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Example: Assume that e belongs to F = {O, I} and A" = [i, Ii I, A I 

= 
[ f 1\ ]' Take Bo = BI = I, then (A" Bi) are controllable, i = 0, I. 

Then Ko = [�o �o], ko E R is the general solution of A If Ko + KoAo = 
° and Ko has eigenvalues �I = ko, �2' = - ko, so that Ko is an indefinite 
matrix. 

Also KI = 1 31 �I], kl E R is the general solution of A[ KI + KIA I = 
° and KI has eigenvalues Al l = kl with multiplicity two, so that KI is 
positive or negative semidefinite for kl � ° or kl oS 0, respectively. 

The triples (A" Bi, C,), i = 0, I are minimal with C = F, = B; K, if 
and only if the pairs (Ao, Co) and (A I, Cl l  are observable. Since Ao and 
A I are nonsingular matrices we require that Ko and KI each be of rank 2. 
which is true iff ko '* ° and kl '* 0. 

The triples (Ao, Bo, Co) and (AI , BI, Cd are uniformly stabilizable 
with F = I iff Ao = Ao - BoFCo and A I = A I - B, FCI are stable. 

Now Ao = Ao - Ko = 1 _�() _ ;0] which has real eigenvalues located at 

±..JI + k�. 
Thus. the system is not uniformly nor adaptively stabilizable. 

We also note that A I = A I - KI = [_;1 �,I which has eigenvalues 
All = - kl + i and Al l = - kl - i so that KI stabilizes AI, if k, > 0. 

Take 7f1 (0) = I, so that the problem becomes a standard LQG 
problem. 

Now, since KI stabilizes A I, we obtain 

JU(xo)=inf(x�Klxo+trBKI)' KI = diag {k,l 
'I 

s.t. kl > ° which does not have a unique positive definite "minimizing" 
solution. 

CONCLUSIONS 

It has been shown that the continuous-time version of the DUl 
controller is optimal for a cost functional that includes a quadratic term 
and a nonquadratic term referred to as the' 'dual or learning cost. " Since 
the DUL controller is a "passively learning" controller it becomes clear 
that there must be a probing effect induced by the original quadratic cost 

functional that is removed by subtracting the "dual cost." We conclude 
that no extra terms need to be added to the cost functional for active 
probing of the system if a "standard" quadratic cost functional is used. 

The dual cost has been defined in [41. A general theory for discrete
time problems will be given in a companion paper which will appear at a 
later time. 
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Least-Squares Identification for ARMAX Models 

without the Positive Real Condition 
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Abstract-The main purpose of this note is to study recursive 

identification problems of linear stochastic feedback control systems 

described by ARMAX models, without imposing the strictly positive real 
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(SPR) condition on the noise model. The key ingredient in the present 

method is the introduction of increasing lag regressors to formulate the 

least-squares estimates for the noise process, while the main techniques in 

the convergence analysis are limit theorems for double array martingales. 

I. INTRODUCTION 

Let us consider the following linear stochastic control systems 
described by the ARMAX model: 

A (Z)Yn = B(z)un + C(z)wn, n�O (I) 

where Yn, un, and Wn are the m-, 1-, and m-dimensional system output, 
input, and noise sequences, respectively, A(z), B(z), and C (z) are 
matrix polynomials in backwards-shift operator z: 

(2) 

(3) 

C(z)=I+C,z+'" , .. +C,z', r�O (4) 

with unknown coefficients Ai, 81, Ck (i = I," 'p, j = I,'" q, k = 
I, , . r), and known upper bounds p, q, and r for the true orders. Let us 
organize the unknown coefficients into a parameter e 

e= r -A, ... -Ap, B, ... Bq, C, . . . C,],. (5) 

We assume that the innovation process {wn} is a martingale difference 
sequence with respect to a family {Fn} of nondecreasing a-algebras, and 
that the input Un is any Fn-measurable vector for n � 0, i.e., 

£[w" -,lFn] =0, un E Fn, Vn'2:0. (6) 

Thus, the input sequence may include any feedback control signal. 
Furthermore, we assume that 

a.s. , (7) 

II Wn II = O(d(n)), a.s .. (8) 

where {den)} is a positive nondecreasing deterministic sequence. Here 
and thereafter the norm for a real matrix X is defined as II X II = {Amox 
(X X')} "', and the maximum[minimum] eigenvalue of a square matrix X 
is denoted by Am", (X HAmm (X )]. 

