

Fig. 3. Graphical representation of conditions (33) and (34). R.P. is guaranteed since $|S|<c_{s}$ for $\omega<2$ and $|H|<c_{H}$ for $\omega>1.4$.

The step from (A1) to (A2) follows from $M=N_{11}+N_{12}(I-$ $\left.T N_{22}\right)^{-1} T N_{21}$ and Schurs formula

$$
\operatorname{det}\left(A-B D^{-1} C\right)=\operatorname{det}\left[\begin{array}{cc}
A & B \tag{A3}\\
C & D
\end{array}\right] / \operatorname{det} D
$$

and the assumption $\operatorname{det} D=\operatorname{det}\left(I-T N_{22}\right) \neq 0$.
Lemma 1: An equivalent statement of the lemma is as follows: Let $\tilde{\Delta}$ $=\operatorname{diag}\left\{\Delta_{1}, \Delta_{2}\right\}$ where Δ_{1} and Δ_{2} have the same size as N_{11} and N_{22}, respectively. (Δ_{1} and Δ_{2} may have additional structure.) Then

$$
\mu_{\bar{\Lambda}}\left[\begin{array}{cc}
0 & N_{12} \tag{A4}\\
c N_{21} & 0
\end{array}\right]=\sqrt{c} \mu_{\bar{\Omega}}\left[\begin{array}{cc}
0 & N_{12} \\
N_{21} & 0
\end{array}\right] .
$$

Proof of (A4):

$$
\begin{gather*}
\mu_{\bar{\Delta}}\left[\begin{array}{cc}
0 & N_{12} \\
c N_{21} & 0
\end{array}\right] \leq 1 / k_{1} \tag{A5}\\
\Leftrightarrow \operatorname{det}\left(I+k_{1}\left[\begin{array}{cc}
\Delta_{1} & \\
& \Delta_{2}
\end{array}\right]\left[\begin{array}{cc}
0 & N_{12} \\
c N_{21} & 0
\end{array}\right]\right) \neq 0 \\
\Leftrightarrow \operatorname{det}\left[\begin{array}{cc}
I & k_{1} \Delta_{1} N_{12} \\
k_{1} c \Delta_{2} N_{21} & I
\end{array}\right] \neq 0 \tag{A6}\\
\Leftrightarrow \operatorname{det}\left(I-k_{1}^{2} c \Delta_{1} N_{12} \Delta_{2} N_{21}\right) \neq 0 \\
\Leftrightarrow \operatorname{det}\left[\begin{array}{cc}
I & \sqrt{k_{1}^{2} c} \Delta_{1} N_{12} \\
\sqrt{k_{1}^{2} c} \Delta_{2} N_{21} & I
\end{array}\right] \neq 0 \tag{A8}\\
\Leftrightarrow \mu_{\bar{\Delta}}\left[\begin{array}{cc}
0 & N_{12} \\
N_{21} & 0
\end{array}\right] \leq 1 / \sqrt{k_{1}^{2} c} \tag{A9}
\end{gather*}
$$

The conditions involving det () $\neq 0$ must hold for $\forall \Delta_{1}$ s.t. $\bar{\sigma}\left(\Delta_{1}\right)<1$ and $\forall \Delta_{2}$ s.t. $\bar{\sigma}\left(\Delta_{2}<1\right)$. The step from (A6) to (A7) and back to (A8) follows from (A3). Since (A5) and (A9) must hold for any value of k_{1}, (A4) follows.
Theorem 2: From Theorem 1 and Lemma 1 for the case $N_{11}=N_{22}=$ 0

$$
\mu_{\Delta}\left(N_{12} T N_{21}\right) \leq k \text { if } \bar{\sigma}(T) \mu_{\Sigma}^{2}\left[\begin{array}{cc}
0 & N_{12} \tag{A10}\\
N_{21} & 0
\end{array}\right] \leq k
$$

