
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tcon20

International Journal of Control

ISSN: 0020-7179 (Print) 1366-5820 (Online) Journal homepage: https://www.tandfonline.com/loi/tcon20

Robust recursive identification of
multidimensional linear regression models

LEI GUO , LIGE XIA & JOHN B. MOORE

To cite this article: LEI GUO , LIGE XIA & JOHN B. MOORE (1988) Robust recursive identification
of multidimensional linear regression models, International Journal of Control, 48:3, 961-979, DOI:
10.1080/00207178808906229

To link to this article:  https://doi.org/10.1080/00207178808906229

Published online: 18 Jan 2007.

Submit your article to this journal 

Article views: 29

View related articles 

Citing articles: 11 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tcon20
https://www.tandfonline.com/loi/tcon20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207178808906229
https://doi.org/10.1080/00207178808906229
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00207178808906229
https://www.tandfonline.com/doi/mlt/10.1080/00207178808906229
https://www.tandfonline.com/doi/citedby/10.1080/00207178808906229#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/00207178808906229#tabModule


Robust recursive identification of multidimensional linear regression 
models 

LEI G U O t ,  LLGE X I A t  and JOHN B. MOORE7 

Stochastic adaptive estimation and control algorithms involving recursive predic- 
tion estimates have guaranteed convergence rates when the noise is not 'too' 
coloured, as when a positive-real condition on the noise model is satisfied. 
Moreover, the whiter the noise environment the more robust are the algorithms. 
This paper shows that for linear regression signal models, the suitable introduction 
of while noise into the estimation algorithm can make it more robust without 
compromising on convergence rates. Indeed, there are guaranteed attractive conver- 
gence rates independent of the process noise colour. No positive-real condition is 
imposed on the noise model. 

1. Introduction 
Precise convergence rates are known for a number of stochastic adaptive schemes 

under a certain noise model positive-real condition (Chen and G u o  1986, Lai and Wei 
1986 a)  first exposed as a convergence condition by Ledwich and Moore (1977) and 
Ljung (1977). Robustness results are also known (Chen and Guo  1987 a). The whiter 
the process noise, the more likely the positive-real condition is satisfied, and the more 
robust are the algorithms. 

In an earlier paper (Moore 1982), a method was proposed to side-step the positive- 
real condition for scalar variable noise models in stochastic adaptive estimation and 
control. The method has as a starting point the addition of white noise into the 
processing. Such additions ensure a whiter noise environment, which in turn ensures 
convergence and lends a certain robustness. The added noise can be seen as 
dominating unmodelled dynamics or unmodelled coloured noise. The method is made 
more powerful by additional processing involving on-line spectral factorization and 
parallel processing involving pre-whitening filters. Simulations support the ideas of 
Moore (1982), although his theory is incomplete. 

In this paper and companion papers (Guo and Moore 1987), a number of the ideas 
of Moore ( 1982) are re-packaged in the context of a precise convergence analysis with 
the view to quantifying the extent of robustness enhancement and convergence rates. 
The techniques build on Kalrnan filtering theory, spectral factorization theory and 
expand on those used for extended least-squares convergence by Chen and Guo  (1986) 
and Lai and Wei (1986 a). The earlier work (Moore 1982) is non-trivially generalized to 
cope with multivariable signal models. Convergence rates are guaranteed without 
imposition of a positive-real condition on the coloured noise model. 

Received 18 September 1987. 
t Department of Systems Engineering, Research School of Physical Sciences, Australian 

National University, G.P.O. Box 4, Canberra, A.C.T., 2601, Australia. 
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2. Algorithm description and main results 
2.1. Stochustic model 

Consider the following m-dimensional linear regression model: 

where y(r),  x ( t )  and ~ ( t )  are the m-, p- and m-dimensional observation vector, 
regression vector and modelling error, respectively, and where 0 ,  is the m x p 
unknown parameter matrix. 

