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OPTIMAL ADAPTIVE CONTROL AND CONSISTENT
PARAMETER ESTIMATES FOR ARMAX MODEL

WITH QUADRATIC COST*

HAN-FU CHEN? AND LEI GUO*

Abstract. We consider the multidimensional ARMAX model

A(z)y, B(z)u, + C(z)w
with loss function

J(u)= lim
1

(yQy, +u’[Q2ui)
FI i--

where the coefficients in the matrix polynomials A(z), B(z) and C(z) are unknown. Conditions used here
are: 1) stability of A(z) and full rank of Ap; 2) strictly positive realness of C(z)-1/2I, and 3) controllability
and observability of a matrix triple consisting of coefficients in A(z), B(z) and Q1. On the basis of the
estimates given by the stochastic gradient algorithm for unknown parameters an adaptive control law is
recursively defined. It is proved that the parameter estimates are strongly consistent and the quadratic loss
function reaches its minimum. This paper also includes some general theorems on parameter estimation,
on which the results about adaptive control are essentially based.

Key words, stochastic systems, ARMAX model, stochastic adaptive control, quadratic cost, parameter
estimation

AMS(MOS) subject classification. 93C40

1. Introduction and statement of problem. In recent years there has been consider-
able research effort on the parameter estimation and adaptive control problem for
linear stochastic systems (see e.g. Goodwin et al. (1984)). Ljung (1977), Solo (1979),
Chen (1981), (1982) and Lai and Wei (1982) showed various conditions guaranteeing
strong consistency of parameter estimates given by different algorithms .for stochastic
systems without monitoring, while Goodwin et al. (1981) and Sin and Goodwin (1982)
gave adaptive control making the system global stable and the tracking error minimal,
but the parameter estimates given there in general, as shown by Becket et al. (1985),
are inconsistent. The first step towards getting both consistency of estimates and
asymptotic minimality of tracking errors was made by Caines and Lafortune (1984),
Chen (1984) and Chen and Caines (1985). In their results the parameter estimates are
proved strongly consistent but the tracking error is no longer minimal because of the
disturbance artificially introduced to the reference signal. Recently, Chen and Guo
(1985a), (1985b) have given an adaptive control under which not only the parameter
estimates are strongly consistent, but also the long run average of tracking error reaches
its minimum.

For stochastic adaptive control when a general quadratic loss function is con-
sidered, Kumar (1983), Hijab (1983) and Caines and Chen (1985) are concerned with
the case where the unknown parameters are valued in a finite set, Chen and Caines
(1984) and Chen (1985) deal with systems for which the consistent parameter estimates
are available, and Samson (1983) considers bounded disturbance case. Recently for
systems in state space representation with state completely observed, Chen and Guo
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846 HAN-FU CHEN AND LEI GUO

(1986) have given the optimal stochastic LQ control based on the least squares estimates
for unknown parameters which may take arbitrary values in the Euclidean spaces of
compatible dimensions.

In this paper we consider the general stochastic MIMO system (ARMAX model)"

(1) A(z)y,, B(z)u,, + C(z)w,,

with quadratic loss function

(2) J(u) lim
1 1 (y;Qlyi+uQ2u,),

n-oo / i=0

where Q1->-O, Q2> 0 and the matrix polynomials in shift-back operator z

(3) A(z)=I+Alz+. .+Apzp, p>-O,

(4) B(z) Blz + B2z2 +" d- Bqzq,

C(z)=I+Clz+" "+Crzr, r>-O

are of known orders p, q and r, respectively, and with unknown parameter 0 denoting

(6) 0 [-A1 Ap nl’’" nq Cl... C]

by definition. We emphasize that Ai, Bj, Ck (i 1 .p,j- 1 q, k 1 r) may
be any matrices of compatible dimensions.

Let dimensions for y,, u, and w, be m, and m, respectively., y 0, u 0, w 0
for i<0, and let {w,} be a martingale difference sequence with respect to a family
{,} of increasing tr-algebras, i.e., w, is :,-measurable and E(w.l._)=0. In addi-
tion, we assume that

(7) lim -1 Z w,w; Q > 0
noo / i=1

and

(8) sup  [llw ll l < a.s.

where and hereafter [IX denotes the maximum singular value of X.
At any time n, by .use of the past input-output data {ui, yj, 0 -< =< n 1, 0=<j -< n}

we want 1) to estimate the unknown parameter 0 and 2) to define adaptive control u
minimizing the loss function (2). In this paper, for the case where A(z) is stable, we
give a complete solution of this problem in the sense that the consistency of parameter
estimates and minimality of the loss function are achieved simultaneously. Although
the results are established for adaptive control based on parameter estimates given by
the stochastic gradient algorithm, the same results also hold for the case where the
extended least squares algorithm is applied.

In 2 we describe the optimal control for system (1) and (2) with known para-
meters, and in 3 we define the algorithm for both parameter estimation and adaptive
control and formulate the main theorem of this paper. For its proof we start with some
general theorems on strong consistency of parameter estimates for systems without
monitoring ( 4). Then in 5 we prove that they can be applied to the adaptive control
system defined in 3, and show that the loss function is really minimized.
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OPTIMAL ADAPTIVE CONTROL WITH QUADRATIC COST 847

2. Optimal control for systems with known parameters. The adaptive control law
given later on is inspired by the optimal control for system (1), (2) with known
parameters. So we first rewrite (1) in the state space form

(9) Xk+ AXk -F Buk + CWk+,

(10) Yk HXk, X [y0""" 0]
and give a solution of optimal control, where

(11) A=

"-A1 I 0

0

-As 0

0

0

I

(12) C’=[I C; Csr_l], H=[I 0 O]m

with s=pvqv(r+l) and Ai=0, Bj=0, Ck =0 for i>p,j>q, k>r.
We note at once that the nonzero eigenvalues of A coincide with the reciprocals

of zeros of det A(z) (Chen (1985)).
All conditions used in this paper are listed here.
(a) Ap is of full rank (Ao I by definition) and A(z) is stable, i.e. all zeros of

det A(z) lie outside the closed unit disk.
(b) C(z)-1/2I is strictly positive real, i.e.