Since (A10) must hold for any choice of k it is equivalent to

$$
\mu_{\Delta}\left(N_{12} T N_{21}\right) \leq \tilde{\sigma}(T) \mu_{\tilde{\Delta}}^{2}\left[\begin{array}{cc}
0 & N_{12} \\
N_{21} & 0
\end{array}\right] .
$$

Theorem 2 follows by choosing $N_{12}=A, N_{21}=B$.
Special Cases of Theorem 2: Let Δ_{1} and Δ_{2} have the same structure as Δ and T in Theorem 2. Define $\tilde{\Delta}=\operatorname{diag}\left\{\Delta_{1}, \Delta_{2}\right\}$. Then

$$
\begin{align*}
& \mu_{\tilde{\Delta}}^{2}\left[\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right] \leq 1 / k \tag{A11}\\
& \Leftrightarrow \mu_{\tilde{\Lambda}}\left[\begin{array}{cc}
0 & k A \\
B & 0
\end{array}\right] \leq 1 \tag{A12}
\end{align*}
$$

$$
\begin{gather*}
\Leftrightarrow \operatorname{det}\left(I+\left[\begin{array}{ll}
\Delta_{1} & \\
& \Delta_{2}
\end{array}\right]\left[\begin{array}{cc}
0 & k A \\
B & 0
\end{array}\right]\right) \neq 0 \forall \Delta_{1}, \Delta_{2} \\
\Leftrightarrow \operatorname{det}\left(I-k \Delta_{2} B \Delta_{1} A\right)=\operatorname{det}\left(I-k \Delta_{1} A \Delta_{2} B\right) \neq 0 \quad \forall \Delta_{1}, \Delta_{2} \\
\Leftrightarrow \mu_{\Delta_{2}}\left(B \Delta_{1} A\right) \leq 1 / k \forall \Delta_{1} \tag{A13}\\
\Leftrightarrow \mu_{\Delta_{1}}\left(A \Delta_{2} B\right) \leq 1 / k \forall \Delta_{2} \tag{A14}\\
\Leftrightarrow \rho\left(\Delta_{1} A \Delta_{2} B\right)=\rho\left(\Delta_{2} B \Delta_{1} A\right) \leq 1 / k \forall \Delta_{1}, \Delta_{2} . \tag{A15}
\end{gather*}
$$

By $\forall \Delta_{i}$ is understood all Δ_{i} s.t. $\bar{\sigma}\left(\Delta_{i}\right)<1$. The step from (A11) to (A12) follows from (A4).

Case 1): Follows from (A15): Use the SVD of $A=U_{A} \Sigma_{A} V_{A}^{H}$ and B $=U_{B} \Sigma_{B} V_{B^{-}}^{H}$. Since Δ_{1} and Δ_{2} are full, Δ_{1} may be chosen such that $\Delta_{1} U_{A}$ $=V_{B}$ and Δ_{2} such that $V_{A}^{H} \Delta_{2}=U_{B}^{H}$. Then $\rho\left(\Delta_{1} A \Delta_{2} B\right)=\rho\left(V_{B} \Sigma_{1} \Sigma_{2} V_{B}^{H}\right)$ $=\rho\left(\Sigma_{1} \Sigma_{2}\right)=\bar{\sigma}(A) \bar{\sigma}(B)$. [The generalization to the case when A and B are nonsquare is straightforward and involves lining up the directions corresponding to $\bar{\sigma}(A)$ and $\bar{\sigma}(B)$.]

Case 2): Follows from (A14).
Case 3): Follows from (A13).
Cases 4), 5): Follow from (A15).

AcKNOWLEDGMENT

The authors are thankful to J. C. Doyle for numerous useful discussions and remarks. The idea of treating T as a perturbation (which subsequently led to the derivation of Theorem 1) was first presented by Grosdidier and Morari [4] in their derivation of the μ-interaction measure.

