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Abstract. We demonstrate that a large class of doubly stochastic time series models 
are geometrically ergodic, and hence admit second-order stationary solutions. 

We also establish a version of the strong law of large numbers, the law of the 
interated logorithm and the central limit theorem for the stochastic processes under 
consideration. 
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1. INTRODUCTION AND DEFINITIONS 

In this paper we consider the time series model 

Y k + l  = O T V k  + v k + l  (1) 
where Y is an independent and identically distributed (i.i.d.) process on R, 8 
is a stochastic process taking values in R", both defined on a probability 
space ( S Z ,  r;F, P), and Q is the regression sequence q$ = ( y k ,  . . . , Y " - ~ ) ,  with 
initial condition q0 E R" given. 

The process y defined by (1) is called a doubly stochastic autoregressive 
process of order m (DSAR (m)) (Tjmtheim, 1986). Tjostheim shows that this 
class of models contains a broad range of popular nonlinear time series 
models. A survey of recent results may be found in the introduction of 
Pourahmadi (1986). 

Pourahmadi also presents sufficient conditions under which a stationary 
second-order process satisfying (1) exists in the scalar case. The approach 
taken is to impose conditions on the stochastic process { Y k  4 log O i ,  k 5 1). 
Under either of the hypotheses (i) Y is the output of a finite dimensional 
linear system driven by white noise and (ii) Y is a stationary Gaussian 
process, it is shown that a sufficiently strong moment condition on Y implies 
the existence of a second-order stationary solution to the time series model 
under consideration. 

Recently, Karlsen (1990) used a decoupling inequality due to Klein et al. 
(1981) to obtain an elegant stability proof (and hence also a second-order 
stationary solution for the model) for a class of stationary Gaussian parameter 
processes. 
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The goal of this paper is to find explicit moment conditions on the process 
8 which ensure the existence of an L,-bounded solution to (1) for a given 
p 3 2. We are principally interested in the existence of stationary solutions, 
and conditions under which a stationary solution is unique. Our approach is 
to construct a Markov chain CP which can serve as a nonlinear state process 
for (1) and apply recent results from the ergodic theory of Markov chains on 
topological state spaces. 

A barrier in any analysis of this kind is stability. In the stability proof 
below we construct a test function on the process @ which can be seen as a 
stochastic generalization of the Lyapunov functions used in the stability 
theory of, for instance, La Salle and Lefschetz (1961). The existence of the 
appropriate test function will be seen to imply stability of the model and the 
existence of a unique invariant probability for CP. 

This approach takes us far beyond our goal. We find that the underlying 
distributions of the process y will converge to the unique stationary solution 
at a geometric rate for arbitrary initial conditions of the model. Furthermore, 
the central limit theorem, the law of large numbers and the law of the 
iterated logorithm are obtained as a by-product. These sample path results 
are significant since it is unlikely that tight bounds on the moments of y can 
be obtained analytically, but these results show that they can be estimated by 
simulations. 

There is at present a great deal of interest in the application of Markov 
chain techniques to the analysis of time series models and, in particular, 
conditions which ensure geometric ergodicity of the model subject to analysis 
(Chan, 1986; Mokkadem, 1987; Diebolt and Gudgan, 1990; Tjplstheim, 1990). 
It is believed that the techniques introduced in this paper are sufficiently 
general that they may be extended to other stochastic models such as are 
commonly found throughout the applied sciences. Some extensions of the 
results presented here may be found in Meyn (1991). Further extensions of 
the theory presented herein, as well as a number of examples from time 
series, queueing theory and estimation and control theory will be forthcoming 
(Meyn and Tweedie, 1991). 

We assume in this paper that 8 itself is the output of a stable linear state 
space model. We begin with the scalar case so that the joint process (y, 8) 
can be expressed as 

e k + l  = a e k  + e k + l  101 < 1, (2) 

(3) Y k + l  = 0 k Y k  + u k + l *  

The original formulation (1) will be treated in Section 6. We remark that 
more general parameter models, including autoregressive moving-average 
(ARMA) models, can be treated using the same methods. See Meyn and 
Guo (1990) for a set of related results for adaptive systems. 

