第18 券 第 3 期

1992 年 5 月

自 动 化 学 报

ACTA AUTOMATICA SINICA

Vol. 18, No. 3 May, 1992

量测误差对机械手适应控制的影响¹⁾

陈翰馥

(中国科学院系统科学研究所,北京,100080)

机械手的动力学方程依赖于广义位置坐标 q 及其一、二阶导数、广义力矩及未知参数 θ_{\bullet} 对q及 \dot{q} 的量测一般带有误差。本文在估计 θ 的同时给出控制律,使平均跟踪误差和量测误 差为同一数量级.

关键词: 机械手,适应控制,量测误差.

一、引言

近十多年来,对机械手的适应控制已有许多研究中,在较有代表性的几种适应控制 器中[2-5],都采用精确的量测,但在实际中,无论是对 **q(t)** 还是对 **q**(t) 的量测都带有 误差.

设 $q_a(t)$ 是给定的希望机械手运动的轨线。机械手中有些参数未知,但能量测到它 的广义位置坐标矢量 $q(t) \in \mathbb{R}^m$ 及其速度 $\dot{q}(t)$. 设量测量为

$$q_m(t) = q(t) + \xi \dot{q}(t), \ \dot{q}_m(t) = \dot{q}(t) + \xi \dot{q}(t),$$
 (1)

这里 5q(t) 和 5q(t) 表示量测误差。

本文要求在估计参数的基础上,给出执行力矩 \mathbf{z} ,使跟踪误差 $g(t)-q_{\mathbf{z}}(t)$ 尽量小。 由于存在量测误差,所以当 $t \to \infty$ 时,跟踪误差不可能趋于零。 本文同时也给出参数估 计,并分析跟踪误差对量测误差的依赖关系。

二、参数估计和适应控制

n 关节的机械手动力学模型可写为[6]

$$M(q,\theta)\ddot{q} + F(q,\dot{q},\theta) + \mathbf{G}(q,\theta) = \mathbf{\tau}, \tag{2}$$

式中 $M(q,\theta)$ 是惯量矩阵, $F(q,\dot{q},\theta)$ 包括了哥氏力, 向心力和摩擦力等, $G(q,\theta)$ 是 重力作用矢量、₹是作用在关节上的广义力矩矢量、θ是未知参数。'为书写简单省写了 a, a 及 T 对 t 的依赖关系。

利用 M, F, G 对参数 θ 的线性依赖性,可以把式(2)写成

本文于 1990 年 11 月 2 日收到。

¹⁾ 本项目得到 863 计划 512-03-04 号合同和国家自然科学基金的资助。

$$K(q,\dot{q},\ddot{q})\theta = \tau. \tag{3}$$

由于 \ddot{q} 不能量测,本文采用文献[3]中的办法,用一个指数稳定的滤波器 w(s),对(2)式两边进行滤波

$$y_{t} \triangleq \int_{0}^{t} w(t-s)\tau(s)ds$$

$$= \int_{0}^{t} w(t-s)[M(q,\theta)\ddot{q} + F(q,\dot{q},\theta) + \mathbf{G}(q,\theta)]ds. \tag{4}$$

用分部积分法去掉 ä, 然后和(3)类似地进行整理,得到如下方程:

$$y_t = H(q, \dot{q})\theta. \tag{5}$$

把跟踪误差记为

$$e = q - q_d, \tag{6}$$

而把量测到的跟踪误差记为

$$(e)_m = (q)_m - q_d, \ (\dot{e})_m = (\dot{q})_m - \dot{q}_d,$$
 (7)

还记为

$$b_{t} = L \left(1 + \|q_{m}\| + \int_{0}^{t} \|(\dot{q})_{m}\|^{2} \|w(t-s)\| ds \right)^{2}, \tag{8}$$

L为常数。

采用下面的算法来估计参数 θ :

$$\hat{\theta}_{t} = \frac{H((q)_{m}, (\dot{q})_{m})^{r}}{b_{t}} [y_{t} - H((q)_{m}, (\dot{q})_{m})\hat{\theta}_{t}], \qquad (9)$$

