
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, VOL. 3,  1-14 (1989) 

ADAPTIVE CONTROL FOR TIME-VARYING SYSTEMS: 
A COMBINATION OF MARTINGALE AND MARKOV CHAIN 

TECHNIQUES 

LEI GUO AND SEAN P. MEYN 
Department of Systems Engineering, RSPhysS. Australian National University, GPO Box 4. Canberra, 

ACT 2601, Australia 

SUMMARY 

Adaptive control problems of a first-order randomly time-varying stochastic system are considered. A 
class of adaptive controllers based on the Kalman filter is introduced and is analysed using a combination 
of martingale and Markov chain techniques. It is shown that both the expected value and sample path 
averages of the square of the output of the closed-loop system remain bounded and that the long-run cost 
is a continuous functional of the parameters of the controller and the distribution of the disturbance 
process. These results hold even when the Gaussian assumption used in previous papers is removed and 
the a priori estimate of the noise variance is incorrect. 
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1. INTRODUCTION 

The principal objective in adaptive control theory is to find controllers that perform 
satisfactorily for systems which possess time-varying and only partially known dynamics. 

There are few precise results for time-varying stochastic systems. In fact, the frequently used 
stochastic algorithms, e.g. stochastic gradient and least squares, can only be shown to be 
successful for some restricted classes of parameter variations. Specifically, it is required that 
the time-varying parameter is a constant plus a bounded martingale difference' or that the 
parameter varies in a small ball. * This is, as is well known, due to the fact that these algorithms, 
have the so-called long-memory property (i.e. the adaptation gain tends to zero). For systems 
which exhibit more complicated parameter variation, e.g. drifting parameters, it is believed that 
short-memory algorithms (i.e. algorithms with non-vanishing gain) will be more effective. 
However, the traditional analytical techniques break down since the system noise will have a 
more significant effect on the parameter estimates if such algorithms are used. Furthermore, 
stochastic Lyapunov techniques cannot be applied since none of the variables in the system or 
controller can be expected to converge in this case. 

To the best of our knowledge, the first rigorous analysis of a short-memory minimum- 
variance adaptive controller applied to a time-varying stochastic system appeared in the paper 
by Meyn and Caines3 where the ergodic theory of Markov chains is applied. In this paper it 
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is shown that assuming a state-space model for the parameter process and Gaussianity of the 
noise process the optimal control may be computed using the Kalman filter. Under the 
appropriate conditions the following limits are shown to exist for all initial conditions: 

s l N  lim E [ y & ]  = lim - y $  = y z  d r  
N - r w  N+W N k = i  

where r is an invariant probability on the state-space generating the output y .  In Solo4 it is 
shown that some of these results may also be established by applying standard limit theorems 
for martingales and utilizing the conditional Gaussian property of the output process. In both 
of the works of Meyn and Caines3 and Solo4 a Gaussianity assumption on the noise process 
is found to be crucial to the analysis. 

The main objective of this paper is to use a combination of martingale and Markov chain 
techniques to show that the adaptive control system considered in References 3 and 4 is robust 
with respect to noise. We show: 

that both the expected value and sample path averages of the square of the output of 
the closed-loop system remain bounded even when the distribution of the disturbance 
process is non-Gaussian and the a priori estimate of the noise variances used in the 
implementation of the algorithm is incorrect. 
that the long-run cost is a continuous functional of the controller parameters and the 
distribution of the disturbance process. Hence, if the disturbance is approximately 
Gaussian and the a priori estimate of its variance is approximately correct, then the 
control performance will be nearly optimal. 

2. PROBLEM STATEMENT 

The system analysed in References 3 and 4 is described by the following controlled time-varying 
AR(1) model: 

Yk+ I = ekyk + u k  + w k +  1 k 2 O  (1) 

e k + l = a e k +  e k + l  I @ I  (2) 

with unknown parameters generated from a stable Markov model 

We assume that the noise sequences ( e k j  and {wk) are mutually independent and also 
independent themselves, with zero mean, and satisfy 

s u p ~ [ I w ~ ) ~ + ~ * +  l e k 1 4 + 2 6 ~  < 00 (3) 

s u p ~ [ ) e k 1 ~ + * ]  < 1 (4) 

E I ~ , ,  14+2* c oo ( 5 )  

k 

k 

for some positive constant 6. The initial conditions are assumed to  satisfy 

Denote 

(6)  2 @;=sup El wk l 2  d = s u p  Elek/  
k k 

An immediate application of (3) and (4) yields 

& <  00 a:< 1 (7) 



ADAPTIVE CONTROL FOR TIME-VARYING SYSTEMS 3 

Let us now consider the following estimation algorithm (Kalman filter) for the unknown 
parameter 8 k :  

where 80 and PO > 0, ab > 0, (T? > 0 are deterministic constants and can be arbitrarily chosen 
(here of and a: may be regarded as a priori estimates of a t  and a: respectively). 