REfERENCES

[1] J. C. Doyle, "Analysis of feedback systems with structured uncertainties," Proc. IEE, Pt. D., vol. 129, pp. 242-247, 1982.
[2] J. C. Doyle, J. E. Wall, and G. Stein, "Performance and robustness analysis for structured uncertainty," Proc. IEEE Conf. Decision Contr., Orlando, FL, 1982.
[3] J. C. Doyle, Lecture Notes for ONR/Honeywell Workshop, Minneapolis, MN, Oct. 8-10, 1984.
[4] P. Grosdidier and M. Morari, "Interaction measures for systems under decentralized control,"' Automatica, vol. 22, no. 3, pp. 309-319, 1986.
[5] I. Postethwaite and Y. K. Foo, "Robustness with simultaneous pole and zero movements across the j ω-axis," Automatica, vol. 21, no.4, pp. 433-443, 1985.

Recursive Algorithm for the Computation of the H^{∞}-Norm of Polynomials

LEI GUO, LIGE XIA, AND YI LIU

Abstract-A recursive algorithm for computing the H^{∞}-norm of polynomials is developed. The algorithm is shown to converge monotonically and the convergence rate is also established. Some examples are presented to illustrate the algorithm.

I. INTRODUCTION

In recent years, H^{∞}-norm and its optimization have been used more and more frequently in many areas of control theory and applications. For example, H^{∞}-norm optimal controller synthesis approach [1], [2], model/

[^0]controller reduction, and even some problems in system identification are closely related to H^{∞}-norms. The model/controller reduction is often best posed as a frequency weighted H^{∞} optimal approximation problem [3]. For a given transfer function $G(z)$, many approaches give a reduced-order transfer function $G_{r}(z)$, normally, which is not optimal in the H^{∞} sense. Certainly, it is desirable to know the value of the H^{∞}-approximation error $\left\|G(z)-G_{r}(z)\right\|_{\infty}$. In system identification, if a monic polynomial $C(z)$ is the moving average noise process transfer function in an ARMAX model, it is well known that for the convergence of the extended least-squares algorithm, a key condition is that $C^{-1}(z)-1 / 2$ is strictly positive real (e.g., [4], [5]). It is easy to see that this condition is equivalent to the requirement $\|C(z)-1\|_{\infty}<1$. However, in practice, to calculate the value of the H^{∞}-norm is not a pleasant task. It is usually done by a rather trivial method, i.e., plotting the absolute value of the function concerned on the unit circle.

In this note, we propose a theoretical recursive algorithm for the computation of the H^{∞}-norm of polynomials or FIR transfer functions (Section II). In Section III we give the derivation of the algorithm and show that the guaranteed convergence rate of the algorithm is $O(\log n / n)$. Simulation results of some examples are provided in Section IV. Section V concludes the note with some remarks.

Before pursuing further, we need some concepts and definitions as follows.

Let $f(z)$ be a complex-valued function on the unit circle bounded almost everywhere; the set of all such functions is denoted by L^{∞}, with norm

$$
\begin{equation*}
\|f(z)\|_{\infty}=\underset{\theta \in[0,2 \pi]}{\operatorname{ess} \sup }\left|f\left(e^{i \theta}\right)\right| . \tag{1}
\end{equation*}
$$

The Hardy space H^{∞} consists of all complex-valued functions which are analytic and of bounded modulus on $|z|<1$, with norm

$$
\begin{equation*}
\|f(z)\|_{\infty}=\sup _{|z|<1}|f(z)| \tag{2}
\end{equation*}
$$

It is known that each f in H^{∞} yields a unique L^{∞} boundary function with the two norms equal. The set of such boundary functions is the subspace of L^{∞}-functions with Fourier coefficients zero for negative indexes, and we can regard H^{∞} as a closed-subspace of space L^{∞}.
We also need the concept of space $L^{p}(p>0)$. It consists of all measurable complex functions $f(z)$ defined on the unit circle $|z|=1$ such that $\left|f\left(e^{i \theta}\right)\right| p$ is integrable with respect to Lebesgue measure, with norm

$$
\begin{equation*}
\|f(z)\|_{p}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p} . \tag{3}
\end{equation*}
$$

