Adaptive control via consistent estimation for deterministic systems

HAN-FU CHEN \& LEI GUO

To cite this article: HAN-FU CHEN \& LEI GUO (1987) Adaptive control via consistent estimation for deterministic systems, International Journal of Control, 45:6, 2183-2202, DOI: 10.1080/00207178708933875

To link to this article: https://doi.org/10.1080/00207178708933875

Published online: 16 May 2007.

Submit your article to this journal $\quad \underset{\square}{\top}$

Article views: 27

View related articles $\quad \pi$

Citing articles: 15 View citing articles

Adaptive control via consistent estimation for deterministic systems

HAN-FU CHEN \dagger and LEI GUO \dagger

Abstract

For multidimensional discrete-time deterministic systems the optimal adaptive control has been derived by use of a probabilistic method so that when the reference signal is an arbitrary bounded random sequence, the tracking error and the estimation error based on a projection algorithm go to zero with a near-exponential convergence rate. For this, the basic step is to prove the consistency of estimates when the condition number of the matrix consisting of regressors diverges to infinity; in other words, when the persistent excitation condition is not satisfied.

1. Introduction

For a linear deterministic system with known parameter one can easily define the optimal control depending on the system coefficients in order that the output of the system tracks a given reference signal. Controlling systems with unknown parameter is the purpose of adaptive control. Considerable progress has been made in recent years (see e.g. Åström 1984, Anderson et al. 1986, Anderson and Johnson 1982, Bitmead 1984, Goodwin et al. 1980, Goodwin and Sin 1984, Kosut et al. 1985), but to the authors' knowledge the problem of simultaneously determining optimal adaptive control and consistent parameter estimates is still open. This can be explained as follows. In the analysis of the existing recursive algorithms estimating unknown coefficients of a linear deterministic system, for convergence of the estimates to the true values the persistent excitation (PE) condition is normally required, meaning that the ratio of the maximum to the minimum eigenvalue of the matrix $\sum_{i=1}^{n} \varphi_{i} \varphi_{i}^{2}$ is bounded as $n \rightarrow \infty$, where φ_{i} is the regression vector with components being the input-output data of the system. However, the PE condition is not usually satisfied for systems with unknown coefficients and with adaptive control derived from the optimal control with system coefficients replaced by their estimates. Hence the convergence of parameter estimates is not guaranteed, and as a result, the adaptive control obtained in this way may be far from the optimal one.

To overcome this difficulty, in the consideration of stochastic linear systems (Chen and Guo $1985 \mathrm{a}, \mathrm{b}, 1986 \mathrm{~b}$) some consistency results on parameter estimation were first established under a condition allowing the ratio of the maximum to the minimum eigenvalue of $\sum_{i=1}^{n} \varphi_{i} \varphi_{i}^{\tau}$ to diverge to a certain extent. It was then shown that this condition was met when a sequence of independent random vectors with covariance matrices tending to zero was introduced to disturb the adaptive control. Since an attenuating dither cannot change the long-run average-type loss function, it is thus possible to derive simultaneously the optimal adaptive control and the consistent parameter estimates.

In this paper we consider the linear discrete-time deterministic system with
unknown coefficients, which are estimated by the projection algorithm. We prove the convergence of the parameter estimates with a near-exponential rate, if the input satisfies a condition which is shown to hold when the attenuating excitation technique mentioned above is applied to the control. The proof is essentially based on estimation for the random matrix sums truncated at stopping times. Then, an adaptive tracking control is defined such that the parameter estimation error converges to zero with a near-exponential rate, and the tracking error between the system output and a given bounded reference sequence also goes to zero with a rate of convergence which we can also indicate.

2. Parameter identification

Let the l-input m-output system be described by

$$
\begin{equation*}
A(z) y_{n}=z^{d} B(z) u_{n}, \quad d \geqslant 1 \tag{1}
\end{equation*}
$$

with unknown matrix coefficient θ

$$
\theta^{\mathrm{r}}=\left[\begin{array}{llllll}
-A_{1} & \ldots & -A_{p} & B_{1} & \ldots & B_{q}
\end{array}\right]
$$

in the matrix polynomials

$$
\begin{gather*}
A(z)=I+A_{1} z+\ldots+A_{p} z^{p}, \quad p \geqslant 0 \tag{2}\\
B(z)=B_{1}+B_{2} z+\ldots+B_{q^{q}} z^{q-1}, \quad q \geqslant 1 \tag{3}
\end{gather*}
$$

written in the shift-back operator z.
The orders p and q as well as the time-delay d are assumed known.
We estimate θ by a projection algorithm

$$
\left.\begin{array}{c}
\theta_{n+1}=\theta_{n}+\frac{\varphi_{n}}{1+\left\|\varphi_{n}\right\|^{2}}\left(y_{n+1}^{\tau}-\varphi_{n}^{\tau} \theta_{n}\right) \\
\varphi_{n}^{\tau}=\left[\begin{array}{lllll}
y_{n}^{\mathrm{t}} & \ldots & y_{n-p+1}^{\mathrm{t}} & u_{n-d+1}^{\mathrm{t}} & \ldots
\end{array} u_{n-q+2-d}^{\mathrm{t}}\right. \tag{5}
\end{array}\right]
$$

with arbitrary initial values θ_{0} and φ_{0}.
Set

$$
\begin{equation*}
\tilde{\theta}_{n}=\theta-\theta_{n} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi(n+1, i)=\left(I-\frac{\varphi_{n} \varphi_{n}^{\tau}}{1+\left\|\varphi_{n}\right\|^{2}}\right) \Psi(n, i), \quad \Psi(i, i)=I \tag{7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\tilde{\theta}_{n+1}=\left(1-\frac{\varphi_{n} \varphi_{n}^{\mathrm{r}}}{1+\left\|\varphi_{n}\right\|^{2}}\right) \tilde{\theta}_{n}=\Psi(n+1,0) \tilde{\theta}_{0} \tag{8}
\end{equation*}
$$

We list the conditions used subsequently.
(a) $A(z)$ and $B(z)$ are left-coprime and A_{p} is of full rank.
(b) There exists a sequence of nonnegative numbers δ_{n} (possibly tending to zero) and a sequence of integers τ_{n} with

$$
\begin{equation*}
\tau_{0}=1, \quad d_{n} \triangleq \tau_{n}-\tau_{n-1} \geqslant m p \tag{9}
\end{equation*}
$$

such that

$$
\begin{equation*}
\sum_{i=\tau_{n}-1+m p}^{\tau_{n}-1} U_{i} U_{i}^{\tau} \geqslant \delta_{n} I \quad \forall n \geqslant 1 \tag{10}
\end{equation*}
$$

where

$$
U_{i} \triangleq\left[\begin{array}{llll}
u_{i}^{\tau} & u_{i-1}^{\tau} & \ldots & u_{i-m p-q+1}^{\tau} \tag{11}
\end{array}\right]^{\tau}
$$

Theorem 1

If Conditions (a) and (b) are satisfied and if there are constants $v \geqslant 0, \lambda \geqslant 0, \delta \geqslant 0$ and $c>0$ with $4(1+\lambda) v+2 \delta+5 \lambda<1$ so that

$$
\begin{equation*}
\left\|\varphi_{n}\right\|=O\left(n^{v}\right), \quad d_{n}=O\left(n^{\lambda}\right), \quad \delta_{n}>\frac{c}{n^{\delta}}, \quad \forall n \tag{12}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|\tilde{\theta}_{n}\right\|=O\left(\exp \left(-\alpha n^{[1-2 \delta-5 \lambda-4(1+\lambda) v] /(1+\lambda)}\right)\right), \quad \text { as } n \rightarrow \infty \tag{13}
\end{equation*}
$$

where α is a positive constant.
This theorem says that the parameter estimate remains consistent even if the input and output of the system grow as fast as n^{v}, if in (10) $\delta_{n} \rightarrow 0$ with rate $O\left(1 / n^{\delta}\right)$ and if the number of summands is allowed to grow as fast as n^{λ}.

Corollary 1

If Conditions (a) and (b) hold and if

$$
\sup _{n}\left\|\varphi_{n}\right\|<\infty, \quad \sup _{n} d_{n}<\infty, \quad \inf _{n} \delta_{n}>0
$$

then there is a constant $\gamma \in(0,1)$ such that

$$
\begin{equation*}
\left\|\tilde{\theta}_{n}\right\|=O\left(\gamma^{n}\right), \quad \text { as } n \rightarrow \infty \tag{14}
\end{equation*}
$$

This conclusion actually follows from (13) by setting $v=0, \lambda=0$ and $\delta=0$ in it.

Corollary 2 (Anderson and Johnson 1982)

If Condition (a) holds, $\left\{y_{n}\right\}$ is bounded and there are constants $N>0, \beta_{2}>\beta_{1}>0$ such that for any $n \geqslant 0$

$$
\beta_{1} I \leqslant \sum_{i=n+1}^{n+N} U_{i} U_{i}^{\tau} \leqslant \beta_{2} I
$$

(a sufficiently rich condition) then (14) is valid.
To be convinced of the assertion one need only take $\tau_{n}=n(m p+N)+1$ and $\delta_{n}=\beta_{1}$ in Corollary 1.

To prove Theorem 1 we present some lemmas.

Lemma 1

If Condition (a) is satisfied, then there is a constant $c_{0}>0$ such that

$$
\begin{equation*}
\lambda_{\text {min }}\left(\sum_{i=k}^{N} \varphi_{i} \varphi_{i}^{\tau}\right) \geqslant \frac{c_{0}}{N-k-m p+1} \lambda_{\text {min }}\left(\sum_{i=k+m p-d+1}^{N-d+1} U_{i} U_{i}^{\tau}\right) \tag{15}
\end{equation*}
$$

for any $N \geqslant k+m p, \forall k \geqslant 0$, where and hereafter $\lambda_{\text {min }}(X)$ denotes the minimum eigenvalue of a matrix X and U_{i} is defined by (11).