C(e’*)+C(e-’*)-I>O V [0, 2r].

(c) (A, B, D) is controllable and observable, where D is any matrix such that
DD HQ1H.

We first explain these conditions.
(1) The full rank of Ap is used to ensure deg (det A(z))= mp for identifiability.
(2) For the uncorrelated noise case r=0, C(z)=/, condition (b) is automatically

satisfied.
(3) Condition (c) implies that A(z) and B(z) have no common left factor, i.e.

there are matrix polynomials M(z) and N(z) such that

(13) A(z)M(z)+ B(z)N(z)= I;
this is a consequence of Theorem 6.2-6 of Kailath (1980, p. 366). Also, condition (c)
implies either As or Bs is not zero, which implies r + 1 =< max (p, q). So under condition
(c) s=pvq.

(4) If condition (c) is fulfilled (stability of A(z) is not required here), then there
is a unique positive definite matrix solution S in the class of nonnegative definite
matrices for the Riccati algebraic equation

(14) S= ASA-ASB(Q2+ BSB)-IBSA+ HQIH,
and the matrix A/ BL is stable with

(15) L -(Q2+ BSB)-1BSA
(see, e.g. Anderson and Moore (1971)).

(5) Instead of condition (c), which is rather restrictive, we can directly assume
(14), (15) for which the weaker conditions are sufficient and assume that A(z), B(z)
and C(z) have no common left factor which is a natural condition for identifiability
of the system.
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848 HAN-FU CHEN AND LEI GUO

The following lemma is not concerned with adaptive control but it shows the
minimal value of the loss function and hints the form of adaptive control.

Throughout the paper, the relationship between two random quantities may have
an exceptional set with probability 0, but sometimes we omit to write "a.s."

LEMMA 1. If conditions (a) and (c) hold, then

(16) J(u) tr SCQC (u,-Lx,)(Q2+BSB)(u,-Lx,) a.s.
no /1 i=0

whenever ui is i-measurable and {ui} U with

(17) U={u" ,__ llu, ll==O(n), ,,ull==o(n), as no a.s.}.
The proof is given in Appendix 1.
This lemma tells us that the optimal control is u, Lx, and that the lower bound

to the loss is

min J(u) tr SCQC

We now give a multidimensional version of a result from Lai and Wei (1982)
which is used in the proof of Lemma 1 and will be repeatedly used in the sequel.

LEMMA 2. Letf be i-measurable random vectors and let { wi, ;} be a martingale
difference sequence satisfying (8). Then as n

fiwi+l-- o(sln/2 Iog(1/2)+’(sn + e)) /r/> 0 with Sn
a__ iif, =,

i=1 i=1

The proof is given in Appendix 1.

3. Main theorem. For estimating the unknown parameter 0 we use the stochastic
gradient algorithm defined by

(18) 0n+l On + Pn(y,+a- ,0n),

(19) o [y, y_p+, u, u;_+, y cp;_O,,_, Yrn-r+l- qZn-rOn-r],

(2o) 1 / I1 ,11 =, to- 1,
i=l

Denote by Ain, Bn, Cn the estimates given by 0n for A, B, C, respectively,
1 p, j 1 q, k 1 r. The state xn is estimated by the adaptive filter

n+1-- A.x,, + Bnu,, + C,, (y,+l HAnn HBnun),
(21)

o=[y0’’" 0]

where An,/, and , are defined by (11) and (12) with A,, Bj, Ck replaced by their
estimatesA,,Bj, Ck,, respectively, i=l...p,j=l...q,k=l...r.

Set

(22) L,, -(;’nS,,,, + Q2)-’Sn.,,,
where S. is recursively defined by

(23)

with an arbitrary initial value So -> 0.
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OPTIMAL ADAPTIVE CONTROL WITH QUADRATIC COST 849

It is natural to guess that L,;, is something we should take as adaptive control,
but, in fact, it may lead to an inconsistent estimate for 0. To avoid this trouble we use
the randomly varying truncation technique and the attenuating excitation technique
similar to those used in Chen and Guo (1986).

Take an arbitrary/-dimensional i.i.d, sequence {e,} independent of {wn} and with
properties

(24) Ee, =0,

Without loss of generality we assume , tr{ wi, =< n, ej, j =< n }.
Then the random sequence {v,} will serve as the source of attenuating excitation,

where by definition

( 1 )en Vn---2, e 0,4s(m+2)(25) Vl=0, v, log/2n

From Theorem 3, which is stated later on, we shall see that for strong consistency
of parameter estimates besides conditions on system structure there is a growth rate
requirement for system input when the attenuating excitation is applied to the control.
But L,, may not meet this requirement. This is the motivation to truncate the control
at randomly varying bounds which we describe right now.