II. Algorithm Description and Main Results

Let $C(z)$ be a polynomial with real coefficients and with degree r

$$
\begin{equation*}
C(z)=C_{0}+C_{1} z+\cdots+C_{r} z^{r}, \quad C_{0} C_{r} \neq 0 \tag{4}
\end{equation*}
$$

Define a function $f(z)$ as

$$
\begin{align*}
f(z) & =C(z) C\left(z^{-1}\right) \\
& \triangleq \gamma_{0}+\sum_{j=1}^{r} \gamma_{j}\left(z^{j}+z^{-j}\right) \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma_{j}=\sum_{k=0}^{r} C_{k} C_{k+j}, \quad\left(C_{k}=0, \text { for } k>r\right) \tag{6}
\end{equation*}
$$

To describe our algorithm, we need the following auxiliary variables:

$$
\left\{\chi_{i}(n), 1 \leqslant i \leqslant 2 r, n \geqslant 1\right\} \text { and }\{T(n), n \geqslant 1\}
$$

which are recursively defined by

$$
\begin{align*}
& \chi_{k+r}(n-1)= {\left[\sum_{j=1}^{r}(n j-k) \gamma_{j} \chi_{k-j}(n-1)\right.} \\
&\left.-\sum_{j=0}^{r-1}(n j+k) \gamma_{j} \chi_{k+j}(n-1)\right] /(n r+k) \gamma_{r} \quad 1 \leqslant k \leqslant r \tag{7}\\
& \chi_{k}(n)=(n / k) \sum_{j=1}^{r} j \gamma_{j}\left[\chi_{k-j}(n-1)-\chi_{k+j}(n-1)\right] \\
& \cdot {\left[\gamma_{0}+2 \sum_{j=1}^{r} \gamma_{j} \chi_{j}(n-1)\right]{ }^{-1} \quad 1 \leqslant k \leqslant r } \tag{8}\\
& T(n)=\frac{n-1}{n} T(n-1)+\frac{1}{2 n} \log \left[\gamma_{0}+2 \sum_{j=1}^{r} \gamma_{j} \chi_{j}(n-1)\right] \tag{9}
\end{align*}
$$

where by definition

$$
\chi_{0}(n)=1 \text { and } \chi_{-i}(n)=\chi_{i}(n), \quad 1 \leqslant i \leqslant 2 r, n \geqslant 1
$$

and where the initial conditions are

$$
\chi_{j}(1)=\gamma_{j} / \gamma_{0}, 1 \leqslant j \leqslant r ; \quad T(1)=\frac{1}{2} \log \gamma_{0} .
$$

The nth approximation for the norm $\|C(z)\|_{\infty}$ is defined by

$$
\begin{equation*}
J(n)=\exp \{T(n)\}, \quad n \geqslant 1 . \tag{11}
\end{equation*}
$$

The asymptotic properties of the above algorithm are summarized in the following theorem.

Theorem 1: For any polynomial $C(z)$ defined as in (4), the quantity $J(n)$ given by (7)-(11) increases monotonically and converges to $\|C(z)\|_{\infty}$ as $n \rightarrow \infty$, with convergence rate

$$
\begin{equation*}
\|C(z)\|_{\infty}-J(n) \leqslant\left(\|C(z)\|_{\infty}\right) \frac{\log n}{2 n}+0(1 / n) \tag{12}
\end{equation*}
$$