Note that (7) implies that II wn II = Orn e) a.S. vc > 114, by the 
conditional Borel-Cantelli lemma [I]. Better bounds are also obtainable if 
there are further assumptions, for example, II Wn II = O( {log n} 1/2) when 
{wn} is Gaussian and white. 

Since {wn} is the innovation sequence, it is natural to assume that the 
noise model C(z) is stable (e.g., [2]), i.e., 

Vz: Izl :0:1, (9) 

however. further a priori information on C(z) is generally unavailable 
[3]. 

Estimation and its related adaptive control problems for system (I) have 
been extensively studied over the last decade in the engineering literature. 
Many identitication algorithms have been proposed and analyzed (e.g., 
[2], [4], [5]). However, most of the existing recursive identification and 
adaptive control algorithms need the noise model to be strictly positive 
real (SPR) in the convergence analysis. Specifically, for the standard 
extended least-squares (ElS) algorithm. it is required that 

C -'(e") + C-'(e") - I> 0, vA. E [0, 27r], (i'= -1). 

This condition is obviously not verifiable a priori. and necessarily implies 
that IlfC,···C,II<J. Hence, it is a much stronger condition than (9). 
Qualitatively, it means that the noise process C(z)wn is not "too 
colored. " 

It is also known that if the SPR condition fails, counterexamples can be 
constructed such that the ELS algorithm does not converge [6]. 
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Several attempts have been taken to relax the SPR condition in adaptive 
estimation and control. It has been suggested in [7J that in the scalar case, 
if there is a known polynomial D(z) such that D(z)C-I(Z) - 112 is SPR, 
then by modifying the ELS algorithm (incorporating prefiltering), strong 
consistency of parameter estimates can be guaranteed (e.g., [2], [7]), 
Unfortunately, the prefilter D(z) is generally unavailable. Another 
interesting idea used in [3J is to guarantee the noise model SPR condition 
by overparametrization, or to suitably increase the lag of the regression 
vectors. However, this method needs a priori knowledge for the stability 
margin of the C(z) polynomial and may not give consistent parameter 
estimates, as is mentioned by the authors [3J, A further attempt was made 
in [8] where the "pre-whitening" idea was proposed, This idea is to add a 
white noise sequence to the output data in the implementation of the usual 
estimation algorithms in order to estimate the unknown parameters Ai and 
Bj, while the noise parameters Ck are estimated by a parallel algorithm 
involving on-line spectral factorization. This approach applies to a special 
class of linear regression models [9J, but fails for general ARMAX 
models as recognized in [9J, 

Similar estimation problems have also received extensive attention in a 
related area of time series analysis. The main interest, however, is in 
open-loop identification of stationary processes, since it is usually 
assumed that either the system is subjected to no control actions, e.g., the 
standard ARMA models [10 ]-[12], or the input sequence {un} is 
stationary and independent of the noise process {wn} (e,g., [13]-[15]). 
This latter restriction excludes the application of the results in [13J-[15] to 
general feedback control systems. This is because any real feedback 
controller depends essentially on the system output and hence the system 
noise, and in general is nonstationary. Anyway, in the following we will 
see that some of the techniques in this area do turn out to be helpful in 
solving our present problems. 