Proof

Let

$$
\begin{equation*}
\operatorname{det} A(z)=a_{0}+a_{1} z+\ldots+a_{m} z^{m p}, \quad a_{m p} \neq 0 \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{n}=[\operatorname{det} A(z)] \varphi_{n} \tag{17}
\end{equation*}
$$

Then

$$
\begin{align*}
\psi_{n}= & {\left[\left((\operatorname{adj} A(z)) B(z) z^{d} u_{n}\right)^{\mathrm{t}} \ldots\left((\operatorname{adj} A(z)) B(z) z^{p+d-1} u_{n}\right)^{\mathrm{t}} z^{d-1} \operatorname{det} A(z) u_{n}^{\mathrm{t}} \ldots\right.} \\
& \left.z^{d+q-2} \operatorname{det} A(z) u_{n}^{\mathrm{t}}\right]^{\mathrm{t}} \tag{18}
\end{align*}
$$

For any $x \in R^{m p+1 q}$ from (17) it is easy to see that

$$
\begin{aligned}
x^{\tau}\left(\sum_{i=k+m p}^{N} \psi_{i} \psi_{i}^{\tau}\right) x & =\sum_{i=k+m p}^{N}\left(x^{\tau} \psi_{i}\right)^{2}=\sum_{i=k+m p}^{N}\left(\sum_{j=0}^{m p} a_{j} x^{\tau} \varphi_{i-j}\right)^{2} \\
& \leqslant \sum_{j=0}^{m p} a_{j}^{2} \sum_{i=k+m p}^{N} \sum_{j=0}^{m p}\left(x^{\tau} \varphi_{i-j}\right)^{2} \\
& \leqslant(N-k-m p+1) \sum_{j=0}^{m p} a_{j}^{2} \sum_{i=k}^{N} x^{\tau} \varphi_{i} \varphi_{i}^{\tau} x
\end{aligned}
$$

so we have

$$
\begin{equation*}
\lambda_{\min }\left(\sum_{i=k}^{N} \varphi_{i} \varphi_{i}^{\tau}\right) \geqslant \frac{1}{(N-k) \sum_{j=0}^{m p} a_{j}^{2}} \lambda_{\min }\left(\sum_{i=k+m p}^{N} \psi_{i} \psi_{i}^{\tau}\right) \tag{19}
\end{equation*}
$$

Hence for (15) we only need to show that

$$
\begin{equation*}
\lambda_{\min }\left(\sum_{i=k+m p}^{N} \psi_{i} \psi_{i}^{\tau}\right) \geqslant c_{1} \lambda_{\min }\left(\sum_{i=k+m p-d+1}^{N-d+1} U_{i} U_{i}^{\tau}\right) \text { for some } c_{1}>0 \tag{20}
\end{equation*}
$$

Write $x \in R^{m p+1 q}$ in the vector-component form

$$
x=\left[\begin{array}{lll}
x^{1 \tau} & \ldots x^{p \mathrm{r}} & x^{(p+1) \tau}
\end{array} \ldots x^{(p+q) \mathfrak{r}}\right]^{z}
$$

with $x^{i} \in R^{m}, x^{j} \in R^{l}, 1 \leqslant i \leqslant p, p+1 \leqslant j \leqslant p+q$.
Set

$$
\begin{align*}
H_{x}(z)= & x^{1 \mathrm{r}}(\operatorname{adj} A(z)) B(z) z^{d}+\ldots+x^{p t}(\operatorname{adj} A(z)) B(z) z^{p+d-1} \\
& +x^{(p+1) t} z^{d-1} \operatorname{det} A(z)+\ldots+x^{(p+q) \tau} z^{q+d-2} \operatorname{det} A(z) \\
\triangleq & \sum_{i=0}^{m p+q-1} g_{i}^{\tau}(x) z^{i+d-1} \tag{21}
\end{align*}
$$

Then from (18) and (21) we see that

$$
\begin{align*}
x^{\tau} \sum_{i=k+m p}^{N} \psi_{i} \psi_{i}^{\tau} x & =\sum_{i=k+m p}^{N}\left(H_{x}(z) u_{i}\right)^{2} \\
& =\sum_{i=k+m p}^{N} \sum_{i=0}^{m p+q-1} \sum_{s=0}^{m p+q-1} g_{s}^{\tau}(x) u_{i-s-d+1} u_{i-t-d+1}^{\tau} g_{t}(x) \\
& =g^{\tau}(x) \sum_{i=k+m p-d+1}^{N-d+1} U_{i} U_{i}^{\tau} g(x) \\
& \geqslant \min _{\|x\|=1}\|g(x)\|^{2} \lambda_{\min }\left(\sum_{i=k+m p-d+1}^{N-d+1} U_{i} U_{i}^{\tau}\right) \tag{22}
\end{align*}
$$

where by definition

$$
g(x)=\left[g_{0}^{\tau}(x) \ldots g_{m p+q-1}^{\tau}(x)\right]^{\tau}
$$

Thus for (20) we only need to show

$$
\begin{equation*}
\min _{\|x\|=1}\|g(x)\| \neq 0 \tag{23}
\end{equation*}
$$

Suppose the converse were true. Then by continuity of $g(x)$ there exists some x such that $g(x)=0$ and $\|x\|=1$. For this x by (21) $H_{x}(z) \equiv 0$, i.e.

$$
\begin{equation*}
\sum_{i=1}^{p} x^{i \tau}(\operatorname{adj} A(z)) B(z) z^{i}=-\sum_{j=1}^{q} x^{(p+j) \tau} \operatorname{det} A(z) I z^{j-1} \tag{24}
\end{equation*}
$$

Setting $z=0$ from (24) we see $x^{p+1}=0$, and (24) can be rewritten as

$$
\begin{equation*}
\sum_{i=1}^{p} x^{i \tau}(\operatorname{adj} A(z)) B(z) z^{i}=-\sum_{j=2}^{q} x^{(p+j) r} \operatorname{det} A(z) I z^{j-1} \tag{25}
\end{equation*}
$$

By coprimeness of $A(z)$ and $B(z)$ there are matrix polynomials $M(z)$ and $N(z)$ such that

$$
A(z) M(z)+B(z) N(z)=I
$$

Hence from (25) it follows that

$$
\begin{aligned}
\sum_{i=1}^{p} x^{i t}(\operatorname{adj} A(z)) z^{i} & =\sum_{i=1}^{p} x^{i \tau} z^{i}(\operatorname{adj} A(z))(A(z) M(z)+B(z) N(z)) \\
& =\operatorname{det} A(z)\left(\sum_{i=1}^{p} x^{i \tau} z^{i} M(z)-\sum_{j=2}^{q} x^{(p+j) \tau} N(z) z^{j-1}\right) \\
& =z(\operatorname{det} A(z))\left(\sum_{i=1}^{p} x^{i \tau} z^{i-1} M(z)-\sum_{j=2}^{q} x^{(p+j) \tau} N(z) z^{j-2}\right)
\end{aligned}
$$

Noticing

$$
\operatorname{deg}\left(\sum_{i=1}^{p} x^{i t}(\operatorname{adj} A(z)) z^{i}\right)=m p<m p+1=\operatorname{deg}(z \operatorname{det} A(z))
$$

we conclude that $x^{i}=0,1 \leqslant i \leqslant p$, then $x^{j}=0, p+1 \leqslant j \leqslant p+q$ by (25). This contradicts $\|x\|=1$ and thus (23) is proved.

Lemma 2

If

$$
\sum_{i=k}^{N-1} \frac{\varphi_{i} \varphi_{i}^{\tau}}{1+\left\|\varphi_{i}\right\|^{2}} \geqslant \delta I, \quad \delta>0
$$

then

$$
\|\Psi(N, k)\| \leqslant\left[1-\frac{\delta^{2}}{4(N-k)^{3}}\right]^{1 / 2}
$$

Proof

Let x_{0} be the unit eigenvector corresponding to the maximum eigenvalue ρ of $\Psi^{\mathrm{r}}(N, k) \Psi(N, k)$.

From the difference equation

$$
\begin{equation*}
x_{i+1}=\left(I-\frac{\varphi_{i} \varphi_{i}^{\tau}}{1+\left\|\varphi_{i}\right\|^{2}}\right) x_{i}, \quad x_{k}=x_{0}, \quad k \leqslant i \leqslant N-1 \tag{26}
\end{equation*}
$$

it is easy to see

$$
x_{N}=\Psi(N, k) x_{0}
$$

and

$$
\begin{equation*}
\left\|x_{N}\right\|^{2}=x_{0}^{\tau} \Psi^{\tau}(N, k) \Psi(N, k) x_{0}=\rho \tag{27}
\end{equation*}
$$

From (26) we have

$$
\begin{equation*}
x_{i+1}^{\tau} x_{i+1} \leqslant x_{i}^{\mathrm{T}} x_{i}-\frac{\left\|\varphi_{i}^{\tau} x_{i}\right\|^{2}}{1+\left\|\varphi_{i}\right\|^{2}} \tag{28}
\end{equation*}
$$

then by (27) and (28) we see

$$
\begin{equation*}
\sum_{i=k}^{N-1} \frac{\left\|\varphi_{i}^{\tau} x_{i}\right\|^{2}}{1+\left\|\varphi_{i}\right\|^{2}} \leqslant 1-\rho \tag{29}
\end{equation*}
$$

For any integer $i \in[k, N-1]$ by (26) and (29) we get

$$
\begin{align*}
\left\|x_{i}-x_{0}\right\| & \leqslant\left\|\sum_{j=k}^{i-1} \frac{\varphi_{j} \varphi_{j}^{\tau}}{1+\left\|\varphi_{j}\right\|^{2}} x_{j}\right\| \\
& \leqslant\left[\sum_{j=k}^{i-1} \frac{\left\|\varphi_{j}\right\|^{2}}{1+\left\|\varphi_{j}\right\|^{2}}\right]^{1 / 2} \cdot\left[\sum_{j=k}^{i-1} \frac{\left\|\varphi_{j}^{\tau} x_{j}\right\|^{2}}{1+\left\|\varphi_{j}\right\|^{2}}\right]^{1 / 2} \\
& \leqslant(N-k)^{1 / 2}(1-\rho)^{1 / 2} \tag{30}
\end{align*}
$$

Thus, by (29) and (30) we can estimate as follows:

$$
\begin{aligned}
\delta & \leqslant x_{0}^{\tau} \sum_{i=k}^{N-1} \frac{\varphi_{i} \varphi_{i}^{\tau}}{1+\left\|\varphi_{i}\right\|^{2}} x_{0} \\
& \leqslant \sum_{i=k}^{N-1} \frac{\left\|\varphi_{i}\right\|}{1+\left\|\varphi_{i}\right\|^{2}}\left\|\varphi_{i}^{\tau} x_{i}\right\|+\sum_{i=k}^{N-1} \frac{\left\|\varphi_{i}\right\|^{2}}{1+\left\|\varphi_{i}\right\|^{2}}\left\|x_{i}-x_{0}\right\| \\
& \leqslant(N-k)^{1 / 2}(1-\rho)^{1 / 2}+(N-k)^{3 / 2}(1-\rho)^{1 / 2} \\
& \leqslant 2(N-k)^{3 / 2}(1-\rho)^{1 / 2}
\end{aligned}
$$