III. CONVERGENCE ANALYSIS

For the proof of Theorem 1, we first establish the following lemmas. Lemma I: For $T(n)$ given by (9)

$$
T(n)=\log \left(\|C(z)\|_{2 n}\right)
$$

holds for any $n \geqslant 1$.
Proof: Define

$$
\begin{equation*}
M_{k}(n)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f^{n}\left(e^{i \theta}\right) e^{k i \theta} d \theta \tag{13}
\end{equation*}
$$

for $n \geqslant 1,-2 r \leqslant k \leqslant 2 r$, where $f\left(e^{i \theta}\right)$ is given by (5).
It is easy to see that for any $n \geqslant 1$

$$
\begin{equation*}
M_{-k}(n)=M_{k}(n), \quad k=0,1, \cdots, 2 r \tag{14}
\end{equation*}
$$

and

$$
\begin{align*}
M_{0}(n) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f^{n}\left(e^{i \theta}\right) d \theta \\
& =\left\|f^{n}(z)\right\|_{n}^{n}=\|C(z)\|_{2 n}^{2 n} \tag{15}
\end{align*}
$$

So for the proof of the lemma, we need only to show that

$$
\begin{equation*}
T(n)=\frac{1}{2 n} \log M_{0}(n) \tag{16}
\end{equation*}
$$

We proceed as follows.

By (5), (13), and (14)

$$
\begin{align*}
M_{0}(n) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f^{n-1}\left(e^{i \theta}\right) f\left(e^{i \theta}\right) d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f^{n-1}\left(e^{i \theta}\right)\left[\gamma_{0}+\sum_{k=1}^{r} \gamma_{k}\left(e^{k i \theta}+e^{-k i \theta}\right)\right] d \theta \\
& =\gamma_{0} M_{0}(n-1)+2 \sum_{j=1}^{r} \gamma_{j} M_{j}(n-1) \\
& =M_{0}(n-1)\left\{\gamma_{0}+2 \sum_{j=1}^{r} \gamma_{j}\left[M_{j}(n-1) / M_{0}(n-1)\right]\right\} \tag{17}
\end{align*}
$$

consequently, we have

$$
\begin{aligned}
{\left[\frac{1}{2 n} \log M_{0}(n)\right]=\frac{n-1}{n} } & {\left[\frac{1}{2(n-1)} \log M_{0}(n-1)\right] } \\
& +\frac{1}{2 n} \log \left\{\gamma_{0}+2 \sum_{j=1}^{r} \gamma_{j}\left[M_{i}(n-1) / M_{0}(n-1)\right]\right\}
\end{aligned}
$$

Comparing this to (9), we see that for (16) it suffices to show that

$$
\begin{equation*}
\chi_{j}(n)=M_{j}(n) / M_{0}(n), \quad 1 \leqslant j \leqslant r . \tag{18}
\end{equation*}
$$

Now, by integral parts from (13) and the fact that $f(z)=f\left(z^{-1}\right)$, we have

$$
\begin{align*}
M_{k}(n)= & \frac{1}{2 \pi} \int_{0}^{2 \pi} f^{n}\left(e^{-i \theta}\right) e^{k i \theta} d \theta \\
= & \frac{1}{2 \pi k i} \int_{0}^{2 \pi} f^{n}\left(e^{-i \theta}\right) d e^{k i \theta} \\
= & \frac{1}{2 \pi k i}\left\{\left.f^{n}\left(e^{-i \theta}\right) e^{k i \theta}\right|_{\theta} ^{2 \pi}\right. \\
& \left.-\int_{0}^{2 \pi}\left(e^{k i \theta}\right) d\left[f^{n}\left(e^{-i \theta}\right)\right]\right\} \\
= & \frac{n}{2 \pi k} \int_{0}^{2 \pi} f^{n-1}\left(e^{-i \theta}\right) \cdot f^{\prime}\left(e^{-i \theta}\right) e^{(k-1) i \theta} d \theta \tag{19}
\end{align*}
$$

where

$$
\begin{align*}
f^{\prime}\left(e^{-i \theta}\right) & \left.\frac{d f(z)}{d z}\right|_{z=e^{-i \theta}} \\
& =\sum_{j=1}^{\prime} j \gamma_{j}\left[e^{(1-j) i \theta}-e^{(j+1) i \theta}\right] \tag{20}
\end{align*}
$$