We partition the time axis by a sequence of stopping times

1 7-1 <t7" < 7-2 < 0-2 <

at which the control is truncated in order to keep the required growth rate.
From the random time 7-k we define adaptive control uan as L,, excited by v, as

far as n <trk where rk is the first time when the growth rate of 1/(j- 1) -1 IIL,,II =
is greater, roughly speaking, than logs (j- 1); and from the random time trk we define
adaptive control as a pure disturbance v, until n < 7-k+1 where 7-k+1 indicates the time
when (l/n)j=l IIjll 2 is less than log/2 n and when some other technical conditions
are satisfied. To be precise, we define

(26)
j-1

try=sup t>7-" Y IlL,,ll= <- (j-1) log (j-1)+IIL,,II=,

(27) 7-k+, =inf t> trk: IIL, ,II 2k II jll t;
i=" j=l

Vj (7-k, t]},
=

_-< 1 "[
logs J

with any but fixed 8 such that

(28) 1/4-(m+2)se].

Clearly, for any e(0, 1/(4s(m+2))) the interval for 8 is not empty and the upper
bound for 8 is chosen to ensure an important inequality, which will be used later on"

(29) 1-284 e -(mp+ s)(e + 8) > O.

On the right-hand side of the inequality in definition (26) the term ]lLkkl[ 2 is
added to ensure the existence of trk, while in definition (27) the first and the last
inequalities are rather technical and are used in the proof of Lemma 4 for considering
case (3).

The adaptive control is defined by
0(30) un=Lnn+Vn
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850 HAN-FU CHEN AND LEI GUO

with

(31) L"= 0
if n belongs to some [zk, O’k),
if n belongs to some [rk, zk+).

We note at once that u can be recursively computed in real time and this makes
the results developed here practically applicable. It is not difficult to see that u, is
indeed F,-measurable, and it will be shown in 5 that {u,} U defined by (17).

We now formulate our main result.
THEOREM 1. If conditions (a)-(c) are satisfied, then the adaptive control ua= {ua,}

given by (30) is optimal in the following sense: thatfor system (1)with {u,a} applied the
parameter estimate On given by (18.) is strongly consistent and the lossfunction (2) attains
its minimum, i.e.,

and

On 0 a.s.

J(ua) tr SCQC a.s.

The proof of Theorem 1 is given in ,5.

Obviously, the optimal adaptive control is not unique; it may differ first by a
different choice of excitation source { vn}, second by various estimation schemes applied
to 0. For example, we can use the least squares algorithm. In this case, instead of
(18)-(20) we take

(32) 0n+ 0n + anPno.(y,+- o.On),

(33) Pn+, Pn anPntPntP.Pn, an (1 + q,Pnqn)-,
(34) "= [y ". y; y;n Yn-p+l, U. Un_q+l, --_10n, ", _r+l--_rOn_r+l

and we change log/2 n.in (25) to n/, log (j-1) in (26) to (j-1) and finally log
and log/ in (27) to and /2, respectively, then Theorem 1 can be-modified to
the following.

ThEOrEM 1’. Assume that conditions (a) and (e) are satisfied and C-(z)-I is
strictly positive real. Iftheparameter estimates are given by (32)-(34) and in the definition
of adaptive control (25)-(31) log is replaced by for all i, then

O. 0 and J(u")=trSCQC" a.s.

The proof of this theorem can be carried out along the lines of that of Theorem 1.
In the sequel by On we always mean the estimate given by (18)-(20).

4. Consistency theorems. In this section we give some theorems on the strong
consistency of parameter estimates.

In the sequel we always denote, respectively, by Amax(X and Amin(X) the maximum
and the minimum eigenvalues of a matrix X. We first give a result on matrix production;
it plays a crucial role in the proof of Theorem 2.

LEMMA 3. Let {f} be a sequence of deterministic vectors of dimension d and let
F(n + 1, i) be recursively defined by.

-f"f’ F(n, i), F(i, i) I,(35) F(n+l,i)= I rf ]

(36) rf, 1 + IIf,/I =, rfo 1.
i=1
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OPTIMAL ADAPTIVE CONTROL WITH QUADRATIC COST 851

Ifrf, ,,_. c andfor some a [0, 1/4] there are constants No andMsuch thatfor all n.>- No

and

then

rfn+l/rfn _--</I//(log r),

t!max ,ff+-I
’’min(i=lfif+-dI1)

<=M(lOgrfn)(1/4)-a

F(n, O) ...> O.

The proof of Lemma 3 is given in Appendix 1.
Set

0 2(37) r, 1 + X lloll r= 1,
i=1

(38) o, [y, y ]--p+l Un Un--q+l Wn Wn--r+l

which is obtained from , with y-LlO_ replaced by w, i=n.., n-r+ 1.
oTHEOREM 2. If condition (b) holds, r, and if there are a [0, ], No and M

possibly depending upon such that for any n No-1
(39) rn+l/ r, <= M(log r) a.s.,

hmax ii +Ii=1(40) ’(mini=1 iiO o,+i1 )M(logr)1/4-a a.s.,

with d mp + lq + mr, then

O, 0 a.s.

oThe theorem holds true if in its conditions and ri are replaced by and r
respectively.

Proof We rewrite F(n, i) defined in Lemma 3 to (n, i) and (n, i) if f is
replaced by and respectively. We know that (n, 0) 0 is equivalent to O(n, 0) 0
if condition (b) holds (Chen and Guo (1985a), (1985b)). Then by Lemma 3 under the
conditions of the theorem we have (n, 0) 0; hence 0, 0 as shown in Chen and
Guo (1985a), (1985b), (1987).

For consistency of parameter estimates we now give a theorem that translates
conditions on , and to conditions on u, alone. This is a basic step for proving
our main result and is interesting by itself.

THEOREM 3. Suppose that for system (1) A(z), B(z) and C(z) have no common

left factor and conditions (a) and (b) are satisfied and that

(41) u,=u+v,
and

1
(42) IluTll== O(log n)

i=1
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852 HAN-FU CHEN AND LEI GUO

for some 15 satisfying (28), where vn is given by (25) and u. is any ’._l-measurable
random vector with ;’.-1 being q-algebra generated by { wi, <-_ n, vj, j <- n 1, Yn >-_ 1.
Then On is strongly consistent"

On 0 a.s.