Hence finally we conclude that

$$
\rho \leqslant 1-\frac{\delta^{2}}{4(N-k)^{3}}
$$

Lemma 3

If Conditions (a) and (b) are satisfied, then

$$
\begin{equation*}
\left\|\Psi\left(\tau_{n}+d-1,0\right)\right\| \leqslant \exp \left(-c_{1} \sum_{i=1}^{n} \frac{\delta_{i}^{2}}{M_{i}^{2} d_{i}^{5}}\right) \tag{31}
\end{equation*}
$$

where

$$
M_{i}=\sup _{\mathfrak{r}_{i}-1 \leqslant j \leqslant \tau_{i}-1}\left\|\varphi_{j}\right\|^{2}+1 \quad \text { and } \quad c_{1}>0
$$

Proof

By Lemma 1 and Condition (b) it is clear that

$$
\sum_{i=\tau_{n-1}+d-1}^{\tau_{n}+d-2} \frac{\varphi_{i} \varphi_{i}^{\tau}}{1+\left\|\varphi_{i}\right\|^{2}} \geqslant \frac{c_{0} \delta_{n}}{M_{n} d_{n}}
$$

Then using Lemma 2 we know that there is a constant $c_{1}^{\prime}>0$ such that

$$
\begin{equation*}
\left\|\Psi\left(\tau_{n}+d-1, \tau_{n-1}+d-1\right)\right\| \leqslant\left[1-c_{1}^{\prime} \frac{\delta_{n}^{2}}{M_{n}^{2} d_{n}^{5}}\right]^{1 / 2} \tag{32}
\end{equation*}
$$

From (7) and (32) it follows that

$$
\begin{align*}
\left\|\Psi\left(\tau_{n}+d-1,0\right)\right\| & \leqslant \prod_{i=1}^{n} \| \Psi\left(\tau_{i}+d-1, \tau_{i-1}+d-1 \|\right. \\
& \leqslant\left(\prod_{i=1}^{n}\left(1-c_{1}^{\prime} \frac{\delta_{i}^{2}}{M_{i}^{2} d_{i}^{5}}\right)\right)^{1 / 2} \tag{33}
\end{align*}
$$

Finally, taking notice of the elementary inequality $1-x \leqslant e^{-x}, 0 \leqslant x \leqslant 1$, from (33) we conclude (31) with $c_{1}=\frac{1}{2} c_{1}^{\prime}$.

Proof of Theorem 1

Since $d_{n}=O\left(n^{\lambda}\right)$ we can find $\beta>0$ so that $d_{n} \leqslant \beta n^{\lambda}$. Then

$$
m p \cdot n \leqslant \sum_{i=1}^{n} d_{i} \leqslant n \cdot \beta \cdot n^{\lambda}=\beta n^{1+\lambda}
$$

or equivalently,

$$
\begin{equation*}
m p \cdot n+1 \leqslant \tau_{n} \leqslant \beta n^{1+\lambda}+1 \tag{34}
\end{equation*}
$$

By (12) we see $\left\|\varphi_{\tau_{n}}\right\|=O\left(\tau_{n}^{v}\right)$, then by (34) and the definition of M_{i} we find that

$$
\begin{equation*}
M_{i}^{2}=O\left(\tau_{i}^{4 v}\right)=O\left(i^{4 v(1+\lambda)}\right) \tag{35}
\end{equation*}
$$

So (12) and Lemma 3 lead to

$$
\begin{align*}
\left\|\Psi\left(\tau_{n}+d-1,0\right)\right\| & \leqslant \exp \left(-c_{2} \sum_{i=1}^{n} \frac{1}{i^{2 \delta+5 \lambda+4 v(1+\lambda)}}\right) \\
& =O\left(\exp \left(-\frac{c_{2}}{1-2 \delta-5 \lambda-4 v(1+\lambda)}(n+1)^{1-2 \delta-5 \lambda-4 v(1+\lambda)}\right)\right) \tag{36}
\end{align*}
$$

for some $c_{2}>0$.
Since $\tau_{n-1}<\tau_{n} \rightarrow \infty$, for any n there exists k such that

$$
\begin{equation*}
\tau_{k}+d-1 \leqslant n \leqslant \tau_{k+1}+d-1 \tag{37}
\end{equation*}
$$

Then by (34) and (37) it follows that

$$
(k+1)^{1+\lambda} \geqslant \frac{\tau_{k+1}-1}{\beta} \geqslant \frac{n-d}{\beta}
$$

or

$$
k \geqslant\left(\frac{n-d}{\beta}\right)^{1 /(1+\lambda)}-1
$$

and by (36)

$$
\begin{align*}
\|\Psi(n, 0)\| & \leqslant\left\|\Psi\left(\tau_{k}+d-1,0\right)\right\| \\
& =O\left(\exp \left(-\frac{c_{2}}{1-2 \delta-5 \lambda-4 v(1+\lambda)}(k+1)^{1-2 \delta-5 \lambda-4 v(1+\lambda)}\right)\right) \\
& =O\left(\exp \left(\frac{c_{2}}{1-2 \delta-5 \lambda-4 v(1+\lambda)}\left(\frac{n-d}{\beta}\right)^{[1-2 \delta-5 \lambda-4 v(1+\lambda)] /(1+\lambda)}\right)\right) \\
& =O\left(\exp \left(-\alpha n^{[1-2 \delta-5 \lambda-4 v(1+\lambda)] /(1+\lambda)}\right)\right), \quad \text { with } \alpha>0 \tag{38}
\end{align*}
$$

which together with (8) gives the desired result.

3. Parameter identification for systems with attenuating excitation control

Let $\left\{\mathscr{F}_{n}\right\}$ be a family of non-decreasing σ-algebras. Take a sequence of l dimensional i.i.d. random vectors $\left\{\varepsilon_{n}\right\}$ such that ε_{n} is \mathscr{F}_{n}-measurable and is independent of \mathscr{F}_{n-1} and that

$$
\begin{equation*}
E\left(\varepsilon_{n} \mid \mathscr{F}_{n-1}\right)=0, \quad E \varepsilon_{n} \varepsilon_{n}^{\tau}=\mu I, \quad\left\|\varepsilon_{n}\right\| \leqslant M \tag{39}
\end{equation*}
$$

where $\mu>0, M>0$ are constants.
Let u_{n}^{0} be a \mathscr{F}_{n-1}-measurable desired control. We add to u_{n}^{0} a dither v_{n} tending to zero:

$$
\begin{equation*}
v_{n}=\frac{\varepsilon_{n}}{n^{\varepsilon}}, \quad \varepsilon \in\left(0, \frac{1}{6+12(m p+q)}\right) \tag{40}
\end{equation*}
$$

and the resulting control

$$
\begin{equation*}
u_{n}=u_{n}^{0}+v_{n} \tag{41}
\end{equation*}
$$

is called attenuating excitation control.
In this section for systems with attenuating excitation control (41) we establish consistency of parameter estimation without requiring any condition like (10).

Lemma 4

Let $\sigma>0$ be a stopping time with respect to $\left\{\mathscr{F}_{i}\right\}$. Then

$$
\begin{equation*}
\sum_{i=\sigma}^{n+\sigma} f_{i} v_{i}^{\tau}=o\left(n^{1-2(1+3(m p+q)) c}\right) \tag{42}
\end{equation*}
$$

for any \mathscr{F}_{i-1}-measurable f_{i} with $\left\|f_{i}\right\|=O\left(i^{v}\right)$ and $0 \leqslant v<\varepsilon$, and

$$
\begin{equation*}
\frac{1}{(n+\sigma)^{1-2 \varepsilon}-\sigma^{1-2 \varepsilon}} \sum_{i=\pi}^{n+\sigma} v_{i} v_{i}^{\tau}>c_{2} I, \quad c_{2}>0 \tag{43}
\end{equation*}
$$

for $\forall n \geqslant n_{0}$ where n_{0} and c_{2} may be ω-dependent.

Proof

Since $\left\|f_{i}\right\|=O\left(i^{v}\right)$, there exists ω-dependent $\xi(\omega)$ so that $\left\|f_{i}\right\| \leqslant \xi i^{v}$.
Clearly, for $\varepsilon<1 /[6+12(m p+q)]$

$$
\sum_{i=1}^{\infty} \frac{\left\|f_{i}\right\|^{2}}{i^{2-4(1+3(m p+q)) \varepsilon}} \leqslant \xi^{2} \sum_{i=1}^{\infty} \frac{i^{2 \varepsilon}}{i^{2-4(1+3(m p+q) \varepsilon}}<\infty
$$

Then by the martingale convergence theorem

$$
\sum_{i=\sigma}^{\infty} \frac{f_{i}^{\tau} v_{i}}{i^{1-2(1+3(m p+q) \varepsilon}}<\infty
$$

and (42) follows from the Kronecker lemma.
For (43) we first show

$$
\begin{equation*}
\frac{1}{(n+\sigma)^{1-2 \varepsilon}-\sigma^{1-2 \varepsilon}} \sum_{i=\sigma+1}^{n+\sigma}\left(v_{i} v_{i}^{\tau}-\frac{\mu}{i^{2 \varepsilon}} I\right) \underset{n \rightarrow \infty}{\longrightarrow} 0, \quad \text { a.s. } \tag{44}
\end{equation*}
$$

Since $\left(v_{i+\sigma} v_{i+\sigma}^{\tau}-\left(\mu /(i+\sigma)^{2 t} I\right), \mathscr{F}_{i+\sigma}\right)$ is a martingale difference sequence and

$$
\begin{aligned}
& \sum_{i=1}^{\infty} E\left\{\left.\left[\left\|v_{i+\sigma} v_{i+\sigma}^{\mathrm{r}}-\frac{\mu}{(i+\sigma)^{2 \varepsilon}} I\right\| /(i+\sigma)^{1-3 \varepsilon}\right]^{2} \right\rvert\, \mathscr{F}_{\sigma+i-1}\right\} \\
& \leqslant 2 /\left(M^{4}+\mu^{2}\right) \sum_{i=1}^{\infty} \frac{1}{(i+\sigma)^{2(1-\varepsilon)}}<\infty
\end{aligned}
$$

Again by the martingale convergence theorem and the Kronecker lemma we obtain

$$
\frac{1}{(n+\sigma)^{1-3 \varepsilon}} \sum_{i=1}^{n}\left(v_{i+\sigma} v_{i+\sigma}^{\tau}-\frac{\mu}{(i+\sigma)^{2 \ell}} I\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \text {, a.s. }
$$

which implies (44).
Noticing the elementary inequalities for $n>n_{0}$

$$
\begin{align*}
\frac{1}{1-2 \varepsilon}\left(n^{1-2 \varepsilon}-n_{0}^{1-2 \varepsilon}\right) & =\sum_{i=n_{0}}^{n-1} \int_{i}^{i+1} \frac{d x}{x^{2 \varepsilon}} \leqslant \sum_{i=n_{0}}^{n-1} \frac{1}{i^{2 \varepsilon}}=\sum_{i=n_{0}}^{n-1} \int_{i-1}^{i} \frac{d x}{i^{2 \varepsilon}} \leqslant \sum_{i=n_{0}}^{n-1} \int_{i-1}^{i} \frac{d x}{x^{2 \varepsilon}} \\
& =\frac{1}{1-2 \varepsilon}\left[(n-1)^{1-2 \varepsilon}-\left(n_{0}-1\right)^{1-2 \varepsilon}\right] \tag{45}
\end{align*}
$$

we see

$$
\frac{1}{(n+\sigma)^{1-2 \varepsilon}-\sigma^{1-2 \varepsilon}} \sum_{i=\sigma+1}^{n+\sigma} \frac{\mu}{i^{2 \varepsilon}} I \underset{n \rightarrow \infty}{\longrightarrow} \frac{\mu}{1-2 \varepsilon} I
$$

which together with (44) proves (43).