In this note, we present an identification scheme for system (I) without 
imposing the traditionally used noise model SPR condition for its 
convergence. This scheme consists of two steps. In the first step, 
estimates for the noise process are formed by using increasing lag least 
squares. The parameter estimates for (j are then formed in the second step 
by using an ELS algorithm with regressors formed by using the noise 
estimates of the first step. This algorithm is similar to those used in time 
series analysis (e.g. , [12]-[14]). The convergence analysis here, how
ever, turns out to be completely different from those in [12]-[14J due to 
the nonstationarity and dependency of the system signals {Yn> Un, wn} in 
the present case. In fact, the recently established limit theorems for 
double array martingales in [16] are the crucial analytical tools in this 
note. 

The note is organized as follows. In Section II we describe the 
estimation algorithm and state the main results. The convergence analysis 
is given in Section III, and finally, Section IV concludes the note with 
some remarks. 

II. MAIN RESULTS 

Algorithm Description: Note that our objective here is, at any time n, 
to give an estimate Ii(n) for the unknown parameter (j based on the 
observation data { y" Ui_l, 0 ::s i ::s n} only. 

Let { Pn} be a sequence of positive integers such that I ::s Pn ::s Pn + I 
::s ' " and Pn = o(n). The estimation algorithm is divided into the 
following two steps. 

Step 1: For any n > 0, let us define the following regressors: 

O::si::sn-I (10) 

so that we can use the least-squares method to obtain the estimates { wj(n), 
o ::s i ::s n - I} for the noise process { Wi, 0 ::s i ::s n - I} as follows: 

lV,(n) = y, - &:(n )Vi,-,(n), O:5i:5n-l, (11) 

&;" (n) = &:(n) + b,(n )P,(n )Vi,(n )[y,+ , - 1i-;(n)&,(n)J, O::Si:5n-l, 

(2) 
P,+ I(n) = P,(n) - bi(n)P,(n)Ii-,(n)Ii-:(n)P,(n), 

Step 2: The estimate Ii(n) for the parameter (j at time n is then obtained 
by an extended least-squares method with regressors formed by using the 
noise estimates obtained above 

O::si:5n-1. (15) 

Remark 1: Neither of the two steps in the above algorithm are 
surprising. The first step corresponds to the estimation problems of the 
equivalent model C-I(z)A(z)Yn = C-I(z)B(z)un + Wn, while the 
second step corresponds to the standard ELS method. The use of 
increasing lag least squares as in Step I was first suggested by Durbin 
[17J. However, rigorous theoretical results for even the stationary case 
have become available only in recent years (e.g., [12]-[ 15 ]). Of course, 
more complicated algorithms similar to the Hannan-Rissanen method 
[12] or that in [13] involving on-line order determination can also be 
considered. In this case, the computations will become more complicated. 

Remark 2: In [18] we also used the idea of a "two step" algorithm. 
The second step is similar. However, in the first step an enlarged lag ELS 
is used instead of an increasing lag least squares as here. Of course, if we 
know a priori the stability margin of C (z), then there may be no need to 
introduce increasing lag regressors as in Step I. In fact, in this case, by 
the overparametrization method in [3], we may first choose a suitably 
overparametrized system with an SPR noise model, and then use the 
standard ELS method to form the noise estimates. So, in this case, Step I 
can be replaced by a suitably large but fixed lag ELS algorithm. The key 
idea behind this is that although overparametrization may not give 
consistent parameter estimates, it does give good noise estimates (see [18J 
or [20 J eq. (29) and (31), for example). 

The following main results of the note will be proven in Section III. 
Theorem 1: Consider the system described by (1)-(9) and the "two 

step" least-squares algorithm defined by (10)-(15). Then as n � co, the 
estimation error satisfies 

_ ( 1 
IIO(n)-O I12=O -:;:--

() 
{Pn log rn+[d(n) log n]2H 

rnm n 

+[Pn log rn](ld)+'d'(n) log l "' n + nrn exp [-APnJ}) , a.s. 

for any E > 0, where A > 0 is some constant and rn , Amin(n) are defined as 

n-I 
rn= l + 2: [lly, 112+llu,112] (16) 

i=O 

(17) 

