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Tracking Randomly Varying Parameters: 
Analysis of a Standard Algorithm* 

L. G u o , t  L. Xia , t  and  J. B. M o o r e t  

Abstract. In linear stochastic system identification, when the unknown param- 
eters are randomly time varying and can be represented by a Markov model, a 
natural estimation algorithm to use is the Kalman filter. In seeking an understand- 
ing of the properties of this algorithm, existing Kalman-filter theory yields useful 
results only for the case where the noises are gaussian with covariances precisely 
known. In other cases, the stochastic and unbounded nature of the regression 
vector (which is regarded as the output gain matrix in state-space terminology) 
precludes application of standard theory. Here we develop asymptotic properties 
of the algorithm. In particular, we establish the tracking error bounds for the 
unknown randomly varying parameters, and some results on sample path devia- 
tions of the estimates. 

Key words. Randomly varying parameters, Tracking error bounds, Kalman filter, 
Large deviations. 

1. Introduction 

Let us first define the signal  mode l  class and  es t ima t ion  a lgor i thm.  

Signal Model .  Cons ider  the fol lowing l inear  regression model :  

Yk = tp~,Ok + Ok, k >__ O, (1.1a) 

Ok+l = FOk + Wk+l, EII0oll z < m,  (1.1b) 

where Ok is viewed as t ime-vary ing  unknown  pa rame te r s  hav ing  a M a r k o v  model  
representa t ion.  The  noise sources {Wk} and {vk} are  mutua l ly  i ndependen t  and  also 
independen t  themselves,  with zero  mean  and  covar iances  

E[Wk+lW~+l'] = Qw > O, E[Vk+lV~+l'] = Ro > 0. (1.2) 

(Genera l iza t ion  of  ou r  theory  to the case of  t ime-vary ing  covar iances  is s t ra ight-  
forward.)  The  measuremen t  Yk is assumed scalar,  and  the regress ion vector  tp k is 
s tochast ic  and  belongs to ~ k _ l - - t h e  a -a lgebra  genera ted  by {Yo, Yl . . . .  , Yk-x }" 
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Much of the work done in stochastic system identification has been concerned 
with identifying the parameters Ok in (1.1) for the case when Ok = 0o is constant, that 
is, when F = I and the covariance of wk is zero. Typically, % is viewed as the 
regression vector of an ARMAX model and least-squares identification of 0o is 
applied. When Ok is time varying, one natural approach to use is to model Ok as in 
(1.1b) where all eigenvalues o f f  lie in or on the unit circle, i.e., I,t~(F)I < 1 for all i. 
In such cases, the natural performance criterion is tracking error. 

Estimation Algorithm (Kalman Filter). 
rithm associated with (1.1): 

Consider the following estimation algo- 

FPktPk , (p~,Ok), (1.3a) 
Ok+z = FOk + R + tpi, Pkq~k tyk -- 

F Pk tPk {o~, Pk F" 
Pk+x = FPkU + Q, (1.3b) 

where Po -> 0, Q > 0, and R > 0 as well as 0 o are deterministic and can be arbitrarily 
chosen. (Here Q and R may be regarded as a priori estimates for Qw and Rv, 
respectively. We stress that even ifQw is singular, Q must be chosen to be nonsingular 
to achieve a "short-memory" algorithm, meaning that the adaptation gain in (l.3a) 
does not diminish to zero.) 

It is known that if the noise s o u r c e  {Wk, l.)k} is a gaussian white noise sequence, 
then Ok generated by (1.3) is the best estimate for Ok, and Pk is the estimation error 
covariance, i.e., 

0k = E[0klo~_~], Pk = E[0k0~[o~-I], 

provided that Q = Qw, R = Ro, 0o = E[0o], and Po = E[OoO~], where Ok is the 
estimation error: 

Ok = Ok -- Ok. (1.4) 

This remarkable result was first observed by Mayne [MI]  and later expanded on 
by various authors, e.g., ~.str6m and Wittenmark [AW] and Kitagawa and Gersch 
[KG]. 