Lemma 5

Let $\left\{\tau_{k}\right\}$ and $\left\{\sigma_{k}\right\}$ be two sequences of finite stopping times with respect to $\left\{\mathscr{F}_{k}\right\}$, $\sigma_{k} \geqslant \tau_{k}>\sigma_{k-1}$.
(i) If there is a sequence of real numbers $b_{i}>0$ so that

$$
\begin{equation*}
\frac{1}{b_{k}} \geqslant \frac{1}{\left(\tau_{k}^{1-2 \varepsilon}-\sigma_{k-1}^{1-2 \varepsilon}\right)^{1 / 2}} \quad \text { and } \quad \sum_{i=1}^{\infty} \frac{1}{b_{i}^{2}}<\infty \tag{46}
\end{equation*}
$$

then for sufficiently large k

$$
\begin{equation*}
\sum_{i=\sigma_{k-1}}^{\tau_{k}} v_{i} v_{i}^{\tau} \geqslant \beta\left(\tau_{k}^{1-2 \varepsilon}-\sigma_{k-1}^{1-2 \varepsilon}\right) I \quad \text { for some } \beta>0 \tag{47}
\end{equation*}
$$

(ii) For any $\mathscr{\mathscr { Y }}_{i-1}$-measurable f_{i} with $\left\|f_{i}\right\|=O\left(i^{v}\right), 0 \leqslant \nu<\varepsilon$

$$
\begin{equation*}
\frac{1}{\left(\tau_{k}^{1-\varepsilon+v}-\sigma_{k-1}^{1-\varepsilon+v}\right)^{1 / 2} \beta_{k} \log \beta_{k}} \sum_{i=\sigma_{k-i}}^{\tau_{k}} f_{i} v_{i}^{\tau} \underset{k \rightarrow \infty}{\longrightarrow} 0, \quad \text { a.s. } \tag{48}
\end{equation*}
$$

whenever $\beta_{k}>1, \forall k$ and $\sum_{k=1}^{\infty} \frac{1}{\beta_{k}^{2}}<\infty$.

Proof
(i) From (45) we see

$$
\frac{1}{\tau_{k}^{1-2 \varepsilon}-\sigma_{k-1}^{1-2 \varepsilon}} \sum_{i=\sigma_{k-1}}^{\tau_{k}-1} \frac{1}{i^{2 \varepsilon}}>\frac{1}{1-2 \varepsilon}
$$

So for (47) it suffices to show

$$
\begin{equation*}
\frac{1}{\tau_{k}^{1-2 \varepsilon}-\sigma_{k-1}^{1-2 \varepsilon}}\left\|\sum_{i=\sigma_{k-1}+1}^{\tau_{k}}\left(v_{i} v_{i}^{\mathrm{T}}-\frac{\mu}{i^{2 \varepsilon}} I\right)\right\| \underset{k \rightarrow \infty}{\longrightarrow} 0, \quad \text { a.s. } \tag{49}
\end{equation*}
$$

for which we only need to prove

$$
\begin{equation*}
\frac{1}{\left(\tau_{k}^{1-2 \varepsilon}-\sigma_{k-1}^{1-2 \varepsilon}\right)^{1 / 2} \cdot b_{k}} \sum_{i=\sigma_{k-1}+1}^{\tau_{k}}\left(v_{i} v_{i}^{\tau}-\frac{\mu}{i^{2 \varepsilon}} I\right) \xrightarrow[k \rightarrow \infty]{\longrightarrow} 0, \quad \text { a.s. } \tag{50}
\end{equation*}
$$

Set

$$
\begin{gathered}
t=\tau_{k}-\sigma_{k-1}, \quad a_{i}=\frac{1}{\left(i+\sigma_{k-1}\right)^{1-2 \varepsilon}-\sigma_{k-1}^{1-2 \varepsilon}}, \quad a_{0}=0 \\
x_{i}=\frac{\varepsilon_{\sigma_{k-1}+i} \varepsilon_{\sigma_{k-1}+i}^{t}-\mu I}{\left(\sigma_{k-1}+i\right)^{2 \varepsilon}}, \quad S_{n}=\sum_{i=1}^{n} x_{i}
\end{gathered}
$$

For any $\eta>0$ by the conditional Markov inequality we have

$$
\begin{align*}
& P\left(\left.\frac{1}{\left(\tau_{k}^{1-2 \varepsilon}-\sigma_{k-1}^{1-2 \varepsilon}\right)^{1 / 2} \cdot b_{k}}\left\|\sum_{i=\sigma_{k-1}+1}^{\tau_{k}}\left(v_{i} v_{i}^{\tau}-\frac{\mu}{i^{2 \varepsilon}} I\right)\right\|>\eta \right\rvert\, \mathscr{F}_{\sigma_{k-1}}\right) \\
& \leqslant \frac{1}{b_{k}^{2} \eta^{2}} E\left[\left.\frac{1}{\tau_{k}^{1-2 \varepsilon}-\sigma_{k-1}^{1-2 \varepsilon}}\left\|\sum_{i=\sigma_{k-1}+1}^{\tau_{k}}\left(v_{i} v_{i}^{\tau}-\frac{\mu}{i^{2 \varepsilon}} I\right)\right\|^{2} \right\rvert\, \mathscr{F}_{\sigma_{k-1}}\right] \\
&=\frac{1}{b_{k}^{2} \eta^{2}} E\left[a_{t}\left\|S_{t}\right\|^{2} \mid \mathscr{F}_{\sigma_{k-1}}\right] \tag{51}
\end{align*}
$$

If t is a bounded stopping time, $t \leqslant n_{0}$, then we have

$$
\begin{align*}
E\left[a_{t}\left\|S_{t}\right\|^{2} \mid \mathscr{F}_{\sigma_{k-1}}\right]= & E\left[\sum_{i=1}^{n_{0}} I_{[t=i]} a_{i}\left\|S_{i}\right\|^{2} \mid \mathscr{F}_{\sigma_{k-1}}\right] \leqslant \operatorname{tr} E\left[\sum_{i=1}^{n_{0}} I_{[t=i]} a_{i} S_{i} S_{i}^{t} \mid \mathscr{F}_{\sigma_{k-1}}\right] \\
= & \operatorname{tr} \sum_{i=1}^{n_{0}} E\left[I_{[t=i]} \sum_{j=1}^{i}\left(a_{j} S_{j} S_{j}^{\tau}-a_{j-1} S_{j-1} S_{j-1}^{\mathrm{r}}\right) \mid \mathscr{F}_{\sigma_{k-1}}\right] \\
= & \sum_{i=1}^{n_{0}} E\left[\sum _ { j = 1 } ^ { i } I _ { [t = i] } \operatorname { t r } \left(a_{j}\left(S_{j-1}+x_{j}\right)\left(S_{j-1}+x_{j}\right)^{\mathrm{t}}\right.\right. \\
& \left.\left.\quad-a_{j-1} S_{j-1} S_{j-1}^{\tau}\right) \mid \mathscr{F}_{\sigma_{k-1}}\right] \\
\leqslant & E\left[\sum_{i=1}^{n_{0}} \sum_{i=1}^{i} I_{[t=i]} \operatorname{tr}\left(2 a_{j} S_{j-1} x_{j}^{\tau}+a_{j} x_{j} x_{j}^{\mathrm{t}}\right) \mid \mathscr{F}_{\sigma_{k-1}}\right] \\
= & \sum_{j=1}^{n_{0}} \operatorname{tr} E\left[I_{[t \geqslant j]}\left(2 a_{j} S_{j-1} x_{j}^{\tau}+a_{j} x_{j} x_{j}^{\tau}\right) \mid \mathscr{F}_{\sigma_{k-1}}\right] \tag{52}
\end{align*}
$$

Noticing the properties of stopping times (cf. Lipster and Shiryayev 1978, Chow and Teicher 1978), we see

$$
\begin{gathered}
I_{[\mathrm{l} \geqslant j]}=1-I_{\left[\tau_{k} \leqslant \sigma_{k-1}+j-1\right]} \in \mathscr{F}_{\sigma_{k-1}+j-1} \\
a_{j} \in \mathscr{F}_{\sigma_{k-1}} \subset \mathscr{F}_{\sigma_{k-1}+j-1}, \quad S_{j-1} \in \mathscr{F}_{\sigma_{k-1}+j-1}
\end{gathered}
$$

and $E\left(x_{j} \mid \mathscr{F}_{\sigma_{k-1}+j-1}\right)=0$, we then have

$$
E\left[I_{[t \geqslant j]} a_{j} S_{j-1} x_{j}^{\tau} \mid \mathscr{F}_{\sigma_{k-1}}\right]=0
$$

and

$$
\operatorname{tr} E\left[I_{[t \geqslant j 1} a_{j} x_{j} x_{j}^{\tau} \mid \mathscr{F}_{\sigma_{k-1}}\right] \leqslant 2 l\left(M^{4}+\mu^{2}\right) E\left[\left.\frac{a_{j}}{\left(\sigma_{k-1}+j\right)^{4 \varepsilon}} I_{[t \geqslant j]} \right\rvert\, \mathscr{F}_{\sigma_{k-1}}\right]
$$

then we continue to estimate (52):

$$
\begin{align*}
E\left[a_{t}\left\|S_{t}\right\|^{2} \mid \mathscr{F}_{\sigma_{k-1}}\right] & \leqslant 2 l\left(M^{4}+\mu^{2}\right) \sum_{j=1}^{n_{0}} E\left[\left.I_{[\mathrm{t}} \geqslant j 1 \frac{a_{j}}{\left(\sigma_{k-1}+j\right)^{4 \varepsilon}} \right\rvert\, \mathscr{F}_{\sigma_{k-1}}\right] \\
& =2 l\left(M^{4}+\mu^{2}\right) E\left[\left.\sum_{j=1}^{1} \frac{a_{j}}{\left(\sigma_{k-1}+j\right)^{4 \varepsilon}} \right\rvert\, \mathscr{F}_{\sigma_{k-1}}\right] \\
& \leqslant 2 l\left(M^{4}+\mu^{2}\right) E\left[\left.\sum_{j=1}^{\infty} \frac{a_{j}}{\left(\sigma_{k+1}+j\right)^{4 \varepsilon}} \right\rvert\, \mathscr{F}_{\sigma_{k-1}}\right] \tag{53}
\end{align*}
$$