并用下面的方程来决定执行力矩 τ(t) 或适应控制:

$$y_{t} = H((q)_{m}, (\dot{q})_{m})\hat{\theta}_{t} + \sqrt{b_{t}} ((\dot{e})_{m} + K(e)_{m}), K > 0,$$
 (10)

$$y_t = \int_0^t w(t - s)\tau(s) ds, \tag{11}$$

把 y_t 及 w(t) 的拉氏变换分别记为 $\gamma(s)$ 及 w(s), 那么从式(10),(11)知

$$\tau(t) = \frac{1}{2\pi} \int_0^\infty \frac{Y(s)}{W(s)} e^{-is} ds.$$
 (12)

三、误差分析

在上一节中,用式(12)给出了适应控制,用式(9)来估计未知参数 θ 。以下分析量测误差 $q-(q)_m$ 及 $\dot{q}-(\dot{q})_m$ 对跟踪误差 θ 的影响。

定理. 设

$$||q - (q)_m||^2 + ||\dot{q} - (\dot{q})_m||^2 \le \varepsilon,$$
 (13)

那么只要式(8)中的L足够大,就有

$$\lim_{T\to\infty} \sup_{T} \frac{1}{T} \int_0^T \|e_t\|^2 \mathrm{d}t = 0(\varepsilon^2). \tag{14}$$

证明。记

$$\tilde{\theta}_{t} = \theta - \hat{\theta}_{t}, \ \varepsilon_{t} = H(q, \dot{q}) - H((q)_{m}, (\dot{q})_{m}), \tag{15}$$

将式(5)代人式(9)便知

$$\dot{\tilde{\theta}}_{t} = -\frac{H((q)_{m}, (\dot{q})_{m})}{b_{t}} \left[H((q)_{m}, (\dot{q})_{m}) \tilde{\theta}_{t} + \varepsilon_{t} \theta \right], \tag{16}$$

于是

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\tilde{\theta}_{i}^{\mathsf{T}} \tilde{\theta}_{t} \right) \leqslant -2 \frac{\tilde{\theta}_{i}^{\mathsf{T}} H^{\mathsf{T}} ((q)_{\mathsf{m}}, (\dot{q})_{\mathsf{m}}) H((q)_{\mathsf{m}}, (\dot{q})_{\mathsf{m}}) \tilde{\theta}_{t}}{b_{t}} + 2 \frac{\|\theta^{\mathsf{T}} \varepsilon_{i}^{\mathsf{T}} H((q)_{\mathsf{m}}, (\dot{q})_{\mathsf{m}}) \tilde{\theta}_{t}\|}{b_{t}} \\
\leqslant -\frac{\|H((q)_{\mathsf{m}}, (\dot{q})_{\mathsf{m}}) \tilde{\theta}_{t}\|^{2}}{b_{t}} + \frac{\|\theta^{\mathsf{T}} \varepsilon_{i}^{\mathsf{T}}\|^{2}}{b_{t}},$$

得到

$$\lim \sup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \frac{\|H((q)_{m}, (\dot{q})_{m})\tilde{\theta}_{t}\|^{2}}{b_{t}} dt$$

$$\leq \lim \sup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \frac{\|\varepsilon_{t}\|^{2}}{b_{t}} dt \|\theta\|^{2}. \tag{17}$$

利用下述关系式

$$y_t - H((q)_m, (\dot{q})_m)\hat{\theta}_t = H((q)_m, (\dot{q})_m)\tilde{\theta}_t + \varepsilon_t \theta,$$

并注意到式(17)就有

$$\limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \frac{\|y_{t} - H((q)_{m}, (\dot{q})_{m}) \hat{\theta}_{t}\|^{2}}{b_{t}} dt$$

$$\leq 3 \|\theta\|^{2} \limsup_{T \to \infty} \frac{1}{T} \int_{0}^{T} \frac{\|\varepsilon_{t}\|^{2}}{b_{t}} dt,$$

由此及式(10)即得

$$\lim_{T \to \infty} \sup \frac{1}{T} \int_0^T \|(\dot{e}_t)_m + K(\boldsymbol{e}_t)_m\|^2 dt$$

$$\leq 3 \|\theta\|^2 \lim_{T \to \infty} \sup \frac{1}{T} \int_0^T \frac{\|\boldsymbol{e}_t\|^2}{b_t} dt. \tag{18}$$