Let us now introduce the following regressors: 

i?:O (18) 

which, in contrast to <Pi(n) defined by (15), is free of estimates and 

depends explicitly on the three system signals {Yi' u" w,}, Similar to (17) 
we set 

(19) 

Corollary 1: If, in addition to the assumptions of Theorem I, the 
regression lag Pn in (10) is taken as Pn = [Ioga(n + e)], a > I, and the 
growth rate of rn and A�'in(fI) defined, respectively, by (16) and (19) 
satisfy 

for some b?: I (20) 

b,(n)= {I +1i-;(n)P,(n)Ii-,(n)}-' (13) and 

where the initial values Ii �(n) 0, Porn) = (31, (3 > O. logl," n+[d(n) log nl'"'+ d'(n) [log nlil+U)J2" =o(A�m(n» (21) 
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for some f > 0, then as n ---+ 00, the estimation error satisfies 

_ ( I 
IIO(n)-(JII2=O ��,"(n) ([log n]'+u+[d(n) log nl'+' 

+d2(n) [log n]ll+a)/2+'}) . 

Proof· See Section III. 
Thus, for example, if the noise is Gaussian, then den) given by (8) can 

be taken as {log n} 1/2 since in this case Ilwnll = 0 ({log n} 1/2) . It follows 
from Corollary I that 

-
2
_ ( IOgCld n) IIO(n)-OII -0 ��,"(n) 

, 

[ 5+a ] c(f)=max I +a, -
2
-+f ,"v'f>O. 

Now, a key problem is: How fast is the growth rate of A�in(n). This, 
however, cannot be solved if there is no further assumptions on the input 
sequence {un}. We now consider the "attenuating excitation controller" 
described in [19], [20], which includes a large class of feedback 
controllers, and has been used in solving adaptive LQ control as well as 
robust adaptive tracking problems (e.g., [19]-[21]). This kind of 
controller is described as follows. 

Let {vn} be a sequence of I-dimensional mutually independent random 
vectors independent of {wn} with properties 

EVn=0, EVnV�=-y/na, s�pE llvnI14<oo, 1" E [0'2(d� I») (22) 

(11) to replace that in [18], then similar order estimation results are also 
obtainable. Certainly, in these applications the SPR condition will no 
longer be required. 

III. CONVERGENCE ANALYSIS 

In the convergence analysis of the algorithm, we will need estimations 
for double array sums of the form 

i- I 
Si(n) = � jjn wj+" 

j=O 
O�i�n, n� I. 

Lemma 1: Let {Wi} and {fin, 1 � i � n}, n � I be any m- andpn
dimensional random sequences, respectively. Denote Mi(n) = 2: j:!/j,J";n 
+ (3/, (3 > O. Then, 

and 

n-I 
� f;n [Mj + I (n W Ijjn = O(Pn log + �m" (Mn (n))) (24) 
)=0 

n-I 
tr {S�(n)[Mn(nWISn(n)} � � II wj+,112, 

)=0 
"v'n� I. (25) 

Furthermore, if { Wi } is a martingale difference sequence satisfying (6)
(8) andfin is Fi-measurable for any 0 � i � n, n � O. Then as n ---+ 00 

"v'E>O (26) 

where d � max ( p, q, r) + mp - I and -y > 0 is an arbitrary constant. and 
Without loss of generality we may assume that Fn = a{ Wi, Vi, i � n}. 

Let u� be an I-dimensional and F; � a{ Wi, Vi-J, i � n} -measurable 
desired controller. Obviously, any feedback control law is of this kind, 
and in the adaptive control case u� is usually given by the "certainty 
equivalence principle." The excitation techniques used in [19], [20] 
suggest that the actual input for the system is 

(23) 

instead of Un = u�. We note that when I" in (22) is taken as 0, then (23) is 
similar to the "continuously disturbed controller" proposed in [22]. 

The following result is proved in [18], which is a generalization of 
assertion (45) in [19]. 