In the nongaussian case, however, the properties of (1.3) applied to (1.1) have 
not been well studied. The reasons for this may be explained as follows. (a) In 
the time-varying case, there is no almost sure parameter convergence. Also, the 
stochastic Lyapunov function technique, as well as the traditional martingale limit 
approach used in the convergence analyses of both the least-squares (e.g., [L-I, [M2], 
[LW], and [CG1]) and the stochastic-gradient (e.g., [CG2]) algorithms, cannot be 
directly used in the time-varying case. This is so even though (1.3) is the standard 
least-squares algorithm when F = I, Q = 0, and R = 1. Similar observations are 
also made in [MC]. (b) The algorithm (1.3) is a Kalman filter when Q = Qw and 
R = Ro. It is optimal in a linear minimum variance sense when q~k is deterministic 
(e.g., I-AM1]), not stochastic as here. Thus, the stochastic nature of the regressors 
precludes applicability of the useful properties of the Kalman filter, even when Qw 
and Rv are precisely known. (c) The existing theory for time-varying linear systems 
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usually requires that the system output gain matrix (i.e., q~k in the present case) is 
bounded for all k (e.g., I-AM2]). This requirement turns out to be unrealistic for 
applying the theory to general adaptive control and identification problems. This 
is especially so in the stochastic case, because q~k may contain the past system inputs 
and outputs, and the system noise may be unbounded. Hence, the unbounded 
nature of the regressors {tpk} also precludes the direct application of the standard 
theory. 

In this paper we establish asymptotic properties of the Kalman filter when it is 
used as a parameter estimator for stochastic linear regression models. The main 
contributions of the paper are the following: 

(i) For the case where the parameters are generated from a stable linear model, 
i.e., (1.1 b) with 12i(F)[ < 1, upper bounds for the averaged tracking errors are 
established without any excitation requirement. 

(ii) In the cases of drifting parameters, i.e., (l.lb) with F = 1, and disturbed 
parameters, i.e., Ok = 00 + Wk, averaged tracking-error bounds are also 
established under some excitation conditions on the regressors {~0k}. 

(iii) If instead of the averaged values, the tracking error itself is concerned, large 
deviations of the estimates may occur, and the rate for these deviations is 
also established. 

2. Tracking-Error Bound 

In the following we denote by J.max(Z) and ,~.rnin(A) the maximum and minimum 
eigenvalues of a matrix A, respectively, and let IIA [l = {2max(AA')} 1/2 be its norm, 
so that [Ih II = 2max(A) when A is symmetric and nonnegative definite. 

Let us first denote 
Kk = FPR(Ok(R + tPI, PR~OR) -I (2.1) 

and rewrite (1.3) as 

0k+ 1 = FOg q- K k ( y  k - -  (O~t~k) , (2.2a) 

Pk+J = ( f  -- Kkq~f,)Pk(F - Kkq~f, )" + KkRK'R + Q. (2.2b) 

The lower bound to the tracking error is relatively straightforward by combining 
(1.1b) and (2.2a), indeed, we have 

Theorem 2.1. 
oo for some e > 0, then 

and 

inf ell0kll 2 _> tr(Qw) 
k 

Consider the signal model (1.1) and algorithm (1.3). I f  SUpk Ell wk II 2 +~ < 

(2.3) 

lim inf ll0ill 2 > tr(Qw) a.s., 
n~oo n i=l 

where Qw and Ok are defined by (1.2) and (1.4), respectively. 

(2.4) 
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Proof. By (1.I) and (2.2a), the error equation is 

Ok+l = (F - Kk~O~,)Ok -- KkVk -- Wk+l. (2.5) 

Set fk = (F -- Kk~OI,)Ok -- KkVk; then {fk'Wk+ 1 } is a martingale difference sequence 
with respect to the a-algebra generated by {vi-1, wi, i _< k + 1}, so the first assertion 
(2.3) follows from (2.5) and the orthogonality offk and Wk+l- 

Now, by an estimate for the weighted sum of martingale difference sequences (e.g., 
[LW]), we know that 

( {  2 ') (1/2)+r/\  
fi'wi+l = 0 ~ fill j~ ) a.s. for all rle (0, �89 

i=1 i=1 

Consequently, it follows from (2.5) that 

lim inf 1 ~ II0~ll 2 = lim i n f l " ~  ~ {llf, II 2 + 2~'Wi+ 1 4- Ilw,+xll 2} 
n~oo n i=1 n ~  n i=o 

1 i1-1 
> lim in f -  ~ IIw~+xll 2 > tr(Qw) a.s., 

n~oo n i=o 

which is the second assertion (2.4). Hence the proof is complete. �9 

The upper bounds for the tracking error depend on the stability of the equation 

~k+X = (V -- Kkq~;)r k > 0, (2.6) 

as can be seen from (2.5), which we will show depends on the bounds for {Pk}- 
A lower bound to Pk is easy to get since, from (2.2b), 

Pk > Q > 0  for any k >  1. (2.7) 

However, upper bounds for {Pk} are far from obvious for general F and {q~k}- Let 
us first see the role played by the upper bound of {Pk} in the stability of (2.6). 