Our objective is to  minimize the variance of the output of the system, so we apply the 
‘certainty equivalent’ minimum-variance controller 

uk = - dkyk (10) 
It is known (e.g. References 4 and 5) that if the noise 1 wk, ekl is a Gaussian white noise 

sequence, and if a8 = a t  and 8: = a:, then with appropriately chosen initial conditions the 
estimate e k  generated by (8) and (9) is the best estimate for d k ,  and Pk is the estimation error 
covariance: 

.. 

e^k = E [  dk I * q k -  I ]  Pk=E[  (8k) ’ I  R k - l ]  (1 1) 

where . q k  is the a-algebra generated by [yo ,  y ~ ,  ..., y k )  and e k  is the estimation error 

#k = d k  - 8 k  (12) 

In this case the control law (10) minimizes the criterion E [  y $ +  I I R k ]  , and the stability of the 
system (1) with controller (10) applied has been thanks to the important property 
(11). 

generated by (8) and (9) 
may be far from optimal. Nevertheless, in this paper we will show that the control law (8)-(10) 
is still stabilizing and has other interesting properties. 

In the non-Gaussian case the propery (1 1) fails and the estimate 

3. ROBUST STABILITY 

Theorem I 

Then the closed-loop system is stable and 
Consider the time-varying system (1)-(5) with the control law defined by (8)-( 10) applied. 

Where 6 is as in (3)-(5) and M is a deterministic constant which can be chosen as 

(15) 
where by definition 
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Remarks 

(1) Theorem 1 can be easily generalized to more general control problems, e.g. adaptive 
tracking and adaptive pole assignment, by using techniques similar to those developed 
in this paper. 

(2) None of the signals in the closed-loop system can be expected to be stationary or ergodic 
because of the assumptions made on the noise process ( wn, u,)  . This is especially so when 
the adaptive tracking problem is concerned, where the reference signals are only assumed 
to be bounded and deterministic. 

(3) If the estimation algorithm (8), (9) (Kalman filter) is replaced by the short-memory 
gradient algorithm, results similar to Theorem 1 are still obtainable. 

The proof of Theorem 1 is separated into several lemmas. 

Lemma I 

Under the conditions of Theorem 1 and the denotation (12) 

sup E [  \ g k  1 4 + 2 8 ]  < 
! k 

4 

N-a ,  N k = i  

where 6, wW and We are given in (3) and (16). 

Proof. Let us first consider the upper and lower bounds for Pk. By (9) it follows that for 
any k 2 0 

Now by ( I )  and (10) the output may be expressed 

yk+ I = ekyk + wk+ I 

From this and (l), (8) and (10) we get 

+ ek+l - - (YgkU; QPkYkWk+ 1 

(Ti + Pkyf - (Ti + Pkyf 

Consequently, by applying the elementary inequality 

to the second term on the RHS of the above equality, it is seen that 
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With this together with (3), the fact that I a I c 1 and 

it is easy to convince oneself that (17) holds. 

that the series 
We now proceed to prove (18). By (3) and the martingale convergence theorem’ it is known 

m 

is convergent, and so by the Kronecker lemma 

This together with (16) gives 

Similarly 

From (23)-(26) it is not dimcult to see that 

To complete the proof of (18) we have to establish the upper bound. Applying the Minkowski 
inequality to (23) we see that 

Then noting (24)-(27) and taking ‘lim sup’ on both sides of the above inequality, we finally get 

which is tantamount to (18). This completes the proof. 0 

We remark that similar results for the matrix case have recently been established in 
Guo et al.’ 

Denote 

The importance of f k  will be seen in the forthcoming analysis. Let us establish some of its useful 
properties first. 
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Lemma 2 

properties: 
Under the conditions of Theorem 1 ,  the variable fk defined by (28) has the following 

6) sup E[]fkYk+l 1 2 + 6 ]  < CO 
k 

Proof. By (19), (20), (22) and (28) it follows that 

thus property (i) follows easily from (3), (29) and Lemma 1. To conclude (ii) we apply the 
Minkowski inequality to (29) to get 

It is easy to show that the last term tends to zero as N +  00. Consequently, by Lemma 1 and 
(2% 

Thus the proof of Lemma 2 is complete. 0 

We are now in a position to prove the first assertion of Theorem 1 .  
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Lemma 3 

Under the conditions of Theorem 1, 

where 6 is given as in (3)-(5). 

