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Fig. 3. Graphical representation of conditions (33) and (34). R.P. is guaranteed since 

(SI < c, for w < 2 and \HI < cH for w > 1.4. 

The step from (Al) to (A2) follows from M = NI, + NIZ (I - 
T N z ) - l T N z l  and Schurs formula 

r 

and the assumption det D = det ( Z  - TNu) # 0 .  
Lemma I:  An equivalent statement of the lemma is as follows: Let A 

= diag { A l ,  A , }  where A I  and A2 have the same size as Nll and Nzz, 
respectively. (Al and A2 may have additional structure.) Then 

Proof of (A4): 

e) det ( Z - k ~ c A l N l 2 A 2 N 2 , ) + O  (‘47) 

The conditions involving det ( ) # 0 must hold for VAl s.t. i ( A l )  < 1 
and VAz s.t. i ( A z  < 1). The step from (A6) to (A7) and back to (AS) 
follows from (A3). Since (A5) and (A9) must hold for any value of k l ,  
(A4) follows. 

Theorem 2: From Theorem 1 and Lemma 1 for the case NI, = Nu = 
0 

1 

Since (A10) must hold for any choice of k it is equivalent to 

Theorem 2 follows by choosing NI, = A, Nzl = B. 

A and T i n  Theorem 2. Define A = diag { A , ,  A z } .  Then 
Special Cases of Theorem 2: Let A I  and A, have the same structure as 

* det ( I +  [ ‘ I  [ 1 k t ] ) # O  v A l ,  Az 

* det ( I -kA2BAIA)=det  ( I -kAIAAzB)#O VAl,  Az 

( ~ 1 3 )  

* p ~ , ( A A 2 B ) < l / k  VAz (~14) 

(‘415) 

* f iAz(BAIA)Sl /k  VAI 

* p(AIAAzB)=p(A2BAiA)I I l k  VAi, A2. 

By VA, is understood all A, s.t. i ( A , )  < 1. The step from (A1 1) to (‘412) 
follows from (A4). 

Case 1): Follows from (A15): Use the SVD of A = VAC A V,” and B 
= UECE V f .  Since A1 and A2 are full, A I  may be chosen such that A I  Ua 
= VE and AZ such that V,”A2 = U f .  Then p(A,AAzB) = p(  VECI CZ Vf) 
= &Cz) = i(A)i(B). [The generalization to the case when A and B 
are nonsquare is straightforward and involves lining up the directions 
corresponding to i (A)  and e@).] 

Case 2): Follows from (A14). 
Case 3): Follows from (A13). 
Cases 4), 5): Follow from (A15). 
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Recursive Algorithm for the Computation of the 
HO’-Norm of Polynomials 

Abstract-A recursive algorithm for computing the H”-norm of 
polynomials is developed. The algorithm is shown to converge monotoni- 
cally and the convergence rate is also established. Some examples are 
presented to illustrate the algorithm. 

I. INTRODUCTION 

In recent years, H”-norm and its optimization have been used more 
and more frequently in many areas of control theory and applications. For 
example, H”-norm optimal controller synthesis approach [ 11, [Z] , modell 
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controller reduction, and even some problems in system identification are 
closely related to H”-norms. The model/controller reduction is often best 
posed as a frequency weighted H” optimal approximation problem [3]. 
For a given transfer function G(z), many approaches give a reduced-order 
transfer function G,(z), normally, which is not optimal in the H” sense. 
Certainly, it is desirable to know the value of the H”-approximation error 
11 G(z) - G , ( Z ) ~ / ~ .  In system identification, if a monic polynomial C(z) is 
the moving average noise process transfer function in an ARMAX model, 
it is well known that for the convergence of the extended least-squares 
algorithm, a key condition is that C-’(z) - 1/2  is strictly positive real 
(e.g., [4], [5]) .  It is easy to see that this condition is equivalent to the 
requirement IIC(z) - 1 / I r n  < 1. However, in practice, to calculate the 
value of the H”-norm is not a pleasant task. It is usually done by a rather 
trivial method, i.e., plotting the absolute value of the function concerned 
on the unit circle. 