We henceforth assume that the model (2), (3) satisfies the following 
conditions. 
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(Al) w (e, v ) ~  is i.i.d. and independent of (6,,, y o ) ,  and e and v are 

(A2) The distribution pw of wk, with k 2 1, is nonsingular with respect to 

(A3) For some p 2 2, 

mutually independent. 

Lebesgue measure. 

Under these conditions, the joint process @ k  = (!;), k 2 0, is a Markov 
chain with stationary transition probabilities P k ,  k 5 1, defined so that for 
any bounded measurable function f on the state space X R2 

It is well known that a stationary solution to (3) will exist if the existence of 
an invariant probability can be established for #, i.e. a probability n on 
g ( X )  satisfying the defining property 

n(B) = I n ( d x ) P ( x ,  B )  B E B ( X ) .  

We say that a Markov chain is geometrically ergodic if an invariant 
probability exists and is unique and there exists p < 1 and a function 
R : X +  R+ such that 

~ P " ( X ,  A )  - n(A)I C R ( x ) p k  x E X ,  A E g ( X ) ,  k E Z+. 

We state here the main results of the paper. Our first result establishes 
geometric ergodicity of the model. 

THEOREM 1.1. Suppose that conditions (A1)- (A3) hold. Then # is geomet- 
rically ergodic, and hence possesses a unique invariant probability n. For every 
initial condition x E X ,  

. N  

IE,(yi) - J y2dnI c M(x)pk k 2 0 

where M is a continuous function on X and 0 C p < 1. 

In addition, we obtain a version of the central limit theorem and the law of 
the iterated logorithm. 

THEOREM 1.2. Suppose that conditions (A1)-(A3) hold. Then the limit 
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exists and is finitei The quantity w2 may also be expressed as 
m 

w2 = T. E,t{YO - EiT(YCJ)(Yk - E,(Yk))l ( 5 )  
k=-m 

where the sum converges absolutely. The following limits hold for each initial 
condition. 
0) 

1 
n - m  k=l 21T 

(ii) The limit inifimum and limit supremum of the normalized sum 
1 n 

are respectively -1 and +I with probability one. 

In addition to these results, we can establish geometric mixing for the 

In the next section we establish a number of results for the Markov chain 
process y. For details the reader is referred to Meyn and Tweedie (1992). 

@ which will lead to a proof of these results. 

2. ANALYSIS OF A MARKOVIAN STATE PROCESS 

Let p w  be decomposed as 

~w = Apac + (1 - A ) C L ~  (6)  
where the probability pac is absolutely continuous with respect to Lebesgue 
measure, the probability p1 is singular with respect to Lebesgue measure and 
0 < A S 1. Define the Markov transition functions P and T on ( X ,  B(X)) for 
(6, y )  E X and a measurable function f :X + R by 

Pf(6 ,  Y )  = I f ( a 6  + el,  6Y + ul)dpw(el, 4)  

Tf (6 ,  Y >  = I f ( a 6  + el, + Ul)dPac(el, u1). 

It is easy to check that P = P' is the Markov transition function for the 
Markov chain @, and that for all x E X, A E B(X) we have 

P ( x ,  A )  3 AT(x, A )  (7) 
The following result shows that in fact AT is a continuous component 
(Tuomineu and Tweedie, 1979; Meyn and Tweedie, 1992, 1991) of the 
Markov transition function P. 
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LEMMA 2.1. The Markov transition function T has the strong Feller prop- 
erty. That is, for any bounded measurable function f :  X + R, the function Tf 
is continuous. 

PROOF. If f : X +  R is bounded and measurable, then it follows from a 
result of Rudin (1974) that