The proof is given in Appendix 2.

5. Proof of the main theorem. The proof of Theorem 1 is separated into several
lemmas.

LEMMA 4. Under conditions of Theorem 1 the estimate On is strongly consistent"

On 0 a.s.

and

Ln L a.s.,

where L and Ln are defined by (15) and (22) respectively.
Proof. We first prove consistency of
(1) If Zk < o, trk O for some k, then L Li for .i >= Zk and by definition (26) for

trk we have

E IIZ, ,ll =-- O(log n).
i1 i=1

Then by (30) and (31) we see that Theorem 3 can be applied, since L’i is obviously
i_l-measurable. Hence 0n O a.s.

(2) If trk <, ’k+l= O for some k, then by (30) and (31) u=vn for n>=trk, and
again Theorem 3 leads to the conclusion of the lemma.

(3) If trk <o, rk<O, for all k, then by (26), (27) and (31) we have for all k_->l

k____<"<k+ n log n i=
Lixi

1 oALixi
.k_no.k--1 1 log6 /1 i=’1

sup + +. .+
.rk_n_crk-- loga n xi=,

Crk_

’rk_

1 1 O’k_

-< E IIL,,II=/,,, / E IIL, ,II =
z2 log z2 = ’k log Ze =k_

sup IIt,,ll =
.rk_ntrk-- 1 log n i=.r

k-1 1 1--< E + sup (n,, log n+llL**,ll)--<3 Vk_-> 1.
rk ntrk-- 1 .081

Hence in this case Theorem 3 can also be applied. Thus we have established the
strong consistency of 0n. The second assertion follows from Lemma 5.
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OPTIMAL ADAPTIVE CONTROL WITH QUADRATIC COST 853

In the proof of Lemmas 5, 6 and 7 we need the following fact; If matrices fin
converge to a stable matrix, then there are constants 0 </z < 1 and c2 such that (Chen
(1985, p. 191))

(43) IIf-’""
LEMMA 5. If On n-, 0 and condition (c) holds, then S, defined by (23) tends to

the solution S of (14) as n-->
The proof is given in Appendix 1.
We now write xn given by (9) and n given by (21) in the vector component forms

(44) Xn [X

where xn and xn are m-dimensional, i= 1... s.
Set

(45) zn [x2."’’’
From (21) we have

^1 ^2
Xn+l An1 + Xn W BlnUn +(HAxn + HBun + Wn+ H.n. HBnun)

(46)
2AlXn + Xn + Bun + Wn+ Xn+1.

Then

(47)

with

(48)

n(Yn+ H,n.n Hnun
nHA(xn-n)+ nH(A-,n)n + .H(B-n)Un + nWn+l
Cn(z,, -Zn)+ nH(A-An)xn + CnH(B- Bn)un + Cnwn+l,

[Cn, O]}sm.
(s--1)m

Consequently, by taking un uan we can write (21) in the following form"

x.+, (..+BnL.).+Bnv.+n(Zn-Z.)+.H(A-An)x.
+CnH(B-n) o,,Lnxn+CnH(B-Jn)on+Cnwn+

-[’n + BnLn + nH(A-An)+ nH(B- Bn)Ln]n
’0+ Cn(Z. Z.) + [hn + CnH(n- n.)]Vn + 6nWn+.

From (9), (21) and (47) we obtain

x.+ .+ a(x. n) + (A-.)n +( hn)U + C .)Wn+
60(Zn .)-- 6.H(A-.)n C.H(n- nn)U

and from here and (46)

z.+-z.+ 6.(z.-e.)+(a’ ’.)X. + (n’-- n;)U.+ (C’ ’)w.+
(;n(A-n)n C;H(n- h.)u

(49)
Gn(Zn n) + [A’- + (B’-)L H(A An)

0’n(-]xD
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854 HAN-FU CHEN ,AND LEI GUO

where

and X’ denotes the matrix obtained from X by deleting its first rn rows, for example,

Finally, (48) and (49) give us a useful representation:

(50)

where

^. +/.L+ (.H(A-.)+ .H(B- .)L. d.](51) "= A’ o-A.+(B-B.)L.-C.H(A-.) ’.H(B B.)L, G,]

LEMMA 6. If conditions of Theorem 1 hold then there is a k such that

Proof. Since 1 7-1 < 0-1 < 7-2 < 0"2 <" ", we only need to prove the impossibility
of the following two cases:

(1) 0"k<O, 7-k+1=00 for some k;
(2) 7-k<OO, 0"k<OO forall k.
By (50) we have for n => 0"k

Zn+ Zn+l/
(52)

where by definition

I s ={"’’’i+1 forn>i,
j=i+l I for n i.

In case (1) L, =0 for n->_ 0"k by (32); then by Lemma 4 we have

(53) (Is..-,oo>(0A )---a withC=[C,O]}sm, G=(-C’ I0).
Notice that A(z) is stable by condition (a), and C(z) is also stable since C(z) is strictly
positive real by condition (b), so is a stable matrix.

From (43), (52) and Lemma 4 we obtain for all n _>-0"k

! IIz,+ - =)

j

Then

I1  11 =--
k=l

as n - oo.
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OPTIMAL ADAPTYVE CONTROL WITH QUADRATIC COST 855

This means that ’k/l must be finite by its definition (27) since L. , L by Lemma
4. Therefore case (1) cannot occur.