Lemma 2.1. Assume that there exists a random constant b such that 

sup Ilekll -< b < oo a.s. (2.8) 
k>O 

Then, for Kk defined by (2.1), 

I(~ (F fl~j-i for > i > O, (2.9) Kk~0Z) < a.s., any J 

where ~ and fl are defined by 

IlFll(a + b)b 112 
ct = (2.10) 

r a  3 4- IIFII2(a + b)2b] 112' 

fl = [b/a] 1/2, a = 2rain(Q). (2.1 I) 

The proof is given in the Appendix. The key point here is the precise expressions 
for ~t and fl in (2.10) and (2.11), which lead directly to the following observation. 
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Remark 2.1. If b, the upper bound of Pk, is a deterministic constant, then the 
exponential bounds claimed in (2.9) are also deterministic (albeit tpk is random!). 
This fact is crucial in establishing the upper bound for the tracking errors in terms 
of mathematical expectations in the following. 

We now establish an upper bound for the tracking errors by considering different 
parameter models separately. 

A. Parameters Generated from a Stable Model  

In this case, 12~(F)[ < 1 for all i, then, by (1.3b), 

k 

Pk+x <-- ~, FiQ(F') ~ + Fk+aPo(F')k+a 
i = 0  

and hence 

for any k > 0, (2.12) 

(2.13) 

can serve as a finite deterministic upper bound for {Pk}, since Po is deterministic. 
This enables us to establish the following results. 

Theorem 2.2. Consider the signal model (1.1) with 12i(F)l < I, for any i, and the 
estimation algorithm (1.3). Then 

lim sup 1 i II0ilt p < Zp(w) + IIFIt Zp(v) (2.14) 
. - o  n , = l  - ~ 

and (,)'[ ], lim sup Eli0,11 p < Mp(w) + Ilfll Mp(V) (2.15) 
n ~  0 -- ~ 

here/9, = 0,, - 0,, b, ct, and fl are 9iven by (2.13), (2.10), and (2.11), respectively, and 
p > 1 is any real number such that 

i }"" Lp(v) ~ l i m  sup IIv~ll p < c~ 
n ~  ~?1 i=l 

Lp(w) ~= lira sup - ~ IIw~l[ p < oo 
n~O ~ n  i=1 

Mp(v) A= sup  {Ellv~ll~} x/p < ~ ,  
i 

mp(w) A= sup  {EItw~ll~'} ~/" < ~ ,  
i 

and E[[Oo[[ p < ~ .  

a.s., (2.16) 

a.s., (2.17) 

(2.18a) 

(2.18b) 

Proof. By (2.5) we have 

= - Kjtpj )0o + (F - Kjtpj) ( - K i v  i + wi+x). 
j=O i=O j = i + l  
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Applying Lemma 2.1 we see that 

k 
II0~.,11-< &'*'llOoll +/~ ~ ~k-'(llK,v, ll + IIw,.,ll). (2.19) 

i=0 

Applying the Minkowski inequality gives 

(k=~O . ,1/p flt, OOll (k~O l~P(k+l))l/p n k . ,p)  l/p ,,o,+. ,,,) ~ +" { ~?o (,~o ~-'" K,~,,, ) j. 

+ ~(,~o ( ,=~o ,-,,w,., ,, )T,.. (~.~.o, 
By the H61der inequality it follows that (lip + 1/q = 1) 

(~o ,,; {~ ,,~}p a~'-~llKiv~ = r  ~ [~(k- ~ K~t,i 
i i=0 

otk-') I E ~ IIp < E ~ p 
i - o  / \ ~=o  - \ I - - - L - ~ /  i -o  

and then 

( )" r ?" s s <-\1---S~) s s 
k=O i=0 i=O k=i 

ff 1 ~ (p/q)+1 
-< \1 - - ~ J  ,=os iIK'v'tl"=(1-e)-",=o s [IK'v~[lP" (2.21) 

Let us now consider the upper bound for Kv Since b is an upper bound for IIP~ll, 
then, by (2.1), 

eIPie~ 
IIKkll 1 IIFII2(R + ~o,~Pktp~) 2 < 

l lFII2b < - -  for any (2.22) 
R 

~ e m  
IIFII2b (R + ~Pk~k) 2 _< 

k > O ,  

which together with (2.16) and (2.21) yields 

" (  ; r,,~,,,~,"~] ~ lim~SouPnk~o i=o~k-'llK'v'll-<h i~;  [L,(v)] ' .  