Thus we have proved (53) for bounded t, but it is also true for unbounded t, since it holds for $t(n)=\min [t, n]$, then the Fatou lemma yields the desired estimate. Then by
(53) we continue to estimate (51):

$$
\begin{aligned}
& P\left(\left.\frac{1}{\left(\tau_{k}^{1-2 \varepsilon}-\sigma_{k}^{1-2 \varepsilon}\right)^{1 / 2} \cdot b_{k}}\left\|\sum_{i=\sigma_{k-1}+1}^{\tau_{\mathrm{k}}}\left(v_{i} v_{i}^{\mathrm{t}}-\frac{\mu}{i^{2 \varepsilon}} I\right)\right\|>\eta \right\rvert\, \mathscr{F}_{\sigma_{k-1}}\right) \\
& \leqslant \frac{2 l\left(M^{4}+\mu\right)}{b_{k}^{2} \eta^{2}} E\left[\left.\sum_{j=1}^{\infty} \frac{a_{j}}{\left(\sigma_{k-1}+j\right)^{4 \ell}} \right\rvert\, \mathscr{F}_{\sigma_{k-1}}\right] \\
& =\frac{2 l\left(M^{4}+\mu^{2}\right)}{b_{k}^{2} \eta^{2}} \sum_{j=1}^{\infty} \frac{1}{\left[\left(\sigma_{k-1}+j\right)^{1-2 \varepsilon}-\sigma_{k-1}^{1-2 \varepsilon}\right]\left(\sigma_{k-1}+j\right)^{4 \varepsilon}} \\
& \leqslant \frac{2 l\left(M^{4}+\mu^{2}\right)}{b_{k}^{2} \eta^{2}}\left\{\frac{1}{\left[\left(1+\sigma_{k-1}\right)^{1-2 \varepsilon}-\sigma_{k-1}^{1-2 \varepsilon}\right]\left(\sigma_{k-1}+1\right)^{4 \varepsilon}}\right. \\
& \left.+\int_{1}^{\infty} \frac{d x}{\left(\sigma_{k-1}+x\right)^{4 \varepsilon}\left[\left(x+\sigma_{k-1}\right)^{1-2 \varepsilon}-\sigma_{k-1}^{1-2 \varepsilon}\right]}\right\} \\
& \leqslant O\left(\frac{1}{b_{k}^{2}} \cdot \frac{\sigma_{k-1}^{2 \varepsilon}}{\sigma_{k-1}^{4 \varepsilon}}\right)+\frac{2 l\left(M^{4}+\mu^{2}\right)}{(1-2 \varepsilon) b_{k}^{2} \eta^{2}} \int_{\left(\sigma_{t-1}+1\right)^{t-2 t}-\sigma_{1}^{\prime}-2_{1}^{2}}^{\infty} \frac{d y}{y\left(y+\sigma_{k-1}^{1-2 \varepsilon}\right)^{(2 \varepsilon) /(1-2 \varepsilon)}} \\
& =O\left(\frac{1}{b_{k}^{2}}\right)+\frac{2 l\left(M^{4}+\mu^{2}\right)}{(1-2 \varepsilon) b_{k}^{2} \eta^{2}} \int_{\left(\sigma_{1-1}+1\right)^{1-2 t}-\sigma_{k-1}^{1}-2}^{\infty} \frac{d y}{y\left(y+\sigma_{k-1}^{1-2 \varepsilon}\right)^{2 \varepsilon+(2 \varepsilon)^{2} /(1-2 \varepsilon)}} \\
& \leqslant O\left(\frac{1}{b_{k}^{2}}\right)+\frac{2 l\left(M^{4}+\mu^{2}\right)}{(1-2 \varepsilon) b_{k}^{2} \eta^{2}} \int_{\left(\sigma_{k-1}+1\right)^{1-2 t}-\sigma_{k-1}^{1-2}}^{\infty} \frac{d y}{y \cdot y^{2 \varepsilon} \cdot \sigma_{k-1}^{(2 t)^{2}}} \\
& =O\left(\frac{1}{b_{k}^{2}}\right)+\frac{2 l\left(M^{4}+\mu^{2}\right)}{2 \varepsilon(1-2 \varepsilon) b_{k}^{2} \eta^{2} \sigma_{k-1}^{(2 \varepsilon)^{2}}} \cdot \frac{1}{\left[\left(\sigma_{k-1}+1\right)^{1-2 \varepsilon}-\sigma_{k-1}^{1-2 \varepsilon}\right]^{2 \varepsilon}} \\
& =O\left(\frac{1}{b_{k}^{2}}\right)+O\left(\frac{\left(\sigma_{k-1}\right)^{(2 \varepsilon)^{2}}}{b_{k}^{2} \sigma_{k-1}^{(2 \varepsilon)^{2}}}\right) \leqslant c_{3}\left(\frac{1}{b_{k}^{2}}\right)
\end{aligned}
$$

where $c_{3}>0$ is not dependent on k.
Since $\sum_{k=1}^{\infty}\left(1 / b_{k}^{2}\right)<\infty$, then by the Borel-Cantelli-Lévy lemma (Chow et al. 1971) we conclude (50) and hence (49).
(ii) For (48) it suffices to show

$$
\begin{equation*}
\frac{1}{\left(\tau_{k}^{1-\varepsilon+v}-\sigma_{k-1}^{1-\varepsilon+v}\right)^{1 / 2} \beta_{k} \log \beta_{k}} \sum_{i=\sigma_{k-1}+1}^{\tau_{k}} f_{i} I_{\left[\|f i\| \leqslant\left(\log \beta_{\mathrm{L}}\right) i^{\prime}\right]} \cdot v_{i}^{\tau} \xrightarrow[k \rightarrow \infty]{\longrightarrow} 0 \tag{54}
\end{equation*}
$$

since $\beta_{k} \underset{k \rightarrow \infty}{\longrightarrow} \infty$.
The proof of (54) is similar to that for (50). Instead of a_{i}, x_{i} and S_{n} we should set

$$
\begin{gathered}
a_{i}^{\prime}=\frac{1}{\left(i+\sigma_{k-1}\right)^{1-\varepsilon+v}-\sigma_{k-1}^{1-\varepsilon+v}} \\
x_{i}^{\prime}=\frac{f_{\sigma_{k-1}+i} I_{\left[\left\|f_{n-1}+i\right\| \leqslant\left(\log \beta_{k}\right)\left(\sigma_{k-1}+i\right)^{\prime}\right]} \cdot \varepsilon_{\sigma_{k-1}+i}^{t}}{\left(\sigma_{k-1}+i\right)^{2}} \\
S_{n}^{\prime}=\sum_{i=1}^{n} x_{i}^{\prime}
\end{gathered}
$$

Then (51) and (52) is repdaced by

$$
\begin{array}{r}
P\left(\left.\frac{1}{\left(\tau_{k}^{1-\varepsilon+v}-\sigma_{k-1}^{1-\varepsilon+v}\right)^{1 / 2} \cdot \beta_{k} \log \beta_{k}}\left\|\sum_{i=\sigma_{k-1}+1}^{\tau_{k}} f_{i} I_{\left\|f_{n}\right\| \leqslant\left(\log \beta_{1} i^{\prime}\right]} \cdot v_{i}^{t}\right\|>\eta \right\rvert\, \mathscr{F}_{\sigma_{k-1}}\right) \\
\leqslant \frac{1}{\eta^{2} \beta_{k}^{2} \log ^{2} \beta_{k}} \sum_{j=1}^{\infty} \operatorname{tr} E\left[I_{i \geqslant j)}\left(2 a_{j}^{\prime} S_{j-1}^{\prime} x_{j}^{\prime \tau}+a_{j}^{\prime} x_{j}^{\prime} x_{j}^{\prime t}\right) \mid \mathscr{F}_{\sigma_{k-1}}\right] \tag{55}
\end{array}
$$

Again we have

$$
a_{j}^{\prime} \in \mathscr{F}_{\sigma_{k-1}} \subset \mathscr{F}_{\sigma_{k-1}+j-1}, \quad S_{j-1}^{\prime} \in \mathscr{F}_{\sigma_{k-1}+j-1}, \quad E\left(x_{j}^{\prime} \mid \mathscr{F}_{\sigma_{k-1}+j-1}\right)=0
$$

and

$$
\operatorname{tr} E\left[I_{[t \geqslant j 1} a_{j}^{\prime} x_{j}^{\prime} x_{j}^{\prime t} \mid \mathscr{F}_{\sigma_{k-1}}\right] \leqslant l M^{2} E\left[\left.a_{j}^{\prime} \frac{\left(\log \beta_{k}\right)^{2}\left(\sigma_{k-1}+i\right)^{2 v}}{\left(\sigma_{k-1}+i\right)^{2 \varepsilon}} I_{[t \geqslant j]} \right\rvert\, \mathscr{F}_{\sigma_{k-1}}\right]
$$

Then (55) is estimated by

$$
\begin{align*}
& (55) \leqslant \frac{I M^{2}}{\eta^{2} \beta_{k}^{2}} E\left[\left.\sum_{j=1}^{1} \frac{a_{j}^{\prime}}{\left(\sigma_{k-1}+j\right)^{2 \varepsilon-2 v}} \right\rvert\, \mathscr{F}_{\sigma_{k-1}}\right] \\
& \leqslant \frac{l M^{2}}{\eta^{2} \beta_{k}^{2}} \sum_{j=1}^{\infty} \frac{1}{\left(\sigma_{k-1}+j\right)^{2(\varepsilon-v)}\left[\left(\sigma_{k-1}+j\right)^{1-\varepsilon+v}-\sigma_{k-1}^{1-\varepsilon+v}\right]} \\
& \leqslant \frac{l M^{2}}{\eta^{2} \beta_{k}^{2}} \cdot \frac{1}{\left(\sigma_{k-1}+1\right)^{2(\varepsilon-v)}\left[\left(\sigma_{k-1}+1\right)^{1-\varepsilon+v}-\sigma_{k-1}^{1-\varepsilon+v}\right]} \\
& +\frac{l M^{2}}{\eta^{2} \bar{\beta}_{k}^{2}(1-\varepsilon+v)} \int_{\left(\sigma_{k-1}+1\right)^{1-+v-\sigma_{k-1}^{1+}}}^{\infty} \frac{d y}{y\left(y+\sigma_{k-1}^{1-\varepsilon+v}\right)^{\varepsilon-v+(\varepsilon-v)^{2} /(1-\varepsilon+v)}} \\
& \leqslant c_{4} \frac{1}{\beta_{k}^{2}} \tag{56}
\end{align*}
$$

where $c_{4}>0$ and is independent of k.
Again by the Borel-Cantelli-Lévy lemma the conclusion (48) follows.
Define

$$
\tau_{n}=\left\{\begin{array}{l}
\inf \left\{k>\tau_{n-1}: \sum_{i=\tau_{n-1}+m p}^{\tau_{0}=1} U_{i} U_{i}^{\tau} \geqslant I\right\} \\
\infty, \quad \text { if } \lambda_{\min }\left(\sum_{i=\tau_{n-1}+m p}^{k-1} U_{i} U_{i}^{\tau}\right)<1, \quad \forall k>\tau_{n-1} \tag{57}
\end{array}\right.
$$

where U_{i} is given by (11).