For (19) and (20) we immediately have ($1 \leqslant k \leqslant r$)

$$
\begin{equation*}
M_{k}(n)=\frac{n}{k} \sum_{j=1}^{\prime} j \gamma_{j}\left[M_{k-j}(n-1)-M_{k+j}(n-1)\right] \tag{21}
\end{equation*}
$$

Multiplying $1 / M_{0}(n)$ on both sides of this equality and using (17), we know that the recursion (8) is true with $\chi_{k}(n)$ replaced by $M_{k}(n) / M_{0}(n)$.
To conclude (18), we still need to show that the recursion (7) also holds with $\chi_{k}(n)$ replaced by $M_{k}(n) / M_{0}(n)$. To this end, consider the following decomposition for $f^{\prime}\left(e^{-i \theta}\right)$:

$$
\begin{equation*}
f^{\prime}\left(e^{-i \theta}\right)=g_{1}\left(e^{-i \theta}\right)-r f\left(e^{-i \theta}\right) e^{i \theta} \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{1}\left(e^{-i \theta}\right)=r \gamma_{0} e^{i \theta}+\sum_{j=1}^{r} \gamma_{j}\left[(r+j) e^{(1-j) i \theta}+(r-j) e^{(j+1) i \theta}\right] \tag{23}
\end{equation*}
$$

Substituting (22) into (19), we get

$$
\begin{aligned}
M_{k}(n)= & \frac{n}{2 \pi k} \int_{0}^{2 \pi} f^{n-1}\left(e^{-i \theta}\right)\left[g_{1}\left(e^{-i \theta}\right)\right. \\
& \left.-r f\left(e^{-i \theta}\right) e^{i \theta}\right] e^{(k-1) i \theta} d \theta \\
= & \frac{-n r}{2 \pi k} \int_{0}^{2 \pi} f^{n}\left(e^{-i \theta}\right) e^{k i \theta} d \theta \\
+ & \frac{n}{2 \pi k} \int_{0}^{2 \pi} f^{n-1}\left(e^{-i \theta}\right) g_{1}\left(e^{-i \theta}\right) e^{(k-1) i \theta} d \theta \\
= & \frac{-n r}{k} M_{k}(n)+\frac{n}{2 \pi k} \int_{0}^{2 \pi} f^{n-1}\left(e^{-i \theta}\right) \\
& \cdot g_{1}\left(e^{-i \theta}\right) e^{(k-1) i \theta} d \theta .
\end{aligned}
$$

By this identity, we obtain for $1 \leqslant k \leqslant r$

$$
\begin{align*}
M_{k}(n)= & \frac{n}{n r+k} \cdot \frac{1}{2 \pi} \int_{0}^{2 \pi} f^{n-1}\left(e^{-i \theta}\right) g_{1}\left(e^{-i \theta}\right) e^{(k-1) / \theta} d \theta \\
= & \frac{n}{n r+k}\left\{r \gamma_{0} M_{k}(n-1)+\sum_{j=1}^{r} \gamma_{j}\left[(r+j) M_{k-j}(n-1)\right.\right. \\
& \left.\left.+(r-j) M_{k+j}(n-1)\right]\right\} \tag{24}
\end{align*}
$$

which in conjunction with (21) gives the recursive formula for $M_{k+r}(n-$ 1)

$$
\begin{aligned}
M_{k+r}(n-1)= & \frac{1}{(n r+k) \gamma_{r}}\left[\sum_{j=i}^{r}(n j-k) \gamma_{j} M_{k-j}(n-1)\right. \\
& \left.\quad-\sum_{j=0}^{r-1}(n j+k) \gamma_{j} M_{k+j}(n-1)\right] .
\end{aligned}
$$