Assume that the system noise ~ ( t )  is a moving average (MA) process 

with unknown matrix coefficients Ci ,  I Q i Q r, where the driven noise { w ( t ) }  is 
assumed to be a gaussian white noise sequence with 

Let us denote all the unknown parameters by 

2.2. Introduced noise 
To dominate unmodelled dynamics and/or noise that is highly coloured, consider 

the introduction of a gaussian white noise sequence { v ( t ) }  that is independent of { w ( r ) }  
with properties 

Eu(t) = 0, Eu(t)ur(t) = a: I , ,  a: > 0 ( 2 . 5 )  

The 'pre-whitening' idea proposed by Moore (1982) is to formulate the predictor in 
the identification algorithm by using the following 'pre-whitened' process 

together with the output sequence { y ( t ) } ,  

2.3. Prediction error algorithm 
Consider the prediction error algorithm processing (2 .6 )  

Estimates of the covariance of prediction errors are given by the following residual 
statistics 

the terms of which have convenient recursive forms. Notice that when the introduced 
noise v( t )  in ( 2 . 6 )  is set to zero, so that z ( t )  = y(t) ,  then (2 .9 )  reduces to the more 
'standard' regression vector. 



M~tltidin~ensionul linear regression models 963 

2.4. Theorems 
Let us denote I.,,,(X)[i.,,,(X)] as the minimum [maximum] eigenvalue of a 

matrix X and llXll = [i.,,,(XX*)]llZ its norm, where X* is the transpose complex 
conjugate of X. Let us also denote ((1) = ~ ( t )  + ~ ( t )  and set 

Assume that the regression vector sequence {x(t), F , - , }  is any adapted random 
sequence where 

with {G,'} being any family of non-decreasing a-algebras such that G: is independent 
of GP+, for any t 3 0. 

Theorem 2.1 
For the system and algorithm described by (2.1)-(2.10), if in the pre-whitening of 

(2.5), (2.6), u t  is chosen to satisfy 

then the following convergence rates hold 

(ii) I I R + ( ~ )  - R* 1 1  = 0 , a s .  t -+ as (2.13) 

Here 

Q= [O, Dl ... D,]' (2.14) 

and [Di, 1 < i < r, R,} satisfies 

D(z)R,Dr(z-I) = C(z)R,Cr(z-I) +a:/ (2.15) 

with 

c ( z ) A / + c , z +  ... +C,zr (2.16) 

D ( z ) ~  I + D , z +  ... +D,zr (2.17) 

Here also, i.,,,(t)[i.,,,(t)] denotes the maximum [minimum] eigenvalues of 

Theorem 2.2 
Consider that the conditions of Theorem 1.1 apply and 

l ~ g i . ~ , , ( t ) = o [ i . ~ ~ , ( r ) ] ,  a.s. t + a s  

Then 
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and 

Here, R ~ , , ( t ) [ l ~ i , ( t ) ]  denotes the maximum [minimum] eigenvalue of 

with 

and [GI(/), F , }  is a gaussian martingale difference sequence with 
EG(t)Gr(t) e R U  

and satisfies, under (2.16) 

C(z)w(t) + u( t )  = D(z)G(f) + 0 (exp (-at)) ,  for some a > 0 

Remcirk I 
The classical linear regression model considered in mathematical statistics is a 

specialization of(2.1) with the so-called 'design vector' x(t) deterministic and with the 
noise ~ ( t )  white. Obviously the stochastic model (2.1), (2.2) considered in this paper is 
a more general one, namely, we allow the regression vector x(t) to be a class of random 
vectors and the modelling error 41) to be correlated. However, the restriction that 
x ( t )  E F,-  I is essential to the convergence analysis excludes the specialization of (2.1), 
(2.2) to general ARMAX models-a crucial point not observed by Moore (1982). 

Remctrk 2 
For the case when the added noise v(t) in (2.6) is zero, then the condition (2.1 1)  is 

usually replaced by a positive-real condition on the noise model (even for the case 
where one is only interested in identifying 8,). In particular it is required that 

[C- '(z) -+I]  is strictly positive-real (2.23) 

(This condition is equivalent to [C(z) - I ]  is strictly bounded-real. To  see the 
equivalence, recall that X(z) is bounded-real if and only if Z(z) = [I -X(z)] 
[I + X(z)]-' is positive-real.) It is the addition of sufficient noise into the algorithm 
that obviates the need for such a condition in Theorem 2.2. In identifying (2.1) with 
C(z) unknown, (2.23) cannot be checked a priori. In contrast, the condition (2.1 1 )  can 
be satisfied ci priori with only a limited knowledge of the 'unknown' process, namely 
some upper bound on IIR,J and IIICl, ..., C,]I1. In the scalar variable case, an upper 
bound on the term ll[C,, ..., C,]11 is numerically readily obtained since, without loss 
of generality, C(z) can be minimum phase. In this case, it is readily shown (see the 
Appendix) that 

Remcrrk 3 
Estimates e ( t )  and ~ , ( t )  converging at the rates above to C(z) and R ,  can be 

determined from estimates D(/), k , ( t )  by an on-line spectral factorization correspond- 
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ing to the om-line version (2.15). Details are given by G u o  and Moore (1987). Of 
course, it is immediate that C(z) and R ,  can be uniquely determined from D(z) and R ,  
via (2.15) to within an all-pass factor. Without loss of generality we can take C(z) 
minimum phase. In this case C(z) is uniquely determined from D(z), R,. 