Now assume that Zk < o, trk< O for all k. By definition ’k is a sequence of
monotonically increasing integers; then Zk -----* c.kc

By (31) L. L. for n [Zk, trk), and then by (51) and Lemma 4 we have

A+ BL C](54) .
"tk.k) 0 G
kc

where Co and G are defined in (53).
Since A+BL is stable theia for n(Zk, Ok--l] by (43), (54) and Lemma 4 it

immediately follows from (50) that

(55)

where here and hereafter ci, 3, 4,. ., denote constants free of k.
Similarly, from (49) we know that

(56)
C5"k -Jl- C67"k log/2 ’k,

where for the last inequality (27) is invoked.
Putting (56) into (55) and noticing the boundedness of Li, we conclude that for

sufficiently large k

Y IIL,,II cr log/2 rk +C8trk <---- C9trk log/2 trk< trk 1og trk+ IIL =-
On the other hand, by definition (26) we have the converse inequality

E IIL,ill2> O’k log
s trk+ llLCk[I 2

since O"k

The obtained contradiction shows that case (2) cannot take place as well.
To finish the proof of Theorem 1 it remains to show that the loss function, reaches

its minimum when u given by (30) is applied. It is done in the next lemma.
LEMMA 7. If conditions of Theorem 1 hold, then {u.} U defined by (17) and

J(u.) tr SCQC.
Proof By Lemma 6 and (31) there exists some ko such that

L.=L,, Vn >- "rko.

By Lemma 4 we know that {.} converges to the matrix stated at the right-hand
side of (54). Then by (43) from (50) it is easy to see that

(57) []k+lll2+ IlZk+l--Zk+lllz= o(1) +,o( w’+lll=+ v’ll=))
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856 HAN-FU CHEN AND LEI GUO

and

(58)
/ k=

)=o +o Z -’(llw,+,ll+ll,ll) =0(1).
k=l k=l i=1

Then by (A2), (25), (57) and (58) it follows that

(59) I1.11 =-- o(n) and i111=-o(n)
k=l

Hence E,_-, IluTII= O(n), Ilu.ll=--o(n), and thus {u }e U.

a.s.

Using (59) and the consistency of 0. and noticing that G. in (49) converges to a
stable matrix, then from (49) we are easily convinced of

(60) -1 iiz/,_z/,ll== o(1) a.s.,
/’/ k=l

which together with (46) yields

(61) E llx,- ,11 =. 0.
/’l i=1 n-oo

From (59) and (61) we see

(62)
1

iix, ll== O(1).
/’ i=1

Finally, putting u into (16) and using (25), (61), (62) and the fact L L we
conclude that

.-,oo

n--1

J(ua) =tr SCQC + lim
1
E L L x, + L (., x, + v,] Q2+ BSB

n-oo 1 i=0

0[(L- L)x, + L,(x,- x,) +
tr SCQC’.

This completes the proof for Lemma 7 as well as for Theorem 1.

6. Conclusion remark. 1) In Chen and Guo (1987) the authors have given the
optimal stochastic control minimizing the tracking error and leading to consistency of
estimates given by the stochastic gradient algorithm. It is natural to ask: Is it possible
to give a unified adaptive control applicable to both problems oftracking and quadratic
cost. This requires further consideration.

2) The stability condition on A(z) is rather restrictive. It is desirable to weaken it.

Appendix 1.

ProofofLemma 1. By a standard treatment (see e.g. Chen (1985)) from (9), (10),
(14) and (15) we have

n--1 n--1

Y’. (y"{Q1y, + u"{Q2ui) xSxo-xSx,, + wi+lC"SCWi+l
t=o i=o

(A.1)
n-1

+ 2 (Axi + Bui)’SCwi+
i=0

rl--1

+ 2 u, Lx,) Q2+ BSB)(u, Lx,).
i=0
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OPTIMAL ADAPTIVE CONTROL WITH QUADRATIC COST 857

From (7) it is clear that

ww,, = w! = w(A.2) Wn JJ2 tr tr > 0.
/,/ /

By stability of A there are constants Co and p (0, 1) such that

=Cop lk >= O.

Then by (9) and (A.3) it follows that

[Ix = < 3Co = Ilxoll’-/ 3Co
B = / C = -, _

1 -p =o
Thereforo by (7), (17) and (A.2) from here it is concluded that

(A.4) IIxll=- o(1), IIx, = o() a.s.
n i=l

From (17), (A.1) and (A.4) the conclusion of the lemma will follow immediately
if we can show that

Y (Ax, + ntli)zSCW,+l O (llx, = + Ilu,
i=o i=1

But this is a direct consequence of Lemma 2.

log’/=+ (llx, ll=+ llu, ll=)+ e
i=1

Vr/> 0.

Proof of Lemma 2. By the martingale convergence theorem (Chow (1965))
=1 fw+ is convergent on the set V {co" s< oo}; hence Lemma 2 obviously holds
on V.

Further, for co Vc, without loss of generality we assume fl # 0; then we have

2 E 1/21ogl/2-’--; (si + e)
2

i=2 Si i=2 Si log+2n (Si + e)

2 dx si log+2n (st + e)
i=2

2 Z

=2 dx
X log+n (X + e)

where =sup[.+ll] by definition. Again by the maingale convergence
theorem we see that

1/2Z fiWi+l/Si log1/2+n (si+e)
i=2

is convergent on Vc. Then the Kronecker Lemma guarantees validity of Lemma 2 on
Vc"

Proof of Lemma 3. Set

(A.5)

(A.6)

m(t)=max[n" tn<=t],

tn _A
i=No r{(log r/f_l) 1/4"
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858 HAN-FU CHEN AND LEI GUO

We note that re(t) is nothing but the inverse function of t,, which is defined such that
it diverges in an appropriate rate.