Proof. By (21) and (28) we know that 

g k + l = a f k +  e k + l  

so by (20) it follows that 

y k + l = e k Y k + a y k f k - l + W k + l  

Now let us denote the &-norm with p = 2 -t 6 for a random variable x as 

II xllLJ= (Elxlpl 
Then by (30) and the independence of ek and y k  we have 

11 Y k +  1 11 P < 11 ek 11 P 11 y k  11 P + I I (1 Y k f k -  1 I I P  + 11 W k +  1 11 P (3 1) 

Note that SUPk )I ek 11 < 1 by (4), hence by lemma 2(i) and (31) it is easy to get the desired result 

SUP 11 y k  I\ p < O0 
k 

Lemma 4 

Under the conditions of Theorem 1, 

a.s. 
l N  ~ i m s u p -  C y i , < ~ < m  

N - + -  N k = i  

where M is given by (15). 

Proof. The proof technique is similar to that of Reference 4. By (30) we have 

y i +  I = (El ek 1 ‘ ) y i  + (Cyykfk - I I 2  + d + I + g k  

g k  = (ef  - E 1 ek I )yf + 2 ( Uekfk -  Iy f + e k y k w k  + I + a y k f k -  I w k +  1 I 

(33) 
where 

(34) 
We note that { g k ,  g k )  forms a martingale difference sequence, with t e k  being the a-algebra 
generated by ( ei, Wi+ 1, i < k I .  

By (34) and the Schwarz inequality 

E I e k  f k -  l y t  I +(6/2) < E 1 ek 1 1+(6/2) ( E  I y k  I +(*I2) I ykfk-  I I 1+(6/2) I 
2 + 6  112 < ( E I y k l  2 + 6  1 1/2 (EIYkfk-11 

From this together with (34), (3) and Lemmas 2 and 3 it follows that 

sup E [  I g k  I 1+(6/2)] < 00 
k 

Therefore the series ZF= ( g k / k )  is convergent almost surely by the martingale convergence 
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theorem, ' and applying the Kronecker lemma yields 

Finally, summing both sides of (34) and noting (6), we obtain 

(36) 

The first term on the RHS converges to zero almost surely by Lemma 3 and the Borel-Cantelli 
lemma. Thus by (3), (6) ,  (35) and (36) it is easy to see that 

The desired upper bound M can be obtained by combining this will Lemma 2 (ii). This 
completes the proof of Lemma 4 and hence the proof of Theorem 1. 

4. ERGODICITY AND STRUCTURAL ROBUSTNESS 

We will now show that by strengthening the assumptions made on the disturbance process, the 
closed-loop system equations (1) and (8)-(10) give rise to a Markov chain CP satisfying every 
condition introduced in the Appendix. In particular, the state process CP satisfies condition GA, 
is stable in probability and, under the appropriate conditions on the disturbance process, is 
weakly stochastically controllable. These facts will be used to give a complete description of 
the asymptotic properties of the output process of the closed-loop system. 

We henceforth make the following additional assumption (A). 

(A) The disturbance process (wk, ek) is independent and identically distributed (i.i.d.) and 
the corresponding distributions pw and p ,  possess continuous densities which are positive 
at the origin. 

Under this condition the closed-loop system equations give rise to a Markov state process 

1 pk a: + CY'CTgpk- 1 ( p k -  I y f -  1 + @;)-I 

* k =  = [ a ~ k - l - ~ p & - l y k - l ( ~ k - ~ y k - ~ +  w & ) ( U i +  p&-lyi-l)-l+ e& (37) 
Sk-IYk-l+ Wk 

evolving on X = R+ x R x R which satisfies conditions Al-A4 of the Appendix. 
We are fortunate enough to have the following extremely useful result. 