Similarly, 

(2.23) 

,.(~ )p (,)~ lim s u p -  ~ ~k-illWi+lll < [Lp(w)] p. (2.24) 
n ~ o  n k = o  i=o - -  

Finally, the first result (2.14) follows from (2.20), (2.23), and (2.24). 
Let us now consider (2.15). The inequality corresponding to (2.20) can also be 
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derived by the Minkowski inequality and takes the form 

(EllOk+llf) alp < fl~ l/p-l- fl {E(i=~o ~ Kivi l ) ~'P~ l/P 

+ fl{E(~=o~X'-'llw,+,,l)'} 1/'. 

From this, a similar argument as used in the proof of (2.14) leads to (2.15) because 
in this case the constants b, e, and /~ are all deterministic. This completes the 
proof. �9 

Remark 2.2. From the proof of Theorem 2.2 we see that the independence assump- 
tions made on the noise sequences {wk} and {vk} are not really used; indeed, 
Theorem 2.2 holds for any random sequences {wk} and {vk} satisfying (2.16)-(2.18). 
In particular, w~, which appeared in the parameter model (1.1 b), may have nonzero 
mean. 

Remark 2.3. We have recently applied the property (2.15), with p = 4 + 6 for some 
6 > 0, to adaptive control problems [GM],  and it appears that the nontrivial 
stochastic adaptive control problem considered in [MC] can be generalized to the 
case where the noises are nongaussian with unknown covariances. 

Remark 2.4. Observe that there is no excitation requirement to achieve the bounds 
of the theorem. Of course, from (1.3b) and the matrix inversion lemma, 

P~+a = FI'(p,) -I + ~pkR-l~p:,]-lU + Q 

and it is clear that the greater the excitation of cpk, the smaller is Pk+l in norm, and 
the lower are the tracking error bounds (cq ,6 are smaller). 

B. Drifting Parameters 

In this case, F = I and similar arguments as used in (2.12) for the boundedness proof 
for {Pk} fail. Moreover, it turns out that it is impossible to establish the upper bounds 
for Pk without further assumptions on the regressors {~Pk}" TO see this, take cp k = 0 
for all k > 0, then, by (1.3b), 

Pk+l = Pk + Q = Po + (k + 1)Q , ~ .  (2.25) 
k ~ c o  

Nevertheless, we have the following results. 

Lemma 2.2. Assume that there exists a strictly increasing sequence of random 
integers {t,} with t o = O, d ~= S U p n ( t  n - -  tn_l) < O0 a.s., and a random constant 6 > 0 
such that, for any k >_ 1, 

~k ~P~cP: > 61 a.s. (2.26) 
1 + Ilcpi[[ 2 - iffitk-t + l 



8 L. Guo, L. Xia, and J. B. Moore 

Then {Pk} defined by (1.3b) with F = I has the following upper bound: 

sup IlPkll < IlPoll + (1 + d)[lQ[I + (R + d2llQl[)/6 (~b)  a.s. 
k 

(2.27) 

The proof of this lemma is given in the Appendix. Condition (2.26) can be regarded 
as requiring certain kinds of excitations; thus divergence phenomena as in (2.25) 
may be explained as arising from lack of excitation. 

Remark 2.5. Lemma 2.2 can be generalized to the case where F # I, and a similar 
bound is obtained. Results like the following theorem (Theorem 2.3) are also 
available. However, the matrix on the left-hand side of (2.26) will involve the matrix 
F in general. 

Remark 2.6. Let {t,} be a sequence of increasing random integers with t o = 0, 
sup,(t, - t,_l) < co. If 

inf2~i,(k) > 0 a.s. (2.28) 
k 

and 
2=,~(k) 

sup < co a.s., (2.29) 

where 2~x(k) and 2mi.(k) denote the maximum and minimum eigenvalues of the 
tit matrix ~i=,k_, +~ ~~176 respectively, then (2.26) holds. 