It is easy to see that

t, _-> ,oo r/f-l(lO ----1)TM i=N0 t(log t) 1/4+a

(3 -4a)M
(log3/4-a rf_l- log3/4-a rfNo_l),

which via (A.5) implies t,--> o, m(t)< oo for all t, and

[ 4a)M(14/(3-4a)(A.7) log rm(N+k)-i
y <- (3--...

4
N+kce)+lg3/4-arf-I

For sufficiently large No we have

(A.8)
then

and hence

VN=>I.

log r.f, <- log rL1 + log M+ a log log r/f_1 __--< 2 log rfi_l V >-- No.

nl iif, =
<38-(1og3/4 r,f- -log3/4 rfo-,)<-- 2

i=No ’/iiog rf)1/4=

--<_ tin(t)+1 --<-- ](log3/4 rf,,,(t)- log3/4 rfo-1)
or

(A.9) log y >rm(N+(k_l)a) [(N+ k 1)Ce) +log3/4 rfNo_l]4a/3.
Since m(t)< oo for all t,, there exists N such that m(N)>= No and

(A.10)
(log r()’/4-’<1.__ Vi>_ m(N)r{ 2M

For any k_-> 1 by summation by parts and using (A.9) we obtain

(N+kc)-I f/f > X r( ff- fjj I
i=m(N+(k-)a) i=

II 11 =
r( 2I

i=m(NW(k-1)a)+l j=l

m(N+k.) Amax(2j=,+(1/d)I I111X
,=<+<-l))+ M(log rL)/4- (Lt 2I

> (log (N+(-))
i=m(N+(k-1))+l

{ 1 (log if_01/4-a 2

I 2I
M rL ] r((log rL)1/4

1
log r(N+(k-))( tm(N+k)+ t,(+(k_))+)I 2I

2Md

> log" f 2 Irm(m+(k-))2Md

>
1 +3k+ log3/4 r_ 2 L

2Md
(N-)

8
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OPTIMAL ADAPTIVE CONTROL WITH QUADRATIC COST 859

then

(A.11)

We take N, a large enough so that N > a and

b
2Md

-2> 0;

.(V+k.)-I f/f/> b( kaa/3r-.y )I Vk >- 1.
i=m(N+(k-1)a)

Let Pk be the maximum eigenvalue of the matrix

F(m(N+ ka), m(N+(k- 1)a))F(m(N+ ka), m(N+(k- 1)a))

and let X,.(N+(k-)) be the corresponding normalized eigenvector. For
[m(N+(k- 1)a), m(N+ ka)- 1] recursively define x

(A.12) xi+,= I- r{ ]
Then we have

x(u+k)x(u+k) x(u+(k_x))F"(m(N+ ka ), m(N+ (k 1)a ))

(A.13) F(m(N+ka), m(N+(k--1)a))X(N+(k-l))

Xm(N+(k_l)a)PkXm(N+(k-1)a)

and

(A.14)
ff

i+lXi+l X Xi X /.{ Xi"

iE

Summing up both sides of (A.14) we obtain that

"’+o)- IIf;x,ll______(m.15) E r.f, <= IIx(/(_,)llz- IIx(,/ll== l--Ok.
i=m(N+(k-1)a)

For m(N+ (k 1)a), m(N+ ka) 1 from (A.12) by Schwarz inequality and
(A.6), (A.15) we see that

Ixi-x(+(-l))[
j=m(N+k(-1)a) f Xj

(A.16) N {log r(N+k.)_}1/8

<{log f _l}/8la gl Okm(N+ka)

Finally, by (A.7), (A.11), (A.15) and (A.16) we conclude that

(-’ ZZ(x x, + x,)bk4o/a X(+(k-))
i=m(N+(k-1)a) r{ (N+(k-1)a)

< (log f )a/4r+=)_ E r{(log rL)/41lx+k-a) x,
i=m(N+(k-1)a)

+{log r+k_}/8 E
,=(u+(-,>.) (r{)’/Z(log rL1) 1/8 (rf) 1/2
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860 HAN-FU CHEN AND LEI GUO

<_::{(ot+l)3/2+(ot+l)l/2I(3_4a)M ]-1/(3-4a)}4
(N+ kc + log3/4-a rfNo_l

} 3/2(3--4a)

x (3.4-4a)M(N+kt)+ log3/4-" rYo_l /1 Ok.

it is clear that there is a constant Cl > 0 such that

bk4a/3 <- Clk3/2(3-4a)(1 --pk) 1/2 Vk >- 1,
or

b2 1
Pk 1 c k3/(3-4a)-(Sa/3)"

Then

since

k

IIF(m(N + kcr), o)11 <= FI IIF(m(N + ia), m(N +(i- 1)a))lJ. IIF(m(N), 0)11
i=1

k

i=1 koo

5 3 8
-<_- a_-<l foray[0,1/4].
6 3-4a 3

Notice that IIF(n, 0)11 is nonincreasing; then the lemma follows immediately.
Proof ofLemma 5. For simplicity we denote by P(A, B, S) the right-hand side of

(14). By Theorem 14.3 of Lipster and Shiryayev (1978) equation (14) can be solved
recursively

(A.17) r,+I=P(A,B,F,)

and F, -> S for any Fo- 0. F, with initial value Fo 0 is denoted by F In this theorem
it is proved that for any vector x of compatible dimension

(A.18) ox F.x <- xF.x <- xSx + x.(Fo S)g.,

or equivalently,

x’(r. S)x <- x’(r. S)x <- ;(ro- s)x.,

where .._., 0 and F. S and both . and F. are independent of Fo. Hence from
(A.18) we see that the convergence F. S is uniform in Fo for IIFo[[ <_-c with c being
any fixed constant.