In this note, we propose a theoretical recursive algorithm for the 
computation of the H”-norm of polynomials or FIR transfer functions 
(Section 11). In Section LII we give the derivation of the algorithm and 
show that the guaranteed convergence rate of the algorithm is O(1og n/n). 
Simulation results of some examples are provided in Section W .  Section 
V concludes the note with some remarks. 

Before pursuing further, we need some concepts and definitions as 
follows. 

Letf(z) be a complex-valued function on the unit circle bounded almost 
everywhere; the set of all such functions is denoted by L”, with norm 

The Hardy space H” consists of all complex-valued functions which are 
analytic and of bounded modulus on Iz( < 1, with norm 

I l f(z)l lm= SUP If(z)l. (2) 
l Z I < l  

It is known that eachfin H” yields a unique L”  boundary function with 
the two norms equal. The set of such boundary functions is the subspace 
of L ”-functions with Fourier coefficients zero for negative indexes, and 
we can regard H” as a closed-subspace of space L”. 

We also need the concept of space LP ( p  > 0). It consists of all 
measurable complex functionsf(z) defined on the unit circle I z I = 1 such 
that If(eiB)lp is integrable with respect to Lebesgue measure, with norm 

(3) 

11. ALGORITHM DESCRIPTION AND MAIN RESULTS 

Let C(z) be a polynomial with real coefficients and with degree r 

(4) C(Z) = CO + C, z + . . . + Crzr, CnC,#O. 

Define a function f ( z )  as 

which are recursively defined by 
r 

( 5 )  and 

where 

To describe our algorithm, we need the following auxiliary variables: 

{x , (n ) ,  1 C i < 2r,  n 2 1) and { T(n) ,  n 2 I }  

I < k < r  ( 7 )  

I < k < r  ( 8 )  

where by definition 

xo(n)= 1 and x- , (n)=x, (n) ,  1 Q i < 2r,  n 2 1 

and where the initial conditions are 

1 
T ( I ) = i  log yo. x, ( l )=y j /yo,  1 Q j Q r ;  

The nth approximation for the norm 1 1  C(z) I l m  is defined by 

J(n)=exp { T(n)} ,  n 2 1. (1 1) 

The asymptotic properties of the above algorithm are summarized in 
the following theorem. 

Theorem 1: For any polynomial C(z) defined as in (4), the quantity 
J(n)  given by (7)-(I 1) increases monotonically and converges to 
IIC(z)ll, as n + OD, with convergence rate 

III. CONVERGENCE ANALYSIS 

For the proof of Theorem 1, we first establish the following lemmas. 
Lemma I: For T(n) given by (9) 

T(n)= 1% (I1 C(Z)ll*.) 

holds for any n 2 I .  
Proof: Define 

1 2r 

2~ n 
~ , ( n ) = -  S p(e’B)e*’B de 

for n 2 1 ,  - 2 r  Q k Q 2r, wheref(e’O) is given by ( 5 ) .  
It is easy to see that for any n 2 1 

M_,(n)=M,(n) ,  k=O,  1, ..., 2r 

We proceed as follows. 
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where 

consequently, we have 

+ - log yo + 2 y j [ M j ( n  - l ) / M o ( n  - 111 . 1 By this identity, we obtain for 1 Q k Q r j =  I 
2n 

Comparing this to (9), we see that for (16) it suffices to show that f"-~(e-~~)gl(e-i~)e(~-~)i~ de 

,y,(n)=Mj(n)/Mo(n), 1 Q j Q r. (18) 

=$ [ryoMk(n- 1 ) + i  y j [ ( r+ j )Mk- , (n-1)  
Now, by integral parts from (13) and the fact thatf(z) = f ( z - ' ) ,  we 

(24) 1 J = I  

have 
+ ( r -  j ) W + j ( n  - 111 

M e @ ) = %  1 5 ,  2* f"(e-ie)eki8 dO which in conjunction with (21) gives the recursive formula for Mk+,(n - 
1) 

1 2r - -- 2rki I, f"(e-ie) dekie 

j = O  J 

From here it is easy to see that (7) is true with Xk(n - 1) replaced by 
Mk(n - l ) /Mo(n - 1). This proves the assertion (18), and hence the 
conclusion of the lemma. 