Remark 4 
The convergence rates of the estimates d(t) are virtually the same as that given in 

earlier theory for multivariable A R M A X  models with v(t) zero and (2.23) holding 
(Chen and G u o  1986). Of course, the covariance of the different error terms is 
inevitably higher because of the added noise, but this need not be the case with the 
additional processing proposed by Moore (1982). 

Remark 5 
The requirement that ~ ( r ) ,  v ( r )  be gaussian is a technical one required by the 

particular martingale convergence theorem employed in subsequent analysis. I t  
appears that by defining martingales in terms of orthogonal projections rather than in 
terms of conditional expectations could relax this requirement. Details are not 
explored here. Certainly simulations suggest that the gaussian assumption is overly 
strong. 

3. Preliminary theory 
Let {z(t), F , }  and { $ ( I ) .  F , )  be two sequences of adapted random vectors (not 

necessarily defined by (2.6) and (2.9)). Consider the following general prediction error 
algorithm based on a predictor i ( t ,  0) 4 i{t, 0, [z(O), ..., z(t - 1)]} E F , - ,  

Set 

u(t) [ I  + $=(l)P(t - l)$(t)]- 

where 41) 4 0 - d(t) and 0 is an arbitrary matrix of appropriate dimensions 

Lemma 3.1 
Suppose that the adapted sequence {z(r), F,} satisfies 

for some 2 2. Then, for any 0 and any a > 0, the estimate d(t) given by (3.1) satisfies 
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the rollowing relation 

where 1 .,,, ( r )  = j .,,,, [ P -  ( t ) ]  and S,(O, a) is defined in (3.4), and where 4.u)  4 0 for 
s > 0 and S ( s )  6 I for .Y = 0 .  

Proof 

See the Appendix. 

The proof techniques follow closely those of Chen and Guo  (1986),  but the result is 
in fact more general than theirs. Here (3.1) is a more general prediction error scheme 
than that of Chen and G u o  (1986),  which is an extended least-squares scheme with 
z[r + I ,  6(0] = @(r)$(r) .  

Len~mct 3.2 
Consider that the conditions of Lemma 3.1 apply. Consider also that at some 

point 0, E[z(r + 1 )  1 F,] can be expressed by 

E[z(r + I )  IF,]  = i [ t  + I ,  d ( t ) ]  + O'(r)$(t)  + [ H ( z )  - l ] e ' ( r  + I )$( t )  + 6 ( t )  (3.7) 

where 41) = 0 - d(r) ,  and S(r) is an F,-measurable random vector. Then, if the transfer 
matrix H ( z )  - [(I  + a0) /2]1 ,  a ,  > 1 ,  is positive-real, then the following expansion 
holds r ,  1 

for any a E (0, a o ) .  

Proof 
By (A I )  and (A 4 )  in the Appendix and (3.7) we see that 5( t  + I )  defined by (3.3) 

can be rewritten as 

( ( t  + I )  =o ( t ) { e ( r  + I )  + ~ [ z ( t  + I ) ~ F , ]  - i ( r  + I ,  4 t ) }  - e ( t  + I )  

= o(r ){e( t  + I )  + B'(t)$(t)  + [ H ( z )  - l ] O ' ( t  + I )$( t )  + 6 ( r ) }  - e( t  + 1 )  

= a(r ){e( t  + 1 )  + [O't + 1) + P(r - l )$ ( t ) [< ' ( t  + I )  + er(r + I ) ] l r $ ( t )  

+ [ H ( z )  - l]B'(r + I ) $ ( [ )  + a ( [ ) }  - e ( t  + 1 )  

= u ( t ) { [ I  + $ ' ( t )P( t  - l ) $ ( t ) l e ( r  + 1 )  + ( ( t  + I )$ ' ( t )P( t  - I ) $ ( t )  

