tantamount to (5.1).
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574 H.F. CHEN AND L. GUO

Clearly, (5.2) can be verified in similar fashion.
By setting HN(z) =- H(z) and v.-= wn+l- in (A.12) we have

lim
1..,- H,S(i,j)H;=O

i,j ---0

where

N

S(i,j)
=max(i,j,1)

[w,_+_iw_+_j- 8oRn_+_i]

and

a_. EwnRn-l+l-i -/+l-i Wn-l+l-i.

Hence by the uniform boundedness of R. we have

lim
1

llH(z)w / -,ll =

lim tr Y (H(z)w.+l_t)(H(z)w.+l_t)
Noo n=l

lim tr HS(i, j)H+ H.
1

N-o -- i,j=O i,’----O N

N

=max(i,A1)

N

lim tr , H.1, Z R_t+_,H <c.
i=0 1 =max(i,1)

This completes the proof of the lemma, lq
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