From (23) we know that

S. <- A.S._I.. + H’QIH Vn >= 1.

Then, taking into account (43) we have the boundedness of S.:

II i-2
(A.19)

IIH’Q,HII .+ c(IIH’QIHII + IISoll)
1

=c Vn->l.
1-/x
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OPTIMAL ADAPTIVE CONTROL WITH QUADRATIC COST 861

By strong consistency of 0, and by boundedness of S, it is easy to see

P(A, B, S,,)- P(A,,+, B,,/, S,,) O.

Hence for any e > 0 we can find N> 0 such that

(A.20) Ilas./ll--< e Vk->0, Vn => N,
where

(A.21) zSn+k S,+k- P(A, B, S,+k_l).

For simplicity we set

P,(F) A P(A, B, F), P,(F) _a P(Pn-I(F)).

It is easy to show that there is a constant " such that

(A.22) PI(F + AF) P(F) +A--, I111 -< t
for matrices r >= 0 with Ilrll <-- c and ar with Ilarll <-- .

We now by induction prove that for any n => N and k => 1

(A.23) Sn+k Pk(S,,)+Z,,k(e) with II/.()ll<_-c,

where ck is a real number independent of n.
By (A.20), (A.21), we see that (A.23) is true for k= 1. Now assume (A.23) holds

for k. By boundedness of IIs.ll =< c for all n, the same argument as that used in (A.19)
leads to the conclusion that Pk(S,) is uniformly bounded in n >= 0 and k => 1. Then by
(A.21 )-(A.23) it follows that

S,,+k+l P,(S,,+k) + AS,,+k+, P(Pk(S,,)+ Z,,k(e)) +

Pk+,(S,,) + Z,,k(e) + hS,+k+, Pk+I(Sn) "1- Znk+, (e),

where, obviously, IIz/l()ll--< c/,. with Ck+ Ck + 1. Hence (A.23) holds for k+ 1.
In the present notation

r, P,(ro)

where F, is defined by (A.17). By the uniform convergence of F, for any 8 > 0 we can
take ko large enough such that

(A.24) IIPo(r0)- sll -< Vro. Ilroll <= c.

For e __a 6/c take N such that

(A.25)

Then from (A.23) we have

AS,+ e

s.+= P(S.)+z.<(),

and by (A.24) for all n -> N

s.+o- sll--< IIPko(S,)- sll / IIZ.o()Ii--< 26,

which yields the conclusion of the lemma.
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862 HAN-FU CHEN AND LEI GUO

Appendix 2.
ProofofTheorem 3. First we note that {v,, ’,} is a martingale difference sequence.

Then by Lemma 2 we have

(A.26) uTv7-- o IluTII = log/2+’ IluTll=+e
i=1 i=1 i=1

Further, by (24), (25) we know that for y (, 1)

X E IIv,v,-I/log.ill3/
i3,/2

Hencei= viv (1 i)I]/i" is convergent by the martingale convergence theorem.
Then from the Kronecker lemma it follows that

1 ,. ( 1 I)=0 Yy(,l).(A.27) ,,-,olim - = vvi-iog
It is clear that

dx 1 1 I’ dx

d2 log X--i=2 log i-log 2 log x

and the l’H6pital rule shows

(A.28)

hence by (A.27)

(A.29)

logan 1
) 1;

n i=2 log

log n
viv I a.s.

gl i=1 noo

From (42), (A.26) and (A.29) we see

(A.30)
1

ilu, ll__ O(log n).
gli=l

Then by condition (a)

(A.31)
1

ily, ll O(log
,
n);

hence
o(A.32) rn O(n logs n),

which means

(A.33) /max ( o0 1 )= t#. +-dI O(n logsn).

Again by (41), (42), (A.26), (A.29), and noting that q ->- 1, we have for all sufficiently
large n

o > >-- 1/2 E v, >---.(A.34) rn= Ilu, 2 2 n

i=1 i=1 4 log n
oThen rn a.s. and

rn+.= 0 O(log+ n)= O((log rn
n/og nrn
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OPTIMAL ADAPTIVE CONTROL WITH QUADRATIC COST 863

Comparing with conditions in Theorem 2 we find that a 6+ e and by (A.33)
and (A.34) for (40) to hold we only need to verify

(A.35) lim(logn) 1/4-2- ( o o 1
/min (O q9 -{-" I O.

nx3 i=1

By condition (a) it is, easy to see that

yn-i A-l(z)B(z)ziu, + A-l(z)C(z)ziwn

=zia-l(z)[B(z)’C(z)]’[un]"wn
Then o can be written as

(A.36)

where by definition

o. v.(z) u.

F.(z) w.

A-(z)[B(z), C(z)] ]
Fn,(z)= zA-’(zl[B(z),. C(z)] [

zP-’A-I(zl[B(z), C(z)]]

[ [0, Ira]

F.(z) ] z[0!l]
Lz-’[, I1

where Ix denotes the identity matrix of dimension x.
Set

[t,,o] ]
z[/,:, 0] 1,

z-liIt, O]J

(A.37) 0n [det A(z)]q,

and notice that Ap is of full rank, then degA(z)=p, deg[detA(z)]=mp, and
deg [Adj A(z)] mp -p, since A(z)[Adj A(z)] [det A(z)] I.

Let

det A(z) ao+ az +. + ampZrap.