From here it is easy to see that (7) is true with $\chi_{k}(n-1)$ replaced by $M_{k}(n-1) / M_{0}(n-1)$. This proves the assertion (18), and hence the conclusion of the lemma.
Lemma 2: Let a complex function $f(z) \in L^{\infty}$, if $d / d \theta\left[\left|f\left(e^{i \theta}\right)\right|^{2}\right] \epsilon L^{\infty}$; then

$$
0 \leqslant\left\|f\left(e^{i \theta}\right)\right\|_{\infty}-\left\|f\left(e^{i \theta}\right)\right\|_{n} \leqslant\left(\left\|f\left(e^{i \theta}\right)\right\|_{\infty}\right) \frac{\log n}{n}+O\left(\frac{1}{n}\right) .
$$

Proof: By (1) and (3) it is evident that for any $n \geqslant 1$

$$
\left\|f\left(e^{i \theta}\right)\right\|_{n} \leqslant\left\|f\left(e^{i \theta}\right)\right\|_{\infty} .
$$

Now, denote

$$
g(\theta)=\left|f\left(e^{i \theta}\right)\right|^{2}, \quad \theta \in[0,2 \pi]
$$

Since $g(\theta)$ is a continuous function of θ, there exists a $\theta_{0} \in[0,2 \pi]$ such that

$$
g\left(\theta_{0}\right)=\max _{\theta \in[0,2 \times]} g(\theta)=\left\|f\left(e^{i \theta}\right)\right\|_{\infty}^{2}
$$

Without loss of generality, assume $\theta_{0} \epsilon(0,2 \pi)$. By the Taylor expansion we know that

$$
g(\theta)=g\left(\theta_{0}\right)+g^{\prime}(\xi)\left(\theta-\theta_{0}\right)
$$

where ξ is some point between θ and θ_{0}.

From here we have, for sufficiently large n,

$$
\begin{aligned}
&\left\|f\left(e^{i \theta}\right)\right\|_{n} \\
&=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{n} d \theta\right\}^{1 / n} \\
&=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}[g(\theta)]^{n / 2} d \theta\right\}^{1 / n} \\
&=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} g^{n / 2}\left(\theta_{0}\right)\left[1+\frac{g^{\prime}(\xi)}{g\left(\theta_{0}\right)}\left(\theta-\theta_{0}\right)\right]^{n / 2} d \theta\right\}^{1 / n} \\
&=\left[g\left(\theta_{0}\right)\right]^{1 / 2}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[1+\frac{g^{\prime}(\xi)}{g\left(\theta_{0}\right)}\left(\theta-\theta_{0}\right)\right]^{n / 2} d \theta\right\}^{1 / n} \\
& \geqslant\|f(z)\|_{\infty}\left\{\frac{1}{2 \pi} \int_{\theta_{0}-1 / n}^{\theta_{0}+1 / n}\left[1+\frac{g^{\prime}(\xi)}{g\left(\theta_{0}\right)}\left(\theta-\theta_{0}\right)\right]_{n / 2} d \theta\right\}_{1 / n} \\
& \geqslant\|f(z)\|_{\infty}\left\{\frac{1}{2 \pi} \int_{\theta_{0}-1 / n}^{\theta_{0}+1 / n}\left[1-\frac{\left\|g^{\prime}(\theta)\right\|_{\infty}}{g\left(\theta_{0}\right)} \cdot \frac{1}{n}\right] d \theta\right\}^{1 / 2} \\
&=\|f(z)\|_{\infty}\left(\frac{1}{\pi n}\right)^{1 / n}\left[1-\frac{\left\|g^{\prime}(\theta)\right\|_{\infty}}{g\left(\theta_{0}\right)} \cdot \frac{1}{n}\right]^{1 / 2} \\
&=\|f(z)\|_{\infty} \cdot \exp \left\{\frac{1}{n} \log \frac{1}{n \pi}\right\} \cdot\left[1+O\left(\frac{1}{n}\right)\right] \\
&=\|f(z)\|_{\infty} \cdot\left[1-\frac{\log \pi n}{n}+O\left(\frac{\log ^{2} n}{n^{2}}\right)\right]\left[1+O\left(\frac{1}{n}\right)\right]
\end{aligned}
$$