由式(1),(6),(7)很容易看出

$$\dot{e}_{t} = -Ke_{t} + \left[(\dot{e}_{t})_{m} + K(e_{t})_{m} - (\dot{e}_{t})_{m} - K(e_{t})_{m} + \dot{e}_{t} + Ke_{t} \right]
= -Ke_{t} + \left[(e_{t})_{m} + K(e_{t})_{m} \right] - (K\xi q + \xi \dot{q}),$$

即

$$e_t = e^{-Kt}e_0 + \int_0^t e^{-K(t-s)}[(\dot{e}_t)_m + K(e_t)_m - K\xi q - \xi \dot{q}]ds.$$

由式(13)从上式知

$$\int_{0}^{T} \|e_{t}\|^{2} dt \leq C_{1} + C_{2} \int_{0}^{T} \|(\dot{e}_{t})_{m} + K(e_{t})_{m}\|^{2} dt.$$
 (19)

由式(18),(19)得

$$\int_0^T \|e_t\|^2 dt \le C \limsup_{T \to \infty} \frac{1}{T} \int_0^T \frac{\|\varepsilon_t\|^2}{b_t} dt, \qquad (20)$$

C 为常数。

从 $H(q, \dot{q})$ 的结构可看出

$$\left\| \frac{\partial H}{\partial (q,\dot{q})} \right\| \leq M(1 + \|\dot{q}\| + \int_0^t \|\dot{q}\|^2 \|w(t-s)\| ds),$$

其中M为不依赖于 θ 的常数。

利用中值公式,便知介于 (q,\dot{q}) 及 $((q)_m,(\dot{q})_m)$ 之间存在 (q',\dot{q}') ,使得 $\|\varepsilon_t\| = \|H(q,\dot{q}) - H(q_m,(\dot{q})_m)\|$ $\leq M(1 + \|q'\| + \int_0^t \|\dot{q}'\|^2 \|w(t-s)\| ds).$ $\cdot [\|q - (q)_m\|^2 + \|\dot{q} - (\dot{q})_m\|^2]^{\frac{1}{2}}$ $\leq M_1 \Big(1 + \|q_m\| + \int_0^t \|(\dot{q})_m\|^2 \|w(t-s)\| ds$

这里 M_1 为常数。取 $L \ge M_1^2$,从上式知

$$\|\varepsilon_i\|^2 \le b_t [\|q - (q)_m\|^2 + \|\dot{q} - (\dot{q})_m\|^2] \le b_t \varepsilon_i^2.$$
 (21)

把式(21)代人式(20),就证明了式(14)。证毕。

参考文献

 $\cdot [\|q - (q)_m\|^2 + \|\dot{q} - (\dot{q})_m\|^2]^{\frac{1}{2}},$

- Hsia, T. C., Adaptive Control of Robot Manipulators——A Review, IEEE Int. Conf. on Robotics and Automation. San Francisco, California, 1986.
- [2] Craig, J. J. P. Hsu and Sastry, S., Adaptive Control of Mechanical Manipulators, IEEE Int. Conf. on Robotics and Automation, San Francisco. California, 1986.
- [3] Middleton, R. H. and Goodwin, G. C. Adaptive Computed Torque Control for Rigid Link Manipulators, IEEE Conf. on Decision and Control, Athens, Greece, 1986.
- [4] Hsu, P., S. Sastry, M. Bodson and B. Paden, Adaptive Identification and Control of Manipulators Without joint Acceleration Measurements, IEEE It. Conf. on Robotics and Automation, Raleigh, North carolina, 1987.
- [5] Slotine and WlLi, Compositte Adaptive Control of Robot Manopulators, Automatica, 25(1989), (4), 509—519.
- [6] Fu, K. S., Gonzalez R. C. and Lee, C. S. G., Robotics: Control, Sensing, Vision, and Intelligence, 1987, McGraw Hill.

INFLUENCE OF MEASUREMENT ERRORS ON ADAPTIVE CONTROL OF ROBOT ARMS

Guo Lei Chen Hanfu

(Institute of Systems Science, Academia Sinica, Beijing 100080)

ABSTRACT

The dynamics of the robot arm depends on the generalized coordinate q and its first and second derivatives, on the generalized moment and on the unknown parameter θ as well. The measurements of q and \dot{q} are corrupted with noise. The control purpose consists in forcing q to follow a desired trajectory q_a . This paper provides an adaptive control based on parameter estimation for θ and shows that the averaged tracking error is of the same order as the measurement error.

Key words: robot arm; adaptive control; measurement error.