+ H(z)O'( t  + ] ) $ ( I )  + S ( t ) }  - e(t + 1 )  
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From here we immediately obtain 

Since H(z )  - [(I + a0) /2 ] I  is positive-real, there exists constants K O  so that for all 
a E ( 0 ,  a , ) ,  from (3.4)  and (3.10) 

By the elementary inequality 

Finally, by (3.1 1). (3.12) and Lemma 3.1, it follows that for any a E ( 0 ,  a , )  

and then the conclusions of the lemma follow immediately. 
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Remark 7 
In Lemmas 3.1 and 3.2, no models are pre-postulated for {z(t), F,} and so the 

process {z(t)} can be generated from an A R M A X  model, since the restriction 
~ ( r )  E F,-l of Theorems 2.1 and 2.2 is not imposed here. When {z(r), F,} with F, = 

u{zi, i <  t} is generated from an A R M A X  model and 6(t) is given by the standard 
extended least-squares algorithm, the process {6(t)} appearing in Lemma 3.2 is zero. 
However, when there are unmodelled dynamics and time variations of the coefficients, 
then {6(t)} is no longer zero (Chen and G u o  1987 a). Lemma 3.2 provides a unified 
approach to the convergence/robustness analysis of general prediction error algor- 
ithms such as pseudo-linear regression with or without filtering (Goodwin and Sin 
1984). It is worth noting that the robustness properties of the algorithm are closely 
related to the passivity margin of the transfer function concerned (see (3.8)). Other 
applications of Lemma 3.2 will be noted elsewhere. 

Lemmu 3.3 
Let C(z) be defined as in (2.16), and {w(t)} and {v(t)} be defined as in (2.3) and 

(2.5), then there exists a gaussian martingale difference sequence {G(t), GP} with 
EG(c)Gr(r) * R G ,  exponentially fast 

and a matrix polynomial D(z) 

such that 

where ~ ( 1 )  is GP-, measurable and exponentially tending to zero as t + a. Moreover, 
for any a, E [0, I ) ,  if 

then 

and set 

A =  

is positive-real. 

Pro01 
Define [(t) as  in 5 2.4 

, H = [ I ,  0 ... 01 (3.18) 
--7---' 

m x ( r + l l  
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then [ ( t )  can be expressed by 

x*(t + 1 )  = Ax*( [ )  + Cw(t  + I), ( ( t )  = Hx*( t )  + o(r) 

According to the Kalman filtering theory [ ( t )  can be generated by the following 
innovation model (Anderson and Moore 1979) 

a*(t + 1 )  = ~ . i -* ( t )  + ~ ( t ) w ( t ) ,  [ ( t )  = ~ a * ( t )  + w(t )  (3 .19)  

where P(t) is the estimator for x ( t )  and K ( t )  is the filter gain given by 

and where the innovation process {G( t ) ,  Gp} is a gaussian martingale difference 
sequence with 

EG(r)wr(t)  = HP( t )Hr  + a: I ,  (3.22) 

By (3.17) and (3.19) we see that 

C(z )w( t )  + ~ ( t )  = H(1-  A z ) - ' K ( t ) G ( t  - 1 )  + G(t)  (3.23) 

Note that (3.19) is asymptotically stable, and hence (Anderson and Moore 1979, 
Goodwin and Sin 1984) 

P(t)  -+ P, K ( t )  -+ K ,  exponentially fast (3.24) 

where P and K are defined by 

P =  A P A r -  APH' (HPHr+ a t ) - ' H P A 1 +  CR,,Cr (3.25) 

K = A P H ' ( H P H ~  + u:) - (3.26) 

Since E+(t )wr( t )  + H P H r  + u:I,, by the Borel-Cantelli Lemma i t  is easy to see 
that 

q( t )  A H ( 1 -  Az ) - '  [ K ( t )  - K]G( t  - 1)&0, a s .  exponentially fast (3.27) 

Thus, by (3.25) and (3.27) we have 

C(z )w( t )  + ~ ( t )  = [H( I  - A z ) - '  K z  + I]G(r) + q( t )  (3.28) 

We write K as 

K = [ K ;  ... K:+, l r  

from (3.18) and (3.26) it can be seen that K,, , = 0. 
Set 

D ( z ) = I + K l z +  ... +K,z' (3.29) 