It is interesting to compare conditions (2.26) or (2.28)-(2.29) with the standard 
persistence of excitation condition used in the analysis of short-memory adaptive- 
control algorithms in the literature (e.g., [ABJ]). That is, there exist constants 
0 < 6 1 < 6 2 < ~ a n d N < m s u c h t h a t  

k + N  

611 < ~. ~o~q~[ < 621 for any k > 0. (2.30) 
i=k  

This implies that {q~k} is a bounded sequence. Clearly, condition (2.28)-(2.29) is 
weaker than (2.30), and it means that 2ma~(k) and 2=i,(k) may grow at the same rate, 
and does not necessarily mean that {~0k} is bounded. As an example, take qh as a 
scalar, linear function: q~k = ck, c ~ O. Then, clearly (2.30) fails, while (2.28)-(2.29) 
still holds because 2max(k) and 2=i,(k) coincide in this case. 

Theorem 2.3. Consider the signal model (I.1) with F = I and the estimation algo- 
rithm (1.3). Assume that the conditions in Lemma 2.2 apply. Then 

lim,.~osup n i~'= II0111p < ~ Zp(w) + -~ Zp(o) < O0. (2.31) 

Here O k = Ok -- Ok, a and fl are defined by (2.10) and (2.11) with F = I and with the 
upper bound b for {Pk} given in (2.29). Also, Lp(w), L~(v), and p > 1 are defined in 
(2.16)-(2.17). 
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Proof. The proof  is actually the same as that for (2.14). Note that the result (2.15) 
is also achieved in the present case provided that the quantity on the right-hand 
side of (2.29) is deterministic. �9 

Remark 2.7. An alternative excitation condition which involves the use of condi- 
tional expectation, may also be used to establish the tracking error bounds. To be 
precise, assume that there exist two deterministic constants 6 > 0 and N < oo such 
that 

E I~,,~_ 1 > 61 a.s., for all m > O, 
t i=,,N 1 + I1~0~112 - 

where {~'k } is any nondecreasing family of 0.-algebras such that ~o k is ~'k-measurable 
for any k. Then finite upper bounds for both EII~II 2 and (1/n)~=l II0~11 can also be 
established if {Wk, Ok} satisfies (2.16)-(2.18) for some p > 4. For  details see i-G-I. 

As an example, let us now consider.the i.i.d, noise case, and without loss of 
generality assume that Ok is one dimensional. More precisely, let {wk} be i.i.d. 
random variables with mean zero and variance 0. 2 > 0. Putting F = I in (1.1b) we get 

0,, = 0._~ + w,, = Oo + S,, S. = ~ w,. (2.32) 
i=1 

Consequently, by a result in [DV, p. 751], 

( ~  ) log log n 0 .2 
lim inf S~ n ~  = - -  a.s. 

n~oo i=1 4 

Hence with probability 1, the averaged value of parameters 

n i=1 n i = l  

has at least a divergence rate of n/log log n as n ~ oo. However, from (2.31) it is 
known that the averaged value of the tracking error (I/n) ~'=1 II0ill 2 is bounded. 
This shows that the estimation algorithm (1.3) can indeed perform the nontrivial 
task of tracking rapidly varying parameters in the long-run average sense. 

Let us consider another situation. 

C. Disturbed Parameters 

By disturbed parameters we mean that the parameters can be modeled by 

Ok = 0o + w~ (2.33) 

with unknown 0o and noise {wk}. This case is not a specialization of (1.1b), but can 
still be studied by use of the theory developed. 

Theorem 2.4. Consider the signal model (1.1a) with parameters described by (2.33), 
and the algorithm (1.3) with F = I. Assume that conditions of Lemma 2.2 apply. Then 

1 lim sup  -1 It0ill' < Lp(w) + Lp(v) (2.34) 
n~oo n i = l  - -  ~ 
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where/~k = 00 -- /gk, a = 2~i,(Q), and the constants or, fl, b, Lp(w), and Lp(v) are all the 
same as those in Theorem 2.3. 

