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Abstract: When the noise process in adaptive identification of 
finear stochastic systems is correlated, and can be represented 
by a moving average model, extended least squa,es algorithms 
are commonly used, and converge uader a strictly positive real 
(SPR) condition on the noise model. In this paper, we present 
an adaptive algorithm for the estirr, ddon of autoregressive 
moving average (ARMA) processes, and show that it is conver- 
gent without any SPR condition, and has a convergence rate of 
O({loglog t ) / t  }!/2). 

Keywords: Positive real, AOavtive algorithm, ARMA process, 
Spectral factorization, State space. 

1. Introduction 

Consider the following ARMA processes, de- 
scribed by 

p q 

Y', a j y ( t - j ) =  Y', b i e ( t - j  ), ( la)  
j=o j=o 

a0 = b0 ffi 1, ( lb)  

where the innovation process { e(t), t >f 0} is a 
stationary ergodic martingale difference secluea~:e 
with respect to a family { ~ }  of nor, decreasing 
o-algebras, satisfying 

E[e2(t) l ~ _ l ] = O  2, E le ( t )  14<oo. (2) 

Set 

A ( z )  = 1 + a~z -1 + . . .  +apz -p, (3a) 

B(z )  = 1 + b,z -1 + ' "  +bqz -q, (3b) 

and assume A(z) and B(z)  are coprime poly- 
nomials in z -1 and 

A(z)~0, B(z)~O, Izl>fl, %.bq~O. 
(4) 

Estimation problems for both unknown param- 
eters and orders of the above stationary ARMA 
processes have received extensive attention in the 
area of time series analysis. In this area, many 
approaches have been proposed, among which two 
kinds of methods are usually used. One is maxi- 
mizing the likelihood function (e.g. [1]). This 
method cannot provide a closed form solution in 
general, and usually needs the use of iterative 
nonlinear optimization techniques. The other 
method involves first the use of increasing lag 
autoregressions to approximate the corresponding 
infinite order AR model, and then to do model 
reduction by invoking the BIC criterion (e.g. [2]) 
or via Hankel norm approximation or balanced 
truncation [3]. However, in the first step of this 
method, the least squares algorithm is used and 
the dimension of the corresponding design matrix 
increases unboundedly with time t (or data size). 

Similar estimation problems have also exten- 
sively studied in the area of system identification. 
Conunonly used algorithms for adaptive estima- 
tion of unknown parameters are extended least 
squares (ELS) and its variants (e.g. [4, 5]), where 
the orders are assumed to be known. These al- 
gorith~,ls were shown to be convergent under a 
ec: tam kind of strictly positive real (SPR) condi- 
tions imposed on the moving average part of the 
process. Specifically, for the ELS algorithm, it is 
required that 

2Re{ B- ' ( e i e )}  - 1 > 0, V0 ~ [0, 2~r], 

which qualitatively means that the system noise is 
not too 'colored'. This requirement is stronger 
than the usual minimum phase assumption on 
B(z). It was also shown ir~ [6] that for ARMA 
parameter estimation, if SPR condition is re- 
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moved, counterexamples can be constructed such 
that the ELS algorithms does not converge. It is 
worth noting that the recursive prediction error 
methods (see e.g. [4]) avoid the SPR condition, but 
need an additional projection into an a privri 
known stability domain, and no convergence rate 
is guaranteed even in the case of global conver- 
gence. 

Attempts to avoid SPR condition in adaptive 
estimation and control have been made in [7], 
where on-line spectral factorization ideas were 
used to estimate unknown parameters in moving 
average (MA) noise processes. Prechse theoretical 
results have recently been establhshed for the 
estimation of a class of nonstationary linear re- 
gression models in [8]. 

In this paper, we present an adaptive algorithm 
which requires no SPR condition for its conver- 
gence for the estimation of ARMA processes. The 
algorithm, which assumes the availability of the 
system order, is based on an adaptive spectral 
factorization procedure proposed in [8]. 

2. Main results 

Let us describe the estimation algorithm first. 
Denote 

m=mar(p,  q), ~= E[y(j)y(O)], (5) 

1 t - j  
~oY( i ) t ( j+i ) ,  t >__ 1, 5 ( t ) = 7 , =  

I 
rl(t ) r,.(t) ... rm(t ) 

G,(t)= r2(t), r3(t) . rm+l(t). 