Then by (3.18) i t  can be verified that 

D(z)  = [ H ( I  - A z )  - ' K z  + I ]  

Therefore, by (3.28), we see that (3.14) is proved. We now proceed to prove (3.16). 
By (3.14) it is easy to see that 
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By ( 3 . 2 5 )  and (3 .26)  it is not difficult to see that 

P = [ A -  K H I P C A -  K H I ' +  K U ; K ' +  CR,C' 

From this and (3 .22) ,  we immediately obtain 

R, ,=  H P H ' + u , f I m ~ H C R , C r H r + u ~ l m = R , + u ~ I m  (3131) 

Consequently, by ( 3 . 3 0 )  and ( 3 . 3 1 )  we have 

i C i R , . C i =  i D i R , D ; +  R , -  R ,  -u , f I  2 i DiR,D:  
i =  1 i =  1 i =  1 

From here i t  rollows that 

- - I R w , I I  l l [Cl  ... Cr]1I2 
L i " ( R , )  + 0: 

and therefore, by ( 3 . 3 2 )  and (3 .15)  we see that 

I t  is easy to see that 

IID, exp (ie) + D, exp ( 2 i 0 )  + ... + D, exp (irO)I12 

[exp ( - i B ) I m  ... exp ( - i r O ) I m ]  

exp ( i r e ) / ,  

["]I (:'m ] - i 0 ) / , , ,  ... exp ( - 

0: exp (irO)I,  

exp ( i 0 ) I m  

exp ( i r e ) I ,  
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From here and (3.33) we immediately have 

I -a, 
Ill < - 

I + a ,  

By (3.34) it follows that for any O E [0, 2x1 

IIao[Dr (exp (-i0)) - I ]  + a,[D (exp ( 8 )  - I)] 

+ ( I  + a,) [D exp (iO) - I ]  [D' exp ( - iu) - 1111 

Consequently, for any 0 E [0, 2x1 

Dr (exp ( - iB)) + D (exp (i@) - ( 1 + a,)D (exp (iB))Dr (exp ( - iB)) 

= (1 - a,)/ - {u,[D' (exp (-iO)) - I] + a,[D (exp (iO)) - I ]  

+ ( I  + a,) [D (exp ( 8 ) )  - I]  [D' (exp ( - i0)) - I ] )  2 0 

Finally, we obtain 

= D- (exp (iO)) [D' (exp ( - iO)) + D (exp (iO)) - (1 + a,) D (exp (iO))Dr (exp ( - iO))] 

x D-I (exp (-iB)) 

> 0, V 0 E [O,2x] 

This proves the positive-realness of D-'(I)  - [(I + a,)/2]1, and the proof of Lemma 
3.3 is complete. 

Remark 8 
The lower bound of at can be improved using the following result (Anderson and 

Moore 1979). With initial condition P(0) = 0 in (3.21), P(r) increases monotonically 
(exponentially fast) to P. Thus, the inequality H P H r >  HP(I)Hr = HCRwCrH'= R,, 
which is the essence of (3.31), can be strengthened as  

and likewise as HPHr  2 HP(t)Hr for higher r .  Since convergence of P(t) is exponen- 
tially fast to P, with a time constant linked to that of the Kalman filter, there are 
diminishing returns from taking t larger than (say) the dominant time constant of the 
Kalman filter. We do  not explore this aspect of the results further here. 

Remark 9 
With appropriate initial conditions in the signal model and Kalman filter, q(r) can 

be taken as zero. The term is left in our analysis to indicate a certain robustness in the 
noise modelling. The term q(r) in (3.14) needs only to be square-summable for the 
proofs of Theorems 2.1 and 2.2 to apply. 
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Remcrrk 10 
GP defined in 9: 2.4 can be expressed by 

GP = u{G(i ) ,  i  ,< r }  

because { G ( i ) }  is the innovation sequence. Further, since {G( t ) ,  GP} is a gaussian 
martingale difference sequence, it then follows that {G( t ) }  is an independent sequence. 
Since G(t + 1 )  E GP+, and GP+, is independent of G:, it is clear that 

E[G(t + 1 )  IF,] = E[B(t  + 1 )  1 o{GP u G: } I  = E[G(t  + 1 )  1 GP] 

This means that {G(t ) ,  F , }  is also a martingale difference sequence. All of these facts 
will be used in the sequel without explanations. 