Proposition 1: Suppose that for system (1)-(7), A(z), B(z), and C(z) 
have no common left factor, and that at least one of the three matrices 
{Ap, Bq, Cr} is of full row rank. If the attenuating excitation controller 
(23) is applied to system ( l )  and that 

n-I 
� { lly,II'+ II u,112} = O(nl +'), 
/=0 [ 1-21"(d+I) ] 

a.s., for some 0 E 0, 2d+3 

where d and I" are as in (22). Then for ��in(n) defined by (19), 

a.s., a g 1-(d+ 1)(1"+0). 

Remark 3: We mention that if I" = 0 = 0, then ex = I. Consequently, 
the familiar persistence of the excitation condition is achieved for a class 
of feedback control systems. Note that the control law (23) includes also a 
large class of open-loop inputs, e.g., ARM A processes with innovations 
{vn} • 

Remark 4: Several applications of the results of this note are 
straightforward. For example, combining the estimation algorithm of this 
note with the adaptive LQ controller in [20] or [19], we may get 
simultaneously the minimality of control performance and consistency of 
parameter estimates. It is also true that if we use the innovation estimate 

n-I 
� IIS:+,(n)[M,+,(nW'J.n I12 
;=0 

=O(Pn 10g+�m,,(Mn(n»)+0({d(n) log n}2+') 

+O({Pn log [e+�m,,(Mn)]}(1i2)+' [log'+'n]d2(n», 

"v'f>O (27) 

where log + { .} means the positive part of log{ . }. 
Proof· The key steps in the proof are first to use the matrix inverse 

formula to get the following recursion (cj(n) [1 + 

fJn[M}(n)]-'}jn]-'): 

tr {S;+I(n)[Mi+l(nWIS,+I(n)} 

=tr {S;(n)[Mi(nWIS,(n)} 

+ 2ci(n)w;+ I 
S;(n)[Mi(nW IJ.n -ci(n) 11 S;(n)[Mi(nW IJ.n 112 

+ c,(n >.i;n [Mj(n )]-Ijjn II W,+ 1112 

then to sum up both sides of the above equality and use estimations for 
double array martingales to get the desired results. For details see [16, 
Lemmas 3.4 and 3.6] together with their proofs. 

We remark that when fi stands for the usual regressors (nondouble 
array case), the quantity tr { S�(n)[Mn(n)]-ISnCn)} is nothing but the 
standard stochastic Lyapunov function frequently used in the literature 
(e.g., [2], [4], [5], [20], [23], [24]). 

We now prove the main results of the note. 
Proof of Theorem 1: Let us consider the estimation error for the 

noise process first. Denote 

and set 

� � 
C-'(z)A(z)=/+ � C,Zi, C-'(z)B(z)= � HiZi (28) 

i= 1 

� 
Ei(n)= � [-C'Yi_t+I+H,u,_,+d· (29) 

I=Pn + I 
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Then by ( I) and (28), (29) we see that 

(30) 

which in conjunction with ( I I) yields 

Note that for any fixed n, (12), (13) is the standard least-squares 
recursion, so we have 

(32) 

Substituting (30) into this we get 

consequently, by noting 111/t;_I(n){�;:J 1/tj(n)1/t;(n) + J3I}-\0112::; I, we 
know that 

111/t:_1 (n)[&;(n) -a(n)]112 

Summing up from I to n, and applying (24), (25), and (27), we get 

n 
� 11J/!:jn)[&,(n)-a(n)] 112 
1= 1 

(33) 

Note that by (9), (28), (29), and the Schwarz inequality it follows that: 

n-I 
� IIE;(n)112 
i=O 

::;2 � L��+I 
IIG/II 

/��+I 
IIG/IIIlY,_/+1112 

+
/
�t

, 
IIHll1 

l
�t

, 
IIHlIIIIU;-l+1112] 

= O( rn exp { -APn}), for some A>O, (34) 

Similarly, by (I), (7), (28), and the Schwarz inequality it is easy to verify 
that 