. . .  

Gz(t) -- 

I r2(t) r3(t) ... rm+l(t ) 
r . ( t )  

r , ,+l( t )  r m + z ( t )  . . .  r2m(t ) 

and set 

H(t)=[1,  O,...,oIT~R '', 

M ( t ) - [ r 1 ( t ) ,  rE(t ) . . . .  ,rm(t)]T~R "n, 
F(t) =G~(t)G2(t), L(t)---ro(t), 

(6) 

1, 
(7) 

1, 
(8) 

(9) 
(aO) 
(11) 

where + denotes the Moore-Penrose pseudo,in- 
verse. 

Let ~ ( = )  and $](t) be the estimates for the 
tranfer function B(z)/A(z)  and the noise vari- 
ance o 2 re~ectively. The adaptive algorithm for 
computing Wt(z ) and ~(t) is given as follows: 

I ~ ( z ) = l + H T ( t ) [ z I - F T ( t ) ] - l l ~ ( t ) ,  (12) 

12(t) = HT(t ) ,~( t )  H( t )  + L ( t ) ,  (13) 

l ( ( t ) = [ F V ~ . ( t ) H ( t ) + M ( t ) ] ~ + ( t ) ,  (14)  

t>_ 1, (15) 

where [log2t] denotes the integer part of logZt, and 

{Zt(s) ,  O_<s_< [log~t], t>_ a} 

are recursively defined by 

,~,(s+ 1)-" FT(t),~,(s)F(t) 

- [ F T ( t ) ~ , ( s ) H ( t ) +  M(t)]  

"[ HT(t)Zt(s)II( t )  + L(t ) ]  + 

"[ FT(t),~t(s)H(t) + M(t)]  T, 

(16a) 

,~, (0) =0 .  (16b) 

As usual, for a complex-valued function f(z) 
which is defined and bounded on the unit circle 
]z [ = 1, we denote its norm by 

I I f (z ) l l~  = sup I f ( z ) l .  
Izl =1 

The main results of the paper are as follows. 

Theorem 1. Assume that p < q in model (1). Then 
the estimation algorithm described by (5)-(16) has 
the following properties as t ~ ~ : 

 .(z.Ii A ( z )  ~ t 
a.s. ,  

and 

.°(,._°2._ o(/..og, lJ2) 
t a.s. 

3. Auxiliary results 

For the proof of Theorem 1 we need some 
results from linear system theory, autocorrelation 
approximation and adaptive spectral factorization. 
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We first state a result on the passage from 
Markov parameters to state-space equations (see 
[9]). 

L e m m a  1. Suppose the rational ! × d matrix G( z) 
has G(oo)= 0 and is expanded as 

(it)~'Z" A1 A2 A3 = - - +  + + . . .  
z .7  -J 

The Markov parameters Ai are arranged to form 
Hankei matrices H N as follows: 

H N  - "  

A1 A2 ... A s  1 
A2 A3 '~N+! 

- .  : • 

N AN+I . . .  A2/v- ! 

Since G( z ) is rational, there always exists the first 
integer r such that 

r a n k  H r = rank  Hr+  1 = rank  H , +  2 . . . .  • 

Denote n = rank H r, and &t P and Q be nonsingu- 
lar matrices such that 

0] 
Then the following matrices 'realize' G(z), in the 
sense that 

G ( z ) = M T ( z I - F ) - ' H :  

H = n × d top left corner of PH,, 

M T = I X n top left corner of H,Q, 

F =  n x n top left corner of P(oH, )Q,  

where 

A2 A3 

A3 A4 

Ar+l At+2 

0 

g 

I 

Ar+ 1 1 Ar+2 
: • 

A2r 

Moreover, [F, H] is completely reachable and 
[ F, M] is completely observable. 

L e m m a  2. Let ~ and § ( t ) be defined as in (5) and 
(6) respectively. Then as t ~ ~ ,  

max I ~ ( t ) - § l  = o ( (  l°gl°g t il/2 ) 
O<j<P(t) t a.s., 

where P(t)  is any sequence of ~ntegers such that 
P( t )  = O(logat) for some a > O. 