4. Proofs of theorems 
Proof of Theorem 2. I .  Part ( i )  

Here, we prove the first conclusion oTTheorem 2.1; the proof ror Part (ii) is given in 
the Appendix. T o  prove (2.12), we need to veriry the conditions of Lemma 3.2. 

Note that in the present case 

so, by Lemma 3.3 we can rewrite (2.1) in the rollowing form 

and so by (4.2) i t  follows that 

= sup E[ll@(t)l13 < co (4.3) 
I 

since { G ( t ) }  is gaussian random sequence with uniformly bounded covariance (see 
(3.22)). 

By (4.2) we have the following expansion for E[z(r + 1 )  1 F,] at point 

E[z(r + I )  IF,] = O,x(r + 1 )  + [D(z)  - I]G(r + 1 )  + ~ ( t  + 1 )  

= U'$(r) + [D(z)  - I I [G( t  + I )  - z ( t  + I )  + 6 y t  + l ) $ ( t ) ]  + ~ ( t  + I )  

=U '$ ( t )  + [ D ( z ) - / I D - ' ( 2 )  

x {D(z ) [G( t  + I )  - z(t + 1 )  +6"t + l ) $ ( t ) ] }  + ~ ( t  + 1 )  

= U'$( t )  + [ I  - D - ' ( z ) ]  

x { ~ ( t  + I )  - oox( t  + I )  - ~ ( t  + I )  - D ( z ) [ z ( ~  + I )  - 6 y t  + i ) $ ( t ) ] )  

+ V(t  + 1 )  
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and hence by Lemma 3.3 we know that 

is positive-real, so by (4 .3 ) - (4 .5 )  we know that Lemma 3.2 is applicable, and we then 
have for 0 < a < a ,  

sincc q ( t ) - r O  is exponentially fast. This proves the first conclusion of Theorem 2.1. 

Proof of Theorem 2.2 
Set 

( (1 )  = ~ ( t )  - Br(t)*(t - 1 )  - ~ ( t )  ( 4 . 6 )  

@ ( t )  = [O t r ( t )  ... ('(1 - r  + I)]' (4 .7)  

By a similar argument as used in the proof of (4 .4 )  we know that 

Since D ( z )  is strictly positive-real it must be stable, by (4 .4 ) ,  (4 .7 )  and (4 .8 )  and Lemma 
3.2, we have 

(4 .9)  

Note that 

$ ( t )  = $O(t) + $? t )  (4 .10)  

and hence by use of (4 .9 )  and (4 .10)  similar to the proof of Theorem 2 of Chen and 
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Guo  (1986: p. 1465) we know that 

This result together with Theorem 2.1 yields the desired results immediately and 
Theorem 2.2 is now established. 

5. Conclusions 
This paper has shown that modifying standard ELS algorithms for linear 

regression model identification can obviate the need for a positive-real condition on 
the coloured noise model. Estimates of the regression part parameter matrix 8, in (2.1) 
and those of the modified noise model Di are achieved without any compromise on 
convergence rates. The recovery of the original noise model parameters Ci by an on- 
line spectral factorization is studied in a companion paper (Guo  and Moore 1987). A 
method to remove an estimator error variance increase by additional processing is 
currently under study. The methods and theory of the paper fall short of giving precise 
results for avoiding the positive-real condition for general ARMAX models. 

Appendix 

Proof of bound (2.24) 
With 

in the scalar case, the minimum phase condition is that lail < 1 for all i .  Denoting the 
binomial coefficients (I) as 

comparing the coefficients of zi in the above identity and noting lail < 1 ,  we know that 

Consequently, i t  follows that 

but by comparing the coefficients of z' in the following identity 

( 1  + z)'(I + z)'= ( 1  + z ) ~ '  

i t  is easy to know 
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and hence 

1 +  x C z < ( 2 r ) ! ( r ! ) - 2  
i= 1 

which is tantamount to (2.24) 

'Remark A. 1 

The bound (2.24) is sharp for all r .  