Lemma 5 

Suppose that conditions (3), (4) and (A) are satisfied for the state process (37). Then: 

(0 
(ii) 
(iii) 

CP is weakly stochastically controllable. 
CP satisfies condition GA of the Appendix. 
For fixed a, 6, p E (0, l),  B > 0 and a compact set C contained in (0, m), the family of 
systems k: 1 t*+'ue(dt) < p ,  1 t4+*'[fie(dt) + pw(dt)] < B, ~ f ,  U: € 

is uniformaly stable in probability. 
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Proof. By Theorem A1 in the Appendix we know that for (i) it suffices to show that for some 
T > 1 and some sequence { (ei, Wi), 1 < i < TI the controllability matrix for this system is full 
rank. It is easy to verify' that in fact the second-order controllability matrix has the form 

L #  # o i J  
which is full rank whenever y1 =&yo + WI is non-zero. This shows that for each 
(P0,80,yo)cR+ x R 2  the matrix CZ is full rank for a.e. (Lebesgue) 
( (el, WI), (e2, W Z ) ]  E R 2  X R2,  and so by Theorem A1 the closed-loop system is weakly 
stochastically controllable. 

To see that 9 satisfies condition GA for w* = 0, observe that for any k E Z+ and X E  X the 
asymptotic behaviour of the state readout map S,"( .) evaluated at 0 may be analysed by 'turning 
off' the noise in equations (l), @)-(lo) yieIding 

lim s,"(o, ..., 0) = [u:/(l - crZ),0,01 
k + m  

Part (iii) of the lemma follows from the proofs of Theorem 1 
equation (19), which imply that for some MO = M o ( ~ ,  p,  6, B, x )  

lim sup E , [ I (  *pk < MO -= a0 
k + m  

for all X E  X and all realizations 9 satisfying the conditions of the 

and Lemma 1, and from 

(38) 

lemma. Since II . ( 1 2 + 6  is a 
moment on X, this implies that this collection of systems is uniformly stable in probability. 0 

Applying (38), Lemma 5 ,  Theorem A2 and its corollary yields: 

Theorem 2 

condition X E  X and any e > 0 
Suppose that conditions (3), (4) and (A) hold for the state process (37). Then for every initial 

lim Px(lypkJ > e l  = d ( y l  > e l  
k + m  

l N  lim E [ y & ]  = lim - y f  = y 2  d r  
N - + m  N - m  N k = l  

where y denotes the function y : X -+ R defined by y(x)  = (0, 0, l)x, xE X, and ?r is the unique 
invariant probability on .B (X ). 

We now consider a parametrized family of state processes ( 9' : 0 Q s 6 1 1. We assume that 
for each s E [ 0,1] the state process as is generated by the recursion (37) where the parameters 
a&) and a:@) and the distributions p& and p: depend on s, and all other parameters are fixed. 
We further assume that for fixed constants p E (0,l) and 6, B > 0 

J J 

for all sE [0,1]. It follows by Lemma 5 that the family of state processes ( 9': 0 f s < 1 is 
uniformly stable in probability. 
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Theorem 3 

Suppose that conditions (3), (4) and (A) hold for the parametrized family of state processes 
1 +' : 0 < s < 1 ) . Then if the parameters and distributions converge: 

b f ( s ) ,  &s)I y b f ( O ) ,  u:(0)1 

it follows that the invariant probabilities and long-run costs converge: 
weakly 

s - 0  
TITS - ?To 

P r $ I l ~ l  > € I  7 P ~ ( I Y I > E I  & > O  

Proof. The first and second limits follow directly from Theorem A3 and its corollary. The 
last limit follows from Theorem A3 and the fact that the invariant probability TO is absolutely 
continuous with respect to Lebesgue measure. 

Hence, for  example, i f  the disturbance processes are approximately Gaussian and the 
variance estimates a f and a: approximate a$ and a: respectively, then the control performance 
wilf be close to the optimal one. 

5 .  CONCLUSIONS 

In this paper, by using a combination of martingale and Markov chain techniques, we have 
shown that the first-order stochastic adaptive control system of Meyn and Caines3 is robust 
with respect to noise. The martingale techniques are used to establish the closed-loop stability, 
while the Markov chain techniques are used in the analysis of the performance. 

Martingale methods have previously been used extensively in stochastic control theory; 
typically the martingale convergence theorem in applied in order to prove the convergence of 
a stochastic Lyapunov function. As in Reference 4, this paper shows that martingales can be 
a useful tool even in problems where it is unrealistic to search for stochastic Lyapunov 
functions. 