Finally, we will need the following fact about 
the convergence of an adaptive spectral factoriza- 
tion algorithm, which is established in [8]. 

L e m m a  3. Let O( z ) be a power spectrum function 
represented by 

+.hiT(z-l/-- F ) - 1 H  

and satisfying the following conditions: 
A1. cb(z) is positive on the unit circle. 
A2. The matrix quadruple { F, H, M, L / 2 }  is 

minimal, i.e., [F, H] and IF, M] are respectively 
reachable and observable ~ 

A3. All eigenvalues of F lie in the unit circle. 
A4. The quantity (det F ) L -  MT[Adj F]H is 

non-zero. 
I f  L( t ), H( t ), F( t ) and M( t ) (not necessarily 

defined by (9)-(11)) are consistent estimates of 
L, H, F, and M respectively, then ~ ( z )  and ~( t )  
defined by (12)-(16) are convergent, with conver- 
gence rates 

t °t ' 

Ila(,)- ll v . >  
t 

a ' 

where { W( z ), ~ } with W( oo ) = 1 is the unique 
stable and minimum phase spectral factor of ~(  z ), 
i.e., 

+ ( z )  = 

and where A( t ) is the estimation error at time t: 

za(t) = I I F ( t ) - F I l + l I H ( t ) - H l l  

+ [ I g ( t ) - g l l + l l L ( t ) - L I I .  (17) 

Next, we present a result concerning asymp- 
totic properties of autocorrelation approximation 
(see [10]). 

Remark 1. Actually, the quantity ,~(t) used in (14) 
can be defined in many ways, for example, if 
instead of (15) ,~(t) is defined as Z,([d(t]), t >__ O, 
where d ( t ) >  0 is any non-decreasing sequence 
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such that d(t)--,  oo, as t---. oo, then the resulting 
convergence rate in Lemma 3 is now 

O ( a ( t ) )  + O ( e x p ( - 8  d ( t )} ) ,  

for some 8 > 0 .  The choice of d(t )=log2t  in 
(15) enables us to obtain the convergence rate 
o({(loglog t ) / t  }a/2) in Theorem 1. This rate is the 
same as that in the well known laws of the iterated 
logarithm, and is the best possible. 

4. Proof of Theorem 1 

If we can express the power spectrum ~(z)  of 
{y(t)} ia the form required in Lemma 3 with 
Conditions A1-A4 satisfied and if [F, H, M] and 
L in this representation are estimated by 

[F ( t ) ,  H(t) ,  M(t)]  and .  L ( t )  

defined in (9)-(11) with estimation error of order 
o({(loglog)/t}l/2), then applying Lemma 3 leads 
to the desired results. 

It is well known that the power spectrum of the 
stationary process { y(t)} defined by (1) is 

, ( z ) = o 2 B ( z )  B ( z - ' )  (18) 
A(z-')' 

and it is related to the covariance in the standard 
way 

* ( z ) =  E [Ey(i)y(O)]z- ' .  (19) 

Now, let A, B and C be matrices such that all 
eigenvalues of A lie in the unit circle and 

B(z) = CT ( I _  z - ' A ) - ' B .  (20) 
a(z) 
This is possible because A(z) is stable. Then let S 
be the solution of the Lyapunov equation S = 
ASAT + BB T. We have 

( I -  z - ' A ) - ' B B T (  I -  zAT) - '  

= ( z l -  A ) - ' ( S  - ASAT)( z - ' l -  AT) - '  

= (zI--  A ) - 1 { ( z I - A ) S ( z - ' I  - A  T ) 

+ A S ( z - I I - A  T) 

+ ( z l -  A)SA T } ( z - ' l -  AT) - '  

= ( z l -  A ) - ' A S  + SAT(z - ' I  - AT) - '  + S; 

consequently, by (18)-(20), 

• (z)  = o2CT(zl -- A ) - i A S C  

+ 0 2 C T S A T (  Z - ; r _  A T ) - I c  + o 2 c T s c ,  

which is similar to the expression given in Lemma 
3, but for which it is not clear whether Conditions 
A1-A4 are satisfied. Nevertheless, from this and 
(19) we find that 

o o  

~.z-i = o2CT( zI  - A ) -  i ASC. 
i=1 

which is obviousiy rational, analytic in I z [ >  1, 
and vanishes at z = oo. Hence we can apply 
Lemma 1. For this we denote 

rl r2 ... rm ] 
r, r 3 rm + 1 

I G l t l l  ~ "  " ' 

rm rm + l r2m-1 .] 