Proof. With Ok = 00 -- Ok and F = I, the error equation (2.5) is now changed to 
0k+ 1 = (I - -  K k q ) ~ ) O  k - -  K k U  k - -  K k t f l ~ W  k.  Note that by (A.1) in the Appendix, Kktp~ 
is bounded by IlKk~ll -< b/a. Hence, an argument like that used in the proof of 
(2.14) leads to the desired result (2.34). [] 

3. Deviations of the Estimates 

A major difference between the algorithm (1.3) and the standard least-squares 
algorithm is the introduction of a nonzero term Q in (1.3b), which prevents Pk from 
tending to zero, and hence guarantees (1.3) to be a short-memory algorithm. This 
is why the estimator (1.3) can track time-varying parameters in a certain sense. 
However, due to the short-memory property of the algorithm, large deviations of 
the estimates may occur. Indeed, in almost all cases, for a fixed L > 0, there is a 
probability of 1 that the norm of the estimates has exceeded L after a sufficiently 
large time. In the work of [CFM] the mean exit-time problem for a stationary 
Markov chain, which is produced by a constant gain Robbins-Monro algorithm, 
is studied. Related problems for adaptive control algorithms are also considered in 
[BAG]. Here we are chiefly concerned with the asymptotic properties of the estima- 
tion error O k itself, rather than its averaged values as in the previous section, 
especially the possible divergence rates of 0k- 

It is easy to see that in the study of large deviations for stochastic algorithms, the 
case where the noises are possibly unbounded is of major interest. Henceforth we 
make the following assumption: 

(A) The noise sources {Wk} and {Vk} are mutually independent i.i.d, random 
sequences with zero mean and nonzero variances as defined in (1.2), and the tail 
probability of {Wk} does not vanish "too fast" in the sense that 

lim inf exp{hx2}e( l lwl l  > x) ~ 0 
X ~ o O  

for some constant h > 0. 

Obviously, this assumption includes a large class of random sequences, in par- 
ticular the gaussian case. By the Borel-Cantelli lemma, it is easy to obtain the 
following result. 

Lemma 3.1. I f  {Wk} satisfies conditions in assumption (A), then 

IIw, II 1 
lim,,~osup (log n) x/2 > ~ a.s. 

We also need the following result which can be proven by a technique similar to 
that in I-CT, p. 135]. 
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Lemma 3.2. Let  {x,} be an i.i.d, sequence and let {T,} be any sequence o f  f ini te  
stopping times such that 1 < z~ < z~+~, a.s., for  i > 1, with {xi} and {T~} independent. 
Then {x,,} is also an i.i.d, sequence, having the same distribution as x 1 . 

Theorem 3.1. Consider the signal model (1.1) with the noises {w,} and {v,} satisfying 
assumption (A). I f  either ]2~(F)I < 1, for  all i, or F = I but with conditions in Lemma 
2.2 satisfied, then the estimation error O k = 04 - Ok produced by (1.3) has the following 
property: 

P ~lim,-'~sup (log n) ~/2 >- ~5~ = 1, (3.1) 

where c = [1 + IIFIl(1 + b/a)] -1, a = 2min(Q), b is given by (2.13) or (2.27) according 
to 12~(F)I < 1 or F = I, and h is given in assumption (A). 

Proof. By the error equation (2.5) and the upper bound for Kk~O ~ as provided by 
(A.1) in the Appendix, it follows that 

c 
lim sup - - I l W k + l  -- KkVkll k~oo (log k) 1/2 

< lim sup c - k~oo (log k) v2 I[0k+~ - (F - KkC,0Z)0kll 

Flog(k + 1)11/2 ( II0k+lll "~ 
-< lim sup el_ Elog  

n0ki, 
+ c limk.oosup IIF -- KktPT, II [log k] 112 

It0k+l It 
< lim sup c 

k-oo [log(k + 1)] 1/2 
(!) + ctlfll 1 + limk,~SUp [10-~1 /2  

IIOkll (3.2) _< lim sup 
k-~o [log k] v2" 

Now, let us define a sequence of increasing stopping times {Ti} as 

Since 

Zk+~ = inf{n > Zk: IIo,[I ~ 2(Rv)1/2), 

lim - v~ = Rv a.s., 
n-"*oo n i = 1  

zl = 1. (3.3) 

it is easy to see that {zi} is a sequence of finite stopping times and is independent 
of {Wk}. We now show that  

lim inf n > 0 a.s. (3.4) 
n~oO TI1 
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Otherwise, if (3.4) did not hold, we would have the following contradiction: 

R v = lim --I v2 = lim sup v/2 
�9 n'-,oo "r n i=l  n~oo "r i=1 

> lim sup v i Ii[v,l> 2(go),/21 _> 4R~ lim sup - -  lily,l> 2(Rt,) t/21 
n.-*oo Tn i=1 n~oO T n i=l 