The theory of Markov chains has received less attention in adaptive control theory, the 
principal reason being that in problems where a variable in a Markovianization of the input- 
state-output process converges almost surely (for instance, the variable rk in the stochastic 
gradient algorithm), the ergodic theory of Markov chains as it now stands can say very little. 
However, in situations where none of the variables converges, a noise controllability condition 
may often be established. In this case the stochastic stability theory presented in this paper 
may be applied to prove the existence of limits of loss functions on the state process for all 
initial conditions and to establish parameter robustness theorems for the state process. Since 
it has often been noted that it is undesirable to have vanishing gains in adaptive algorithms, 
this suggests that the theory of Markov chains may become a valuable tool in stochastic control 
theory. 
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We are presently attempting to generalize our results to more general cases. In the ARX(p, q )  
case the estimation algorithm derived from the Kaiman filter is extremely similar to the short- 
memory gradient algorithm and appears to have some very desirable properties that would 
make it a useful estimation algorithm in practice. However, since the stability of a time-varying 
ARMAX system controlled by a short-memory gradient-based adaptive algorithm has never 
been established, this appears to be a challenging problem. 

APPENDIX 

Here we review a general theory for Markovian systems of the form 

@ k + l = F ( * k , w k + I )  kEZ+ (40) 

where for all k ,  @k € X = an open subset of R", w k  € RP and F: X x R P  --, X is continuously differentiable 
( C ' ) .  It is assumed that the initial condition +O and the disturbance process w 4 [ w k )  satisfy: 

A l .  (+o, w) are random variables o n  the probability space (0, .9, P+,,). 
A2. CPo is independent of w. 
A3. w is an independent and identically distributed (i.i.d) process. 
A4. The distribution p, of W k ,  k €  Z+, possess a continuous density. 

When assumptions Al-A4 are satisfied, the recursion (40) gives rise to a Markov chain CP on X, and 
this fact enables us to exploit the many ergodic theorems available for this cfass of stochastic processes. 

Results obtainable from the ergodic theory of Markov chains 

We will now summarize some results from the stochastic stability theory of References 9 and 10. In 
these works it is shown that if (40) satisfies a weak form of stability, and a noise controllability condition 
holds, then the steady state behaviour of CP is determined by invariant probabilities on the state process. 

(a) Controllability 

Here we introduce a useful formulation of stochastic controllability. 
The state readout map S,k : RkP + X of the system (40) is defined inductively for k E Z + ,  x6 X and 

Z = ( Z i ,  . . . , f R k p  by 
s,k= F(S,k-'(zi, ..., Z k - i ) , Z k )  k 2 1 s,"= x 

The state readout map is so named because for all k E Z + ,  @k = S , k ( w l ,  ..., w k )  when %= x. 
Given two measures Y and p on &(X), we say that v is absolutely continuous with respect to p if 

v ( A ) = O  whenever p ( A ) = O .  We let Iap denote the measure defined for A,BE .&(X) by 
( I A P ) I B J  =&w. 

Definition. The system (40) is called weakly stochastically controllable if for each initial condition x €  X 
there exists T = T ( x )  6 Z+ and an open set 0, contained in X such that IoxpLeb is absolutely continuous 
with respect to P T ( x , . ) ,  where PT(x ,  .) is the measure on S ( X )  induced by CPT=S;(WI, ..., W T ) .  

For y E X and a sequence ( z k  : Zk E RP, k E Z +  J let [ A k ,  B k  : k E Z +  1 denote the matrices 

and let C," =C," (zi, ... , z k )  denote the generalized controllability matrix 

c," = [ A k  - i ... A i B o  I A k -  I ... A z B i  I . .. I A k  - I B k -  I I B k -  I 1 
We let 0, denote the open set 1 X E  RP: p w ( x )  > 0)  where p w ( x )  is the density of pw. The following 

result gives a necessary and sufficient condition for weak stochastic controllability in terms of the 
controllability matrix C,? which is analogous to the controllability condition used in linear system theory. 
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Theorem A I .  Suppose that (P is of the form (40) and that conditions Al-A4 hold. Then the system 
(40) is weakly stochastically controllable if and only if for all initial conditions y E X there exists T 2 1 
such that 

rank CJ(X) = n for some X E 0; 

(b) Stability 

Definition. The system (40) is called stable in probability if for each deterministic initial condition x 6 X 
and each E > 0 there exists a compact subset C contained in X such that 

lirn inf P x ( C P k  6 Cl 2 1 - E 
k - w  

We remark that if the state space is closed and for some p > 0 

lim sup Ex[  I CPk 1 < 00 for all initial conditions xE X 
k - m  

then CP is stable in probability. 
In most cases stochastic systems of the form (40) which are2table in probability exhibit the following 

related property. Given a system of the form (40) and a point w E Ow, we will call the deterministic system 

dk + I = F( d k ,  *), k E z + 

with initial condition do E X the freely evoling system. 