In-I 
O*liminf- � Ilw;r n---+oo n i=O 

and then we have 

Finally, substituting (34) and (36) into (33) we see from (31) that for any E 

> 0, 

n-I 
� Ilw;+I(n)-w;+1112 
1=0 

=0 (� IIJ/!:_I(n)[&,(n) -a(n)] 112)+0 (� IIE;_I(n)112) 
=O( Pn log rn)+o( {d(n) log n}'+') 

+o( {Pn log rn}(1/2)+'d2(n) log'+'n)+O(nrn exp {-APn})' (37) 

Next, we consider the estimation error for parameter estimates. By (5) 
and (18) we may rewrite system (I) as 

(38) 

Substituting this into (14) we obtain that 

(39) 
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Note that by (15), (18), and (37), 
n- 1 

2: I lrp�-rp,(n)112=0( Pn log rn)+o({d(n} log n}2+') 
i=O 

+o({Pn log rn}(lI2)<'d'(n} logl+'n} 
+ O(nrn exp { -APn}}' (40) 

Consequently by noting (35) 

log + Am" [� rp,(n)rp;(n}J 
=0 (IOg+ [� llrp�I I'J)+O (IOg+ [� llrp�-rp,(n} II'J) 
= 0 (log rn) + 0 (log n) = 0 (log rn), a.s. (41) 

Applying (25) and (26) to (39) and noting (40), (41), we finally get 

IIO(n}-OII' 

=0 (Am,:(n) [II [� rp,(n)rp;(n}+(3I] -112� rp,(n)[rp7-rp,(n}]lJ) 
( 1 II [n-I ] Il2n-1 II') +0 Amin(n} � rpi(n}rp;(n}+(31 

- � rp,(n}w;+1 

( 1 ) ( 1 
n-I ) +0 Amm(n} =0 Amm(n} � IIrp? -rpi(n} II ' 

+0 (Am,:(n) II [�rp,(n}rp;(n}] -1!2� rp,(n}W;+l ln 
=o(�( ) {Pnlog rn+ [d(n}logn]2 +' mm n 

+ [Pn log rn](II2)+, d2(n} log 1 +, n + nrn exp [-APn]}) . 
This completes the proof of Theorem I. # 

Proof of Corollary I: We need only to show that A 0 (n) 
O(Amin(n», but this is straightforward by (21) and (40), since ;;'th some 
simple manipulations, 

A�m(n}=Amin [� rp?rp?J +(3 

�2An"n ['� rp,(n}rp;(n} + (31] +2 � Ilrp:l-rp,(n)II' 

� ZAmm(n) + 0 (log 1 +an) + O(ld(n} log nl'+'} 

+ O( d'(n} [log n] (l +")12 te ) = ZA",m(n} + O(A�m(n }}. 

IV. CONCLUSION 

# 

By use of a "two step" least-squares algorithm, we developed a 
strongly consistent parameter estimator for ARM AX processes without 
requiring the standard strictly positive real condition on the noise model. 
An increasing lag least squares is used in the first step to estimate the noise 
process, while the parameter estimate is formed in the second step by an 
extended least squares. In the present algorithm, there is an increase in 
computational cost in comparison to traditional algorithms. However, the 
results of this note do not need any a priori information or conditions on 
the noise model except that of stability, and are applicable to the 
identification of general feedback control systems. 
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Optimal Priority Assignment: A Time Sharing Approach 

EITAN ALTMAN AND ADAM SHWARTZ 

Abstract-Jobs of several types arrive to their respective infinite 

capacity discrete-time queues. During each time slot service of a single job 

is attempted. 

Nonstationary "time sharing" policies are introduced to obtain 

optimal controls for new constrained optimization problems. The criteria 

are expected time averages of sizes of the queues. These policies and their 

cost are computed through linear programs. The achievable region of the 

vector of queues' length is characterized. Other applications of time 

sharing policies are discussed. 
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