>_ 4Rvlim sup 1-[z  n -  n ] > 4 R v F l - - l i m i n f  n ]  = 4R~, 
/:~CO Tn L. n ~cO ~'n ..] 

and so (3.4) holds. 
Now, by (3.2)-(3.4) and the upper bound for K~ provided by (2.22), it follows that 

H0k{I C { ( b )  112 } 
limk~SUp [10-~ ~-] x/2 > limg,oosup (log k) x/2 IIw~+111 - IIFII IIt,k[l 

> lim sup c { ( _ ~ ) 1 / 2  } 
k~o [IOgZk) v2 Hw=k+xll -- 211Eli 

,. IIw,~+,ll (log k ~  1/2 Ilw~+,ll 
> c nm sup - -S-~/2  = c lim sup 
-- k ~  (log ~k) k-oo \ l o - - ~ J  (log k) 1/2 

. . . .  f l og  k~ 1/2 Ilw,~+, II c 
> c nm m ~ ~  lim sup > a.s. 

k-~ \ log zk// k--oo (log k) ~/2 -- 

Here we have used (3.4) and Lemmas 3.1 and 3.2. This proves the theorem. �9 

The above theorem tells us that there is a subsequence of { [[0kll } which diverges 
at least at the rate of O({log n} 1/2). However, we note that under the conditions of 
the theorem, the divergence rate of such a subsequence is also dominated by that 
of the noise sequence, because, by (2.19), 

max H 0 k l l = O ( m a x  {l[vk[l + ltWkl[})- 
O ~ k < n  \ O < k < n  

Remark  3.1. Various generalizations and variations of the above theorem are 
readily obtained. In particular, we point out that if in assumption (A) the conditions 
on {Wk} and those on {Vk} are interchanged, then under a mild regularity condition 
on the regressors {~0k}, results like Theorem 3.1 still hold. This can be proved by an 
approach similar to that in [BAG]. 

4. Conclus ions  

When the Kalman filter is applied to estimation of randomly varying parameters, 
our results show that it has quite reasonable tracking propert ies--even in the 
nongaussian case when it is not an optimal filter. If the parameters are generated 
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from a stable model, we have seen that there is no restriction on the regressors 
needed to achieve tracking error bounds. The bounds obtained have application 
for adaptive controller analysis. If the parameters are drifting, as when the param- 
eter model is unstable, the theory of this paper shows that the regressors must be 
suitably exciting to achieve tracking-error bounds. For the case of parameters 
disturbed by noise, there is again an excitation requirement to achieve tracking- 
error bounds. Finally, deviation phenomena ofthe estimates have been studied here, 
which will provide valuable information for adaptive controller design for time- 
varying systems. 

Appendix 

Proof of Lemma 2.1. We first establish the upper bound for Kk~ ~ as follows (note 
that (t0 k may be unbounded): 

Ilfll Ilekll IIq3kll 2 
Ilgkq~tl < R + q,~ekq,~ 

IIFIIbllq~kll 2 
< [,tm,,(Q)llq, kll2] (by (2.7)) 

b 
< I l f i l - .  a (A.1) 

Consequently, by definition (2.10) for ~t, 

F I P ~  F, <_ a2P; ' 

P~-' - F~PZ~,Fk = P~-' - fi~EFkPkl;~ + KkRK[  + Q]-~Fk 

> P~-' - F~ [F,P,F~ + Q]- 'F ,  

= [P, + P,F~Q-'F,P,]  -1 

> [p, + (p,)1/2 II(p,)I/2F~Q-1F,(p,),/2 tl(pk)l/2]-, 

b  _be, -, 
> [ P k + I I F [ ] : ( 1  + a )  a k] 

[ ( = 1+ItFrl ~ I + ~ /  ~j  P2'. 

for any k > 0 .  

Let us then denote for simplicity F k = F - Kkq~I,. An upper bound for Fk is 

IIf~ll < IIFll 1 + a  " (A.2) 

Now consider the following inequalities. By (A.2), (2.2b), and the matrix inversion 
lemma, 
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Thus, noting (2.7) and (2.8), and repeately using this inequality, we get 

< ( ! )  ~2o-,, for any j > i > O .  ~ bct2o-o [Iei-l [I 

Proof of Lemma 2.2. Clearly, if the result holds for any deterministic sequences 
{%} and {tk} and deterministic constant 6, then the stochastic case can be proved 
by applying the result for each sample path. So, without loss ofgenerality, we assume 
that all the quantities appearing in the lemma are deterministic in the following 
analysis. 