r2 r3 .. rm+l]  
r3 r4 rm + 2 J G2,n 

6,+1 rm + 2 r2 m 

where m and § are defined in (5). 
It is easy to see that 

rank G~,,, = rank G1(,,+1)= rank G1(,,,+2) . . . .  

since by (1), the correlation function { t)} satisfies 
the following equations: 

rm+j+a l rm+j_  1 + " ' "  + a m ~ = O ,  Vj>__I, 

where a i & 0, for i > p. 
Furthermore, it is known that (see e.g. [11], 

Lemma 5.6), 

rank Glm = m .  

Thus, by setting 

H=[1,0 ,  .... e l i z a  

M = [ r  1, r 2, ,rm] T ~ R ' '  . . ,  

I . 

F= (G1.,)- Gain, L -  r o, 

and taking P=(GD,,) -1, Q= I in Lemma 1, we 
have 

OQ 

E l) z - j =  MT( z l -  F)  -1H. (21) 
j= l  



L. Guo, H.F Chen / Adaptive estimation of ARMA processes 

From Lemma 2 and (9)-(11) we see that the 
estimation error defined by (17) has the conver- 
gence rate 

Hence to complete the proof we need only to 
check Conditions A1-A4 of Lemma 3. First of all, 

O(e i°) = o 2 1 B ( e i ° ) / A ( e  i°) 12 >_ 0 

which, in fact, is strictly positive because of (4). 
Thus, Condition A1 is satisfied. 

Noticing that E~'=lt)z -j  is analytic in I zl>__ 1 
and { F, H, M } is minimal, from (21) we know 
that all eigenvalues of F lie in the unit circle. 
Thus, Condition A3 is verified, while condition A2 
is one of the conclusions of Lemma 1. 

Therefore, it remains to verify Condition A4 in 
Lemma 3, i.e., 

(det F ) L -  MT[Adj F ] H  4 0 .  (22) 

Let us write 

d e t ( z l -  F )  = z m + a l  g (m-1)  + - . -  +am_iZ 4- a m 

(23) 

and 

355 
. . .  

We now pr~,ve (22) by considering the follow- 
ing two cases. 

(i) p = q. Letting z - ,  00 (26), we see that 

tim + r (O)=o2  bq . 
a m ap 

Thus, a m ~ 0 and 

(det F ) L - m T [ g d j  F ] H  

- ( -  - MTF- H] 

, °° 

= ( - 1 ) % . 0  . 0 .  
ap 

(ii) p < q. By letting z ~ 00 in (26) we see that 

tim + r(O)= 00. 
a m 

Therefore a m = 0, and we need only verify 
Mr[Adj F ] H  ~ O. Note that by (24), 

m + l  mr[Adj F ] H =  ( - 1 )  tim 

but by (25), tim ~ O. Hence the proof of Theorem 1 
is complete. 

MT[Adj (  z I -  F)] H 

-- [~lZm-l + . . . - I - # m _ l Z + # m  (24) 

then we know that 

det F=(-1)mam, laml+lflml.O, (25) 

since { F, H, M } is a minimal realization of the 
transfer function M T(zl -- F ) -  ill. 

By (18), (19), (21), (23) and (24) it follows that 

0 2 
1 + b l  z -  

1 + alz  -1 + 
) • . .  + a p z - P  

( l + , , z +  
1 + alz + +apz  p 

fll Zm- I  + " ' "  +tim 

Z m-l-al  Z m - I  + . . .  -t-am 

B~z - (m-~)  + "'" +Bin + 
Z - m + a l  z - ( m - l ) +  . - .  + a  m 

+ r(O).  

(26) 

5. Conclusion 

We have presented an adaptive algorithm which 
does not require any SPR condition for its conver- 
gence for the parameter estimation of a class of 
ARMA processes. Currently under investigation 
are the more general problems of adaptive estima- 
tion of both unknown parameters and orders of 
nonstationary ARMAX processes when the noise 
model satisfies no SPR condition. 
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