Remark A.2 
A similar bound is not available for the multidimensional case, unless extra 

conditions in addition to the minimum phase assumption on C(z) are imposed. 

we see that {e(t ) ,  F , }  is a martingale difference sequence, and satisfies 

sup E[ l l e ( t ) l lP IF l - l I  < co, a.s. 8 > 2 
t 3 0  

( A  2 )  

By (3.1 b) and (3.2) it is easy to see that 

P(t )$( t )  = CP(t - 1) - a(t)P(t  - l )$ ( t )$ ' ( t )P( t  - l ) l $ ( t )  

= a(t)P(t  - l ) $ ( t )  ( A  3) 
and then by (3.3) and ( A  1 )  we know 

Therefore, we can rewrite (3.1 a)  as 

8(t+ 1 )  = @ t j  - ~ ( t  - l j l l / ( t : t [ tC( t  + 1 )  + er(t  + 111 ( A  4) 
with Rt )  = 8 - d(t), for any 0. 

From (3.1 b) it is known that 

, t > O  
i =  1 

( A  5) 

We now prove our results along the lines of the proof of Theorem 1 of Chen and 
G u o  (1986). By ( A  4)  and ( A  5 )  a similar treatment used as in the proof of (19) of Chen 
and Guo  (1986: p. 1462) leads to 
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Summing both sides of (A 6) and using (3.4) we obtain 

tr @(t + 1)P-'(t)O(t + I) < tr @ ( I ) P - ' ( o ) ~ ( I )  - 2S,(f3, a) 

- 2 er(i + l)@(i + l)+(i), V 8, V a > 0 
i =  I 

(A 7) 

We now estimate the last term on the right-hand side of (A 7). Since {e(t), F,} is a 
martingale difference sequence and satisfies (A 2), by Lemma 2 of Chen and Guo  
(1987 b), we know that for any F,-measurable matrix M(t) 

Set 

q(t) = E[z(t + 1) 1 F , ]  - i [ t  + 1,6(t)1 (A 9) 

Obviously, p(t) is F,-measurable, and by (A I), ( A  9) it follows from (3.1) that 

&I + 1) = &t) - P(t)$(t)[er(t + 1) + pr(t)] (A 10) 

for any 0. 
Then by using(A 8) and (A 10) similar to the proof of (22) of Chen and G u o  (1986: 

p. 1463), we have 

for any 17 > 0. 
However. by (A 3) and both (29) and (30) of Chen and Guo (1986: p. 1465) we 

know that 

Finally, putting (A 1 I) and (A 12) into (A 7) and taking p < t, we see that for any 
a > 0 and any 0 

and the desired result rollows from here immediately and therefore the proof of 
Lemma 3.1 is completed. 

ProoJ of Theorem 2.1 (ii) 
We now prove the second result (2.15) orTheorem 2.1. Multiplying P- ' ( r )  on both 

sides of (2.9) and using (A 5) we have 

p-'(t)O(t + I )  = [P- '(I)  - $(t)$r(t)]6(t) + $(t)zr(r + 1) 

= P- ' (1-  l)O(t) + $(t)zT(t + 1) 
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Consequently, from this and (4.2) and (4.10) we know 

I , 
- x $(I) [$<'(i)Q- qr(i + I ) ]  + 1 $(i)Wt(i + 1 )  

i =  1 i =  l 

and hence 

Again by (4.2) and (4.10) from (2.12) we know 

1 -  1 

+ 1 [B'$<(i) - W(i + 1) - q(i + I)] 
i = O  

x [B't+!d(i) - fi(i + 1) - q(i + I)]' 
a S,(t)  + S,(t) + s;(t) + S,(t) 

However, by the Schwarz inequality and (4.9) we obtain 
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and hence 

We need the following estimates for weighted-sum of martingale difference 
sequences (Lai and Wei 1986 b). Let {X,, F,} be an  adapted vector sequence and 
{el, F,} be martingale difference sequence with 

S U P  E[lle1112+d1F,-l] < CO, 8 1 0  
I 

Then. for E > 0 

Applying (A 15) and (A 16) to S , ( t )  and S,(r) defined in (A 14) and noting(A 13), it is 
not difficult to  show that 

S1(t) = orlog i .,,, ( t ) ] ,  a.s. (A 17) 

S2(t) = OClog i .,,, (t)], a.s. (A 18) 

By (4.9) and the inequality (A 8) we see that the last term in (A 14) can be estimated by 

By Lemma 3.3, {G(t), F,} is a gaussian martingale difference sequence and EG(t)Gr(t) 
+ R,(exponentially fast), and hence by the laws of the iterated logarithm (Stout 1974) 
it is not difficult to convince oneself that 

Finally, putting (A 17)-(A 20) into (A 14), the result (2.13), follows. 
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