Let us first establish the upper bound for the subsequence {P,.+x }. To this end, 
we introduce an auxiliary stochastic system 

X k +  I - ~  X k -~- Q1/2rl~ , (A.3) 

Zk = ~OI, Xk + (R)I/2r/2, (A.4) 

where {r/k z', r/2} is an i.i.d, gaussian random sequence with zero mean and unity 
covariance. Assume further that var(xo) = Po and x o is independent of {r/k 1', r/2}. 

Denote by 2~ k the estimate for x k based on {z o . . . .  , Zk} which is given by the 
Kalman filter. Then it is well known (e.g., [AM1]) that Pk defined by (1.3b) (or (2.2b) 
with F = I) can be represented by 

Pk+I = ~'~k "t-  Q for any k > O, (A.5) 

where Zk = E(Xk -- 2k)(Xk -- 2k) ~. 
Let us consider another linear estimate ~* for x, at time n = t k as follows: 

tit 'it ~oizi W(k )  '~ rPiq)[ 
2" = W-'(k) E 2, = Z 

i=,it-,+l 1 + IltPill i=,it_,+1 1 + I1~o;1t 2" 

Note that by (A.3) and (A.4), 

{ ~o,z, } 
x,~ - ~ = W - ~ ( k )  W(k)x, i t  - ~ i + [1~o, II 2 

i = t k  - t § l 

= W-1(k )  ~_, /') I / 2 . 1  - -  

t i= ,~_ ,+x 1 --~1~112 ~ ,u- i  1 T ~ J  j = i + l  i= / i t -~+l  

= I i ( k  ) + I2(k). (A.6) 

We now proceed to estimate the covariances of l~(k) and 12 (k) as follows. Denote 

j=,~_,+~ 1 + II~o~ll 2" 

By interchanging the order of summation we have 

t t k  I k -- 1 

Ql/2rlz 1 = 
Z 1 + II~o, ll u j=,+x s=,~-,+x i=fk-I  + i  
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Then, by orthogonality of {r/~ } and monotonocity of {Si}, 

tk --1 

IIEll(k)l;(k)ll < W- l ( k )  ~,, S~QS, W- I ( k )  
imtk - l+l  

< 

< 

while for 12(k) we have 

< 

tk-1  

W-l(k) Y. 
i= tk - l+ l  

( S f / Z S i ( S f / 2 W - x ( k )  11(211 

t k_ i  

W-I(N) ~ S,W-~(k) llS, JI IIQII 
i=tk- 1 + 1  

tk-1 

W-~(k) Y, 
i=tk- 1 + 1  

S,~W-l(k) (tk - t,-1)llQII 

<_ (t~ - t~_,)ZllW-l(k)l111(211 -< d~llQII/c5, (A.7) 

'~ tPiR~~ W -1 (k) 
IIEI2(k)l~(k)ll = W-l(k) ~ (1 + 11~o,112) 2 

imtk- l+l  

>_ RIIW-X(k)ll <_ Re5 -1. 

Thus by the orthogonality of It(k) and Is(k) from (A6)-(A8) we get 

(A.8) 

we obtain 

IIe, II ~ IIe,~+lll + ( n -  t~)llQII ~ IIe,,+xll + ( t ~ + l -  tk)llQII 

< (1 + d)llQII + (R + d211QII)/6, n > tl + 1, 

while for the case where n < tl, by (A.9), 

IIe, ll < Ileo + tIQII = tleo + (tx - to)QII --- IIPoll + dllQII. 

The desired result follows by combining this with (A.10). 

(h.10) 

fiE(x,. - :~F.)(x,. - &~*.)~]l ~ R -4- d2llOl])/6. 

From this and the optimality of the Kalman filter 
A "r A ~  "r 

the following upper bound for Pt~+l follows by noting (A.5): 

IIP,:xll < IIQII + (R + d~llOll)/c5 for all k > 1. 

To complete the proof, we have to establish the upper bound for {P,}. Since {tk} 
is a sequence of strictly increasing integers, for any integer n > t 1 + 1, there exists 
an integer k > 1 such that tk + 1 < n < tk+ 1. From this and the following inequality 
(by (1.3b) with F = I), 

PR+I < Pk + Q for any k > 0, (A.9) 
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