Lemma 6

If u_{n} is defined by (41) and $\left\|u_{n}^{0}\right\|=O\left(n^{v}\right), 0 \leqslant v<\varepsilon$, then $\tau_{n}<\infty$ a.s. $\forall n \geqslant 1$.

Proof
Let S be the set where the conclusion of the lemma does not hold.

To be precise, assume

$$
\begin{equation*}
\lambda_{\min }\left(\sum_{i=\sigma}^{n+\sigma} U_{i} U_{i}\right)<1, \quad \forall n \geqslant 0 \text { on } S \tag{58}
\end{equation*}
$$

for some $\sigma \triangleq \tau_{n_{0}}+m p$.
 $x_{i}^{n} \in R^{I}$ and $\left\|x^{n}\right\|=1$.

Clearly, $\left\|u_{i}\right\|=O\left(i^{v}\right)$, then by (42) and the boundedness of $x_{i}^{n}, i=1, \ldots, m p+q$, we find that (no measurability of x^{n} is required):

$$
\begin{equation*}
\sum_{i=\sigma}^{n+\sigma} v_{i}\left(x_{1}^{n \tau} u_{i}^{0}+x_{2}^{n r} u_{i-1}+\ldots+x_{m p+q}^{n \tau} u_{i-m p-q+1}\right)=o\left(n^{1-2(1+3(m p+q)) \varepsilon}\right), \quad \text { a.s. } \tag{59}
\end{equation*}
$$

and by (43) for $\omega \in S$,

$$
\begin{align*}
1 & >\sum_{i=\sigma}^{n+\sigma}\left(x^{n t} U_{i}\right)^{2} \\
& \geqslant \sum_{i=\sigma}^{n+\sigma} x_{1}^{n \tau} v_{i} v_{i}^{t} x_{1}^{n}+2 \sum_{i=\sigma}^{n+\sigma} x_{1}^{n \tau} v_{i}\left(x_{1}^{n t} u_{i}^{0}+x_{2}^{n \tau} u_{i-1}+\ldots+x_{m p+q}^{n t} u_{i-m p-q+1}\right) \\
& \geqslant c_{2}\left\|x_{1}^{n}\right\|^{2}\left((n+\sigma)^{1-2 \varepsilon}-\sigma^{1-2 \varepsilon}\right)+o\left(\left\|x_{1}^{n}\right\| n^{1-2(1+3(m p+q) \varepsilon}\right) \\
& =c_{2}\left\|x_{1}^{n}\right\|\left(\left\|x_{1}^{n}\right\|(n+\sigma)^{1-2 \varepsilon}-\sigma^{1-2 \varepsilon}\right)+o\left(n^{1-2(1+3(m p+q) \varepsilon \varepsilon}\right) \tag{60}
\end{align*}
$$

From here it is easy to conclude

$$
\begin{equation*}
\left\|x_{1}^{n}\right\|=o\left(\frac{n^{1-2(1+3(m p+q) \varepsilon}}{(n+\sigma)^{1-2 \varepsilon}-\sigma^{1-2 \varepsilon}}\right)=o\left(n^{-\sigma(m p+q) \varepsilon}\right) \tag{61}
\end{equation*}
$$

We now show for $\omega \in S$

$$
\begin{equation*}
\left\|x_{i}^{n}\right\|=o\left(n^{-6(m p+q-(1 / 3)(i-1) e \varepsilon}\right), \quad i=1, \ldots, m p+q \tag{62}
\end{equation*}
$$

The estimate (61) shows that (62) holds for $i=1$. Let it be held for $i=1, \ldots, s$, $s<m p+q$. Then we have

$$
\begin{align*}
1> & \sum_{i=\sigma}^{n+\sigma}\left(x^{n t} U_{i}\right)^{2} \\
\geqslant & \sum_{i=\sigma}^{n+\sigma} x_{s+1}^{n \tau} v_{i-s} v_{i-s}^{\tau} x_{s+1}^{n}+2 \sum_{i=1}^{n+\sigma} x_{s+1}^{n t} v_{i-s}\left(x_{1}^{n \tau} u_{i}+\ldots+x_{s}^{n t} u_{i-s+1}\right) \\
& +2 \sum_{i=\sigma}^{n+\sigma} x_{s+1}^{n m} v_{i-s}\left(u_{i-s}^{0 \tau} x_{s+1}^{n}+u_{i-s-1}^{i} x_{s+2}^{n}+\ldots+u_{i-m p-q+1}^{i} x_{m p+q}^{n}\right) \tag{63}
\end{align*}
$$

Noticing there is a ω-dependent η such that

$$
\begin{aligned}
\left\|\sum_{i=\sigma}^{n+\sigma} x_{s+1}^{n t} v_{i-s}\left(x_{1}^{n t} u_{i}+\ldots+x_{s}^{n t} u_{i-s+1}\right)\right\| & \leqslant \eta\left\|x_{s+1}^{n}\right\| \sum_{i=\sigma}^{n+\sigma} \frac{i}{v}^{v} \\
i^{e} & \left.\left\|x_{1}^{n}\right\|+\ldots+\left\|x_{s}^{n}\right\|\right) \\
& =o\left(\left\|x_{s+1}^{n}\right\| \cdot n^{1-6(m p+q-(1 / 3)(s-1)) \varepsilon}\right), \quad \omega \in S
\end{aligned}
$$

Then by (59) and (43) from (63) we have

$$
\begin{aligned}
& 1> c_{2}\left((n+\sigma)^{1-2 \varepsilon}-\sigma^{1-2 \varepsilon}\right)\left\|x_{s+1}^{n}\right\|^{2}+o\left(\left\|x_{s+1}^{n}\right\| n^{1-6(m p+q-(1 / 3)(s-1) \varepsilon \varepsilon}\right) \\
&+o\left(\left\|x_{s+1}^{n}\right\| \cdot n^{1-2(1+3(m p+q)) \varepsilon}\right) \\
&=\left((n+\sigma)^{1-2 \varepsilon}-\sigma^{1-2 \varepsilon}\right)\left\|x_{s+1}^{n}\right\|\left(c_{2}\left\|x_{s+1}^{n}\right\|+o\left(n^{-6(m p+q-(1 / 3) s) \varepsilon}\right)\right)
\end{aligned}
$$

and from here

$$
\left\|x_{s+1}^{n}\right\|=o\left(n^{-6(m p+q-(1 / 3) s) \varepsilon}\right), \quad \omega \in S
$$

Thus, (62) is valid on S, but (62) means

$$
x^{n} \xrightarrow[n \rightarrow \infty]{ } 0
$$

this contradicts with $\left\|x^{n}\right\|=1, \forall n$, hence $P(S)=0$. This proves the lemma.

Lemma 7

Assume $\left\|u_{n}\right\|=O\left(n^{v}\right), 0 \leqslant v<\varepsilon$. Then for $\left\{\tau_{n}\right\}$ defined by (57) the following estimate holds:

$$
\begin{equation*}
\left(\tau_{n}^{1-2 \varepsilon}-\tau_{n-1}^{1-2 \varepsilon}\right)^{m p+q}=O\left(\left(\tau_{n}^{1-\varepsilon+v}-\tau_{n-1}^{1-\varepsilon+v}\right)^{m p+q-(1 / 2)}\right), \quad \text { a.s. } \tag{64}
\end{equation*}
$$

Proof

Suppose (64) does not hold on a set Γ. We have to show

$$
P(\Gamma)=0
$$

For $\omega \in \Gamma$, there is a subsequence $\left\{\tau_{n_{k}}\right\}$ such that

$$
\begin{equation*}
\frac{\left(\tau_{n_{k}}^{1-2 \varepsilon}-\tau_{n_{k}-1}^{1-2 \varepsilon}\right)^{m p+q}}{\left(\tau_{n_{k}}^{1-\varepsilon+v}-\tau_{n_{k}-1}^{1-\varepsilon+v}\right)^{m p+q-(1 / 2)}} \geqslant 2^{k} \tag{65}
\end{equation*}
$$

Let $x^{k}=\left[\begin{array}{lll}x_{1}^{k \tau} & \ldots & x_{m p+q}^{k \tau}\end{array}\right]^{\tau}$ be the unit minimum eigenvector of

$$
\sum_{i=\tau_{m-1}+m p}^{\tau_{m-2}} U_{i} U_{i}^{\tau}, \quad\left\|x^{n}\right\|=1, \quad x_{i}^{n} \in R^{l}
$$

By definition of $\left\{\tau_{n}\right\}$ and (47), (48) with $b_{k}=2^{k /(m p+q)}$, and $\beta_{k} \log \beta_{k}=2^{k}$ we have

$$
\begin{aligned}
1 & >\sum_{i=\tau_{m-1}+m p}^{\tau_{m}-2}\left(x^{k \tau} U_{i}\right)^{2} \\
& \geqslant \sum_{i=\tau_{m-1}+m p}^{\tau_{m}-2} x_{1}^{k \tau} v_{i} v_{i}^{\tau} x_{1}^{k}+2 \sum_{i=\tau_{m-1}+m p}^{\tau_{m}-2} x_{1}^{k \tau} v_{i}\left(u_{i}^{0 \tau} x_{1}^{k}+u_{i-1}^{\tau} x_{2}^{k}+\ldots+x_{m p+q}^{k \tau} u_{i-m p-q+1}\right) \\
& \geqslant \beta\left\|x_{1}^{k}\right\|^{2}\left(\tau_{n_{k}}^{1-2 \varepsilon}-\tau_{n_{k}-1}^{1-2 \varepsilon}\right)+o\left(\left\|x_{1}^{k}\right\|\left(\tau_{n_{k}}^{1-\varepsilon+v}-\tau_{n_{k}-1}^{1-\varepsilon+v}\right)^{1 / 2} 2^{k}\right)
\end{aligned}
$$

Similar to (60) and (61), we hence conclude

$$
\begin{equation*}
\left\|x_{1}^{k}\right\|=o\left(\frac{\left(\tau_{n_{k}}^{1-\varepsilon+v}-\tau_{n_{k}-1}^{1-\varepsilon+v}\right)^{1 / 2} 2^{k}}{\tau_{n_{k}}^{1-2 \varepsilon}-\tau_{n_{k}-1}^{1-2 \varepsilon}}\right), \quad k \rightarrow \infty, \quad \omega \in \Gamma \tag{66}
\end{equation*}
$$

Assume

$$
\begin{equation*}
\left\|x_{i}^{k}\right\|=o\left(\frac{\left(\tau_{n_{k}}^{1-\varepsilon+v}-\tau_{n_{k}-1}^{1-\varepsilon+v}\right)^{i-1 / 2} \cdot 2^{k}}{\left(\tau_{n_{k}}^{1-2 \varepsilon}-\tau_{n_{k}-1}^{1-2 \varepsilon}\right)^{i}}\right) \tag{67}
\end{equation*}
$$

have been proved for $i, 1 \leqslant i \leqslant s<m p+q$, we now prove it for $i=s+1$, noticing (66) is only (67) with $i=1$.

Paying attention to (40), (45) and $\left\|u_{i}\right\|=O\left(i^{v}\right)$ we see

$$
\left\|\sum_{i=\tau_{m-1}+m p}^{\tau_{m}-2} v_{i-s}^{\tau} u_{i-j}\right\|=O\left(\tau_{n_{k}}^{1-\varepsilon+v}-\tau_{n_{k}-1}^{1-\varepsilon+v}\right)
$$

and then proceeding as for (63) and making use of (47) we have

$$
\begin{align*}
1> & \beta\left\|x_{s+1}^{k}\right\|^{2}\left(\tau_{n_{k}}^{1-2 t}-\tau_{n_{k}-1}^{1-2 \varepsilon}\right) \\
& +O\left(\left\|x_{s+1}^{k}\right\|\left(\left\|x_{1}^{k}\right\|+\ldots+\left\|x_{s}^{k}\right\|\right)\left(\tau_{n_{k}}^{1-\varepsilon+v}-\tau_{n_{k}-1}^{1-\varepsilon+v}\right)\right) \\
& +o\left(\left\|x_{s+1}^{k}\right\|\left(\tau_{n_{k}}^{1-c+v}-\tau_{n_{k}-1}^{1-\varepsilon+v}\right)^{1 / 2} 2^{k}\right) \tag{68}
\end{align*}
$$

Noting the elementary inequality $a^{y}-b^{y} \leqslant a^{x}-b^{x}, \forall x \geqslant y \geqslant 0, a>b>1$, by the induction assumption from (68) we find

$$
\begin{aligned}
1> & \beta\left\|x_{s+1}^{k}\right\|^{2}\left(\tau_{n_{k}}^{1-2 \varepsilon}-\tau_{n_{k}-1}^{1-2 \varepsilon}\right)+o\left(\left\|x_{s+1}^{k}\right\| \frac{\left(\tau_{n_{k}}^{1-\varepsilon+v}-\tau_{n_{k}-\varepsilon}^{1-\varepsilon+v}\right)^{s+1 / 2} \cdot 2^{k}}{\left(\tau_{n_{k}}^{1-2 \varepsilon}-\tau_{n_{k}-1}^{1-2 \varepsilon}\right)^{s}}\right) \\
& +o\left(\left\|x_{s+1}^{k}\right\|\left(\tau_{n_{k}}^{1-\varepsilon+v}-\tau_{n_{k}-\varepsilon+1}^{1-\varepsilon+v}\right)^{1 / 2} \cdot 2^{k}\right)
\end{aligned}
$$

and from where it follows that (67) is valid for $i=s+1$ and $\omega \in \Gamma$. Further, from (65) we have

$$
\frac{\left(\tau_{n_{k}}^{1-\varepsilon+v}-\tau_{k_{-1}}^{1-\varepsilon+v}\right)^{m p+q-1 / 2} \cdot 2^{k}}{\left(\tau_{n_{k}}^{-2 \varepsilon}-\tau_{n_{k}-1}^{1-2 \varepsilon}\right)^{m p+q}} \leqslant 1
$$

then (67) says that

$$
\left\|x^{k}\right\|=o(1), \text { as } k \rightarrow \infty, \quad \text { for } \omega \in \Gamma
$$

However, $\left\|x^{k}\right\|=1, \forall k$, this means $P(\Gamma)=0$.

Theorem 2

For the system and algorithm described by (1)-(5) with attenuating excitation control defined by (41), if Condition (a) is satisfied and

$$
\begin{equation*}
\left\|\varphi_{n}\right\|=O\left(n^{v}\right), \quad \text { with } v \in\left[0, \frac{1-(6+12(m p+q)) \varepsilon}{12(m p+q)-2} \wedge \varepsilon\right) \tag{69}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|\theta_{n}-\theta\right\|=O\left(\exp \left(-\alpha n^{1-12(m p+q)(\varepsilon+v)-6 \varepsilon+2 v}\right)\right), \text { a.s. } \tag{70}
\end{equation*}
$$

as $n \rightarrow \infty$ with $\alpha>0$.

Proof

We note at once that for ε defined by (40) the interval for v is not empty and $1-12(m p+q)(\varepsilon+v)-6 \varepsilon+2 v>0$.

The estimates

$$
\begin{gather*}
\tau_{n}^{1-\varepsilon+v}-\tau_{n-1}^{1-\varepsilon+v} \leqslant 2\left(\tau_{n}^{1-2 \varepsilon}-\tau_{n-1}^{1-2 \varepsilon}\right) \tau_{n}^{\varepsilon+v} \tag{71}\\
\tau_{n}-\tau_{n-1} \leqslant 2\left(\tau_{n}^{1-\varepsilon+v}-\tau_{n-1}^{1-\varepsilon+v}\right) \tau_{n}^{\varepsilon^{-v}} \tag{72}
\end{gather*}
$$

are derived from the inequality

$$
a^{x}-b^{x} \leqslant 2\left(a^{y}-b^{y}\right) a^{x-y}, \quad \forall a>b>0, \quad 0 \leqslant y \leqslant x \leqslant 2 y
$$

which comes from the identity

$$
a^{x}-b^{x}=\left(a^{y}-b^{y}\right)\left(a^{x-y}+b^{x-y}\right)+a^{x-y} b^{y}\left(1-\left(\frac{a}{b}\right)^{2 y-x}\right)
$$

By (64) and (71) we find

$$
\tau_{n}^{1-\varepsilon+v}-\tau_{n-1}^{1-\varepsilon+v}=O\left(\left(\tau_{n}^{1-\varepsilon+v}-\tau_{n-1}^{1-\varepsilon+v}\right)^{(m p+q-(1 / 2)) /(m p+q)}\right) \tau_{n}^{\varepsilon+v}
$$

hence

$$
\tau_{n}^{1-\varepsilon+v}-\tau_{n-1}^{1-\varepsilon+v}=O\left(\tau_{n}^{2(m p+q)(\varepsilon+v)}\right)
$$

which together with (72) imply

$$
\begin{equation*}
\tau_{n}-\tau_{n-1}=O\left(\tau_{n}^{2(m p+q)(\varepsilon+v)+\varepsilon-v}\right) \tag{73}
\end{equation*}
$$

Then we conclude that

$$
\tau_{n}=\tau_{0}+\sum_{i=1}^{n}\left(\tau_{i}-\tau_{i-1}\right)=O\left(n \tau_{n}^{2(m p+q)(\varepsilon+v)+\varepsilon-v}\right)
$$

and hence

$$
\begin{equation*}
\tau_{n}=O\left[n^{(1-2(m p+q)(\varepsilon+v)-\varepsilon+v)^{-1}}\right] \tag{74}
\end{equation*}
$$

Putting (74) into (73) we finally obtain

$$
\tau_{n}-\tau_{n-1}=O\left(n^{(2(m p+q)(\varepsilon+v)+\varepsilon-v) /(1-2(m p+q)(\varepsilon+v)-\varepsilon+v)}\right)
$$

Then the conclusion follows from (13) if we set $\delta=0$ and

$$
\lambda=\frac{2(m p+q)(\varepsilon+v)+\varepsilon-v}{1-2(m p+q)(\varepsilon+v)-\varepsilon+v}
$$

4. Adaptive control

Let $\left\{y_{n}^{*}\right\}$ be an arbitrary bounded random reference signal. We want to design adaptive control so that the output y_{n} of the system (1) follows y_{n}^{*} and θ_{n} given by (4) converges to the true value.

We note that in the model reference adaptive control case y_{n}^{*} is generated by a reference model

$$
A^{*}(z) y_{n}^{*}=B^{*}(z) u_{n}^{*}
$$

with a monic matrix polynomial $A^{*}(z)$.
So

$$
y_{n}^{*}=\left(I-A^{*}(z)\right) y_{n}^{*}+B^{*}(z) u_{n}^{*}
$$

and the problem is reduced to the previous one.
Write θ_{n} in component form

$$
\theta_{n}^{\tau}=\left[-A_{1 n} \ldots-A_{p n} \quad B_{1 n} \ldots B_{q n}\right]
$$

and form $A_{n}(z)$ and $B_{n}(z)$ as follows:

$$
\begin{gathered}
A_{n}(z)=I+A_{1 n} z+\ldots+A_{p n} z^{p} \\
B_{n}(z)=B_{1 n}+B_{2 n} z+\ldots+B_{q n} z^{q-1}
\end{gathered}
$$

For any stable monic matrix polynomial $E(z)$ there are $G_{n}(z)$ and $F_{n}(z)$ such that

$$
\begin{equation*}
F_{n}(z) A_{n}(z)+z^{d} G_{n}(z)=E(z) \tag{75}
\end{equation*}
$$

since $A_{n}(z)$ and $z^{d} I$ are coprime.