This completes the proof of the lemma.
Proof of Theorem 1: By (11) and Lemma 1, we know that

$$
\begin{equation*}
J(n)=\|C(z)\|_{2 n} . \tag{25}
\end{equation*}
$$

By the Hölder inequality, it is easy to see that the L^{p}-norm $\|\cdot\|_{p}$ is monotonically increasing in p, and hence $J(n)$ is monotonically increasing in n. The other results follow from (25) and Lemma 2.

IV. Example Studies

To illustrate the algorithm works, two examples are studied. They are as follows:

$$
\text { i) } C(z)=1-z-z^{2}
$$

ii) $C(z)=1+2 z+3 z^{2}$.

It is easy to show in example ii) that $\|C(z)\|_{\infty}=6$. However, it is not straightforward to see in example i) that $\|C(z)\|_{\infty}=\sqrt{5}$. After 1500 iterations, the H_{∞}-norm is approximated with relative error under 0.00154 in both cases, which are depicted in Figs. 1 and 2, respectively.

V. Conclusions and Remarks

a) The proposed algorithm has itself theoretical interests as well as its application importance. Various algorithms for minimization (maximization) of functions exist [6]-[8], but to the authors' knowledge, theoretical algorithms for computing the H^{∞}-norm have not yet been studied elsewhere.
b) It is interesting to note that the principal part of the relative error of the algorithm is independent of the polynomial $C(z)$ (i.e., $(\log n) / 2 n)$. Furthermore, the error is monotonically decreasing to zero. So, for a

given relative error, we can roughly decide the iteration step n to achieve the desired accuracy.
c) In this note, we have only considered the scalar polynomial case. Of course, for a given stable scalar rational function, one can first approximate it by an r th-order polynomial (with exponential decaying error $0\left(\lambda^{r}\right), 0<\lambda<1$) and then use the above method to approximate the H^{∞}-norm of the rational function. It is desirable to extend the results of this note to the general matrix transfer function case.

References

[1] G. Zames and B. A. Francis, "Feedback, minimax sensitivity, and optimal robustness,' IEEE Trans. Automat. Contr., vol. AC-28, pp. 585-601, 1983.
[2] B. A. Francis, "Notes on H^{∞}-optimal linear feedback system," Lecture Notes, Dep. Elec. Eng., Linköping Univ., Linköping, Sweden, 1983.
[3] B. D. O. Anderson and Y. Liu, "Controller reduction: Concepts and approaches," in Proc. Amer. Contr. Conf., MN, 1987, pp. 1-9.
[4] L. Ljung, "On positive real transfer function and the convergence of some recursive schemes," IEEE Trans. Automat. Contr., vol. AC-22, pp. 539-55t, 1977.
[5] H. F. Chen and L. Guo, "Convergence rate of least squares identification and adaptive control for stochastic systems," Int. J. Contr., vol. 44, no. 5, pp. 14591476, 1986.
[6] R. P. Brent, Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ: Prentice-Hall, 1973.
[7] G. P. Szego, Minimization Algorithms: Mathematical Theories and Computer Results. New York: Academic, 1972.
[8] M. R. Osborne, Finite Algorithms in Optimization and Data Analysis. New York: Wiley, 1985.

[^0]: Manuscript received October 6, 1987; revised January 28, 1988
 The authors are with the Department of Systems Engineering, Research School of Physical Sciences, Australian National University, Canberra, Australia.
 IEEE Log Number 8823316.