Lemma 2: Let a complex function f(z)eL", if d/d0 [IfleiB)12]eLm; 

- 1; d v ( e - i e  

=" lZrp-l(e-te)  . f,(e-i#)e(k-l)ie do 
(I9) then 2 ~ k  0 

where 
0 Q lIf(eie)lL- llf(eie)lln Q (llf(eie)llw) 

Proof: By (1) and (3) it is evident that for any n 3 1 

For (19) and (20) we immediately have (1 < k < r) g(e)= If(eie)12, 0 E LO, 2al.  

Since g(0) is a continuous function of 0, there exists a 8d0, 2x1 such 
(21) that 

n '  
Mk(n)=k C j y j [ ~ k - , ( n -  l ) - M k + , ( n - l ) l .  

Multiplying l/Mo(n) on both sides of this equality and using (17), we 
that the recursion (8) is true with x d n )  replaced by W W M o ( n ) .  

TO conclude (18), we still need to show that the recursion (7) also holds 
with xk(n) replaced by Mk(n)/Mo(n). To this end, consider the following 

I =  I 

g(OO)=eE~;l g(e) = I I ~ ( ~ v I : .  

without loss of generality, assume Ooe(0, 2x1. 
B~ the Taylor expansion we h o w  that 

decomposition for f'(e-'B): g(e) = g w  + g w e  - eo) 
f ' ( e  ( e  - i e )  - ie),ie (22) where 4 is some point between 0 and 00. 
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From here we have, for sufficiently large n, 

This completes the proof of the lemma. 
Proof of Theorem I: By (1  1) and Lemma 1, we know that 

J ( n )  = II C(Z)llzn. (25) 

By the Holder inequality, it is easy to see that the LP-norm 1 1 .  l i p  is 
monotonically increasing in p ,  and hence J ( n )  is monotonically increas- 
ing in n. The other results follow from (25) and Lemma 2 .  

IV. EXAMPLE STUDIES 

To illustrate the algorithm works, two examples are studied. They are 
as follows: 

i) C (z )=I -z -z2  

ii) C (z )= l  +2z+3z2.  

It is easy to show in example ii) that IIC(z)ll, = 6. However, it is not 
straightforward to see in example i) that IIC(z)ll, = 6 After 1500 
iterations, the &-norm is approximated with relative error under 
0.00154 in both cases, which are depicted in Figs. 1 and 2, respectively. 

V. CONCLUSIONS AND REMARKS 

a) The proposed algorithm has itself theoretical interests as well as its 
application importance. Various algorithms for minimization (maximiza- 
tion) of functions exist [6]-[8], but to the authors’ knowledge, theoretical 
algorithms for computing the H”-norm have not yet been studied 
elsewhere. 

b) It is interesting to note that the principal part of the relative error of 
the algorithm is independent of the polynomial C(z) (i.e., (log n) /2n) .  
Furthermore, the error is monotonically decreasing to zero. So, for a 
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given relative error, we can roughly decide the iteration step n to achieve 
the desired accuracy. 

c) In this note, we have only considered the scalar polynomial case. Of 
course, for a given stable scalar rational function, one can first 
approximate it by an rth-order polynomial (with exponential decaying 
error O(hr), 0 < X < 1) and then use the above method to approximate 
the H”-norm of the rational function. It is desirable to extend the results 
of this note to the general matrix transfer function case. 
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