Define adaptive control

$$
\begin{equation*}
u_{n}=u_{n}^{0}+v_{n} \tag{76}
\end{equation*}
$$

with u_{n}^{0} generated from

$$
\begin{equation*}
F_{n}(z) B_{n}(z) u_{n}^{0}+G_{n}(z) y_{n}=E(z) y_{n+d}^{*} \tag{77}
\end{equation*}
$$

and with $\left\{v_{n}\right\}$ given by (40), but we take $\left\{\varepsilon_{n}\right\}$ independent of $\left\{y_{n}^{*}\right\}$ and with continuous distribution.

It can be shown that $B_{1 n}$ is non-degenerate if $m=l$ (cf . Chen and Guo 1986 a). Hence u_{n}^{0} can be defined from (77).

Theorem 3

For the system and algorithm (1)-(5) and control defined by (76) and (77), if Condition (a) holds and $B(z)$ is stable with $m=l$, then
(i) $\left\{y_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded a.s.
(ii) $\left\|y_{n}-y_{n}^{*}\right\|=O\left(M / n^{\varepsilon}\right)+O\left(\exp \left(-\alpha n^{1-12(m p+q) \varepsilon-6 \varepsilon}\right)\right)$, a.s.;
(iii) $\left\|\theta_{n}-\theta\right\|=O\left(\exp \left(-\alpha n^{1-12(m p+q) \varepsilon-6 \varepsilon}\right)\right)$, a.s.
where $\alpha>0$ and ε and M are given in (39) and (40).

Proof

From (8) it is easy to see that

$$
\begin{equation*}
\left\|\tilde{\theta}_{n+1}\right\| \leqslant\left\|\tilde{\theta}_{n}\right\| \leqslant\left\|\widetilde{\theta}_{0}\right\|<\infty \tag{78}
\end{equation*}
$$

and

$$
\operatorname{tr} \tilde{\theta}_{n+1}^{\mathrm{r}} \tilde{\theta}_{n+1} \leqslant \operatorname{tr} \tilde{\theta}_{n}^{\mathrm{r}} \tilde{\theta}_{n}-\frac{\| \tilde{\theta}_{n}^{\mathrm{\tau}}}{\varphi_{n} \|^{2}} 11+\left\|\varphi_{n}\right\|^{2}
$$

Thus we have

$$
\sum_{i=0}^{\infty} \frac{\left\|\tilde{\theta}_{i}^{\tau} \varphi_{i}\right\|^{2}}{1+\left\|\varphi_{i}\right\|^{2}} \leqslant \operatorname{tr} \tilde{\theta}_{0}^{\mathrm{r}} \tilde{\theta}_{0}, \quad \text { a.s. }
$$

and

$$
\begin{equation*}
\left\|\tilde{\theta}_{i}^{\tau} \varphi_{i}\right\|^{2}=o\left(1+\left\|\varphi_{i}\right\|^{2}\right) \quad \text { a.s. } \quad \text { as } i \rightarrow \infty \tag{79}
\end{equation*}
$$

By (4) and (79) it is easy to see

$$
\theta_{n+1}-\theta_{n}=o(1), \quad \text { a.s. }
$$

and then

$$
\begin{equation*}
\theta_{n+k}-\theta_{n}=o(1), \quad \text { a.s. } \quad \text { as } n \rightarrow \infty \tag{80}
\end{equation*}
$$

for any fixed integer $k \geqslant 1$.
We define polynomials $(A B)_{n}(z)$ and $\left(A_{n} B_{n}\right)(z)$ as follows:

$$
\begin{gathered}
(A B)_{n}(z)=\sum_{i, j} A_{i n} B_{j(n-i)} z^{i+j} \\
\left(A_{n} B_{n}\right)(z)=\sum_{i, j} A_{i n} B_{j n} z^{i+j}
\end{gathered}
$$

and write $\tilde{\theta_{n}^{\tau}} \varphi_{n}$ as

$$
\tilde{\theta}_{n}^{\tau} \varphi_{n}=y_{n+1}-\theta_{n}^{\tau} \varphi_{n}=A_{n}(z) y_{n+1}-B_{n}(z) u_{n-d+1}
$$

Thus by using (75)-(77) we have

$$
\begin{align*}
F_{n}(z) \tilde{\theta}_{n}^{t} \varphi_{n}= & (F A)_{n}(z) y_{n+1}-(F B)_{n}(z) u_{n-d+1} \\
= & \left(F_{n} A_{n}\right)(z) y_{n+1}+\left[(F A)_{n}(z)-\left(F_{n} A_{n}\right)(z)\right] y_{n+1}-(F B)_{n}(z) u_{n-d+1} \\
= & \left(E(z)-z^{d} G_{n}(z)\right) y_{n+1}+\left[(F A)_{n}(z)-\left(F_{n} A_{n}\right)(z)\right] y_{n+1}-(F B)_{n}(z) u_{n-d+1} \\
= & E(z) y_{n+1}-G_{n}(z) y_{n-d+1}-\left(F_{n} B_{n}\right)(z) u_{n-d+1}+\left[(F A)_{n}(z)-\left(F_{n} A_{n}\right)(z)\right] y_{n+1} \\
& +\left[\left(F_{n} B_{n}\right)(z)-(F B)_{n}(z)\right] u_{n-d+1} \\
= & E(z) y_{n+1}-E(z) y_{n-1}^{*}-\left(F_{n} B_{n}\right)(z) v_{n-d+1}+\left[(F A)_{n}(z)-\left(F_{n} A_{n}\right)(z)\right] y_{n+1} \\
& +\left[\left(F_{n} B_{n}\right)(z)-(F B)_{n}(z)\right] u_{n-d+1} \tag{81}
\end{align*}
$$

Combining (1) and (81) we get

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{c}
E(z)+\left[(F A)_{n}(z)-\left(F_{n} A_{n}\right)(z)\right]
\end{array}\right]\left[\left(F_{n} B_{n}\right)(z)-(F B)_{n}(z)\right]} \\
\hdashline A(z)
\end{array}\right]\left[\begin{array}{c}
y_{n+1} \tag{82}\\
\hdashline u_{n-d+1}
\end{array}\right]\right]
$$

By (80) it is not difficult to see that

$$
(F A)_{n}(z)-\left(F_{n} A_{n}\right)(z) \rightarrow 0, \quad\left(F_{n} B_{n}\right)(z)-(F B)_{n}(z) \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

so (82) is asymptotically time-invariant and stable since $E(z)$ and $B(z)$ are both stable.
It is easy to convince oneself that the matrix coefficients in $F_{n}(z)$ and $G_{n}(z)$ are bounded since those of $A_{n}(z)$ are bounded by (78). Then by stability of $E(z)$ and $B(z)$ from (82) we know that

$$
\left\|\varphi_{n+1}\right\|^{2}=O(1)+O\left(\sup _{0 \leqslant j \leqslant n+1}\left\|\tilde{\theta}_{j} \varphi_{j}\right\|^{2}\right)
$$

and by (79)

$$
\left\|\varphi_{n+1}\right\|^{2}=O(1)+o\left(\sup _{0 \leqslant j \leqslant n+1}\left\|\varphi_{j}\right\|^{2}\right)
$$

Hence

$$
\sup _{0 \leqslant j \leqslant n}\left\|\varphi_{j+1}\right\|^{2}=O(1)+o\left(\sup _{0 \leqslant j \leqslant n}\left\|\varphi_{j+1}\right\|^{2}\right)
$$

which implies

$$
\sup _{0 \leqslant j \leqslant n+1}\left\|\varphi_{j}\right\|^{2}=O(1), \quad \text { a.s. } \quad \text { as } n \rightarrow \infty
$$

This means that $\left\{y_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded. Then conclusion (iii) follows from Theorem 2 by setting $v=0$, while (ii) follows from (81):

$$
\begin{aligned}
y_{n+1}-y_{n+1}^{*}=E^{-1}(z)\left\{F_{n}(z) \tilde{\theta}_{n}^{\tau}\right. & \varphi_{n}+\left(F_{n} B_{n}\right)(z) v_{n-d+1} \\
& \left.-\left[(F A)_{n}(z)-\left(F_{n} A_{n}\right)(z)\right] y_{n+1}-\left[\left(F_{n} B_{n}\right)(z)-(F B)_{n}(z)\right] u_{n-d+1}\right\}
\end{aligned}
$$

if we use (iii) and (39), (40) and that $E(z)$ is stable and φ_{n} and matrix coefficients in $F_{n}(z)$ and $B_{n}(z)$ are bounded, and

$$
\begin{aligned}
& (F A)_{n}(z)-\left(F_{n} A_{n}\right)(z)=O\left(\exp \left(-\alpha n^{1-12(m p+q) \varepsilon-6 \varepsilon}\right)\right) \\
& (F B)_{n}(z)-\left(F_{n} B_{n}\right)(z)=O\left(\exp \left(-\alpha n^{1-12(m p+q) \varepsilon-6 \varepsilon}\right)\right)
\end{aligned}
$$

Acknowledgment

This project was supported by the Science Fund of the Chinese Academy of Sciences.

References

Anderson, B. D. O., and Johnson, C. R., Jr., 1982, Automatica, 18, 1.
Anderson, B. D. O., Bitmead, R. R., Johnson, C. R., Jr., Kokotovic, P. V., Kosut, R. L., Mareels, I. M. Y., Praly, L., and Riedle, B. D., 1986, Stability of Adaptive Systems: Passivity and Averaging Analysis (Boston, Mass.: MIT Press).
Åström, K. J., 1984, Proc. 23rd I.E.E.E. Conf. Decision and Control, 1276.
Bitmead, R. R., 1984, I.E.E.E. Trans. Inf. Theory, 30, 183.
Chi:n, H.-F., and Guo, L., 1985 a, SIAM Jl Control Optim.; 1985 b, Ibid.; 1986 a, Scientia Sinica (Series A), 29, 1145; 1986 b, Int. J. Control, 44, 1459.
Chow, Y. S., Robbins, H., and Siegmund, D., 1971, Great Expectations: the Theory of Optimal Stopping (Boston: Houghton Mifflin).
Chow, Y. S., and Tercher, H., 1978, Probability Theory (New York: Springer-Verlag).
Goodinin, G. C., Raeadge, P. J., and Caines, P. E., 1980, I.E.E.E. Trans. autom. Control, 24, 584.
Goodwin, G. C., and Sin, K. S., 1984, Adaptive Filtering, Prediction and Control (Englewood Cliffs, NJ: Prentice-Hall).
Kosut, R. L., Anderson, B. D. O., and Mareels, I. M. Y., 1985, Proc. 24th I.E.E.E. Conf. on Decision and Control, p. 478 (see also) I.E.E.E. Trans. autom. Control, to be published.
Lipster, R. S., and Shiryayev, A. N., 1978, Statistics of Random Processes, Vol. I (New York: Springer-Verlag).