Since o 0 for < 0 we have

inf ax,,o
IIX i= j=O

,o)2 inf<=(mp+ 1) aj
j= Ilxll ,.=

aj imin (ii)"
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864 HAN-FU CHEN AND LEI GUO

Hence for (A.35) it is sufficient to prove

(A.38) lim
(lg n)x ( )/min I/il]/ 0 a.s.,

n-oo i=1

where for simplicity we set A 1/4-28- e.
Let D be the set on which (A.38) is not satisfied. Suppose that P(D)>0. Then

for any to e D there exist vectors
(p--l)- 0, (q--1)’r 0- (3,--1)- d

where I1, 1 such that

nk
)2(A.39)

(log rig)x y. (rl. , O.
/’/k i=1

Set

(A.40)

p--1 q--1

’" ’(Adj A(z)l[B(z) C(z)]+ E /3"H.(z) A E .Z ,kz [det A(z)It, 0]
i=0 i=0

r-1

+ 3z’[0, det A(z)I,]
i=0

i,(A.41) A Z [h., g.]z,
i=O

where mp + s- I, and h and g.. are 1- and m-dimensional vectors, respectively.
Since I111 1, I111 1, I111 1, for any k 1, i=O...p- 1, j=0. q- 1,

and v 0... r-1, there exists a constant c > 0 independent of k and such that

(A.42) IIh’.ll c,, IIgXll Cl Vk 1, 0,’" ", t.

By (A.36), (A.37) and (A.41) we can rewrite (A.39) as

(A.43)
(log nk) .u_ + g. wi +" + g.w_)2 O,
k i=l k

or equivalently,

---0r 1 t O t(lg nk)a [(hv,)2+n.u,+h + + + +...+ )2]hnki- gnk Wi gnk Wi--ti
nk i=1

(A.44) +2h uv, h+2 E h u,_v, h
i=1 j=l i=1

+ nk O.
j=O i=1 k

We now show that (A.44) implies

(A.45) Ilh’.11---- 0, IIg’
koo koo

Vi:O<__i<-t.

Applying Lemma 2 to Ei=l Wi-jUi and noticing (7), (A.42), we find that

lim
lg nk .(g., wi-vi h.<--(l+t)c

lg nkO(nlk/210g/2+n(nk+e))=O
n--,oo ’lk j=0 i=1 k-,oo 1k

for any to D with a possible exception set of probability zero. In the following
discussion such a possible exception is always assumed. We note that no measurability
of h ,k and g is required.
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OPTIMAL ADAPTIVE CONTROL WITH QUADRATIC COST 865

Similarly, by applying Lemma 2 to =1 uv and --1 u_jv (j> 1) and by use
of (41), (42) and (A.42) we conclude that for to e D

lim
lgxnk

hO, u,v,S h,,ko h,kJ , u,_v, h, =0.
k-oo /k

Hence from (A.44) we have

(A.46)
+ gO.w, +’’’ + g.,. w,-t )2 ,0,

k--)

and

(log nk)A(A.47)) o, )2h.kv, 0
lk i=1 k--)oo

for toeD.

By (A.29) and (A.47) it is clear that

h.ll --- o((log nk)-X+),(A.48)

hence by (42)

toeD;

(log nk) x-(e+a) nk
E h- s’2

,,,.us) O(1),
/’/k =1

Then from here and (A.46) we have for to e D

(A.49)
(log nk) x-(e+t) nk

Z hi* o, ,.,,,, ui-1 +" + h " )2nk Ui--t 4" g"k Wi 4"" 4" gnk Wi--t O.
lk i=1 k--)oo

Comparing (A.49) with (A.43) we see that in (A.49) we have deleted u by changing
the order of log nk from A to A (e 4" t).

Generally, using the same treatment as described above we conclude that

(A.50) IIh’. ll =- o((log rig) -x+’(+a)+ ), 0_--< <_-- t, to e D

and

(A.51)
(log nk)x-(t+l)+) " )2g,,, Wi +" "+ g.,, Wi- ---’--> O, to e D.

/’/k i=1 k--)oo

The same argument applied to (A.51) by using (7) and (A.42) leads to

(A.52) IIg’.ll =- o((log nk) -x+(t+l)<+)) Vi" 0<_-- i_--< t.

Since mp + s 1 and A -26 e, then by (29), (A.50) and (A.52) imply (A.45);
hence we have

(A.53) H,,,,(z) O, toeD.

Let { r/,. } be a convergent subsequence of { r/.}- r/,. r/with
k-)oo

(A.54)
IIll =1, oD,

n-" ((O’r... ((p--1)a’, flOa’... (q--1)a’, ,Oa"... (7--1>a’)’r.
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866 HAN-FU CHEN AND LEI GUO

Then by (A.40) and (A.53) we have

p-1

2 t’z’(Adj A(z))[B(z), C(zl]
i=0

(A.55)
q--1 r--1

E /3"z’[det A(z)I, 0]- 7"z’[0, det A(z)I,,,].
i=0 i=0

Since A(z), B(z) and C(z) have no common left factor, there are matrix poly-
nomials M(z), N(z) and L(z) such that

A(z)M(z)+ B(z)g(z)+ C(z)L(z) I.

Then by (A.55) we see

, a"z’ Adj A(z)
i=0

((A.56) =P,=o a’z’ Adj A(z) A(z)M(z)+[B(z), C(z)]
k L(z) J

det A(z) a’z’M(z)- , z) y’z’L(z) to e D.
i=0 i=0

But

deg a’z AdjA(z) <-p-l+deg(AdjA(z))

so (A.56) implies

p 1 + mp p < mp deg (det A(z)),

p-1

cz’ Adj A(z)=0,
i=0

Hence.ai=0, i=0,...,p-1, and by (A.55) fli=0, i=0.., q-l, and /J=0, j=
1.-. r-1 for toeD. This conclusion contradicts with IIr/ll 1; therefore, P(D)=0
and (A.38) is verified.
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