Definition. The system (40) satisfies condition GA if some d*< X is globally attracting for the freely 
evolving system. That is: 

Condition GA. For some fixed w* E 0, and d* C X, and each initial condition X E  X, 
* *  lim dk = lim s,k(w*, ..., w ) = d 

k - m  k - m  

Let C denote the set of bounded and continuous functions f :  X + R and let ,K denote the set of 
probabilities on B (X), the Borel field on X. A sequence ( p k  : k E Z+ in ,// converges weakly to pm € .At 
if 

lim 1 f dpk= S f  dpw 
k - m  

for all f E C ,  and this will be denoted 
weakly 

p k  p P- 

An alternative topology on ,N is defined by the total variation norm 

where the supremum is taken over all Borel functions f for which 1 f (x)I  < 1 for all x € X .  We say 
( p k  : k E Z+ ] converges in total variation norm to P- if it converges in this norm or, equivalently, 

lim sup IpkIA]  - ~ ~ m l A l  I = O  

Most of the important results concerning the asymptotic behaviour of Markov processes require the 
existence of an invariant probability (see e.g. References 11-13). If 7r is an invariant probability and (PO 
has distribution H, then (Pk - 7r for all k > 0, and in fact CP is a strictly stationary process in this case. 
This fact may used to establish the existence of the limit of sample path averages of functions of CP for 
a large class of initial conditions. " 

To establish ergodic theorems which hold for all initial conditions, stronger assumptions are needed. 
A Markov chain CP is said to be aperiodic and positive Harris recurrent10*'4 if a unique invariant 
probability ?r exists such that for every initial condition xEX,  and every positive Borel measurable 

k + m  A E d ( X )  



ADAPTIVE CONTROL FOR TIME-VARYING SYSTEMS 13 

function f: X -+ R, 

lim I pk - T I = 0 
k-- 

where p k  denotes the distribution of the random variable 9 k  at time k. 

aperiodic positive Harris recurrent Markov chain is simply called ergodic. 

condition introduced above. 

This differs considerably from the standard definition, but is in fact equivalent. In Reference 14 an 

The following result relates the notion of Harris recurrence with the stability and controllability 

Theorem A2. Suppose that conditions Al-A4 hold and that 9 is weakly stochastically controllable, 
stable in probability and condition GA holds. Then 9 is aperiodic and positive Harris recurrent. 

The following corollary follows easily: 

Corollary A2. Let y : X -+ R be Bore1 measurable and suppose that the Markov chain 9 satisfies the 
conditions of Theorem A2. Then for all initial conditions x €  X and all E 2 0 

lim PX(IykI > € I  = * ( l y l  > € I  
k-- 

If further for some 6 > o and X E  X, SUPk ~ , [ l y k  1 2 + * ]  < ~ ( x )  < 00 then 

lim E x [  yfh/] = 1 y 2  d?r Q M21c2+ ‘) < 00 
N-m 

where Yk is defined by Yk = Y(9k). 

(c) Structural robustness 

9’ is of the form (40) satisfying conditions Al-A4. 
Here we consider a parameterized family of systems 1 9’ : 0 < s < 1 1. For each s € [ 0, 1 ] we assume that 

Definition. A parametrized family of systems {a’ : 0 Q s < 1 I of the form (40) is called uniformly stable 
in probability if for each deterministic initial condition xe X and each E > 0 there exists a compact subset 
C contained in X such that 

lim inf P,( +.S; c C ]  2 1 - E for all 0 Q s Q 1 
k -- 

We remark that the uniformity refers to the parameter s and not the initial condition x.  This differs 
from the definition of uniform stability given in Reference 10. 

Theorem A3. Suppose that for each 0 < s Q 1 the Markov chain 9’ satisfies the conditions of Theorem 

(i) 
(ii) Fs + 

A2 and the following additional assumptions hold: 

[ W : 0 < s Q 1 ] is uniformly stable in probability. 
uniformly on compact sets in X x RP as s -+ 0. 

(iii) 

Then 
weakly 

T r  7 KO 
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Corollary A3. Let y : X --* R be continuous and suppose that the collection of Markov chains 9‘ satisfies 
the conditions of Theorem A3. Suppose further that for some E > 0 and initial condition xE X,  
~ ~ P ~ € z + , ~ € [ o , I l ~ x ~ l ~ ~ ~ p k ~ 1 2 + 6 1  < 00. Then 

lim 1 y 2  dr ,  = [ y 2  d m  < co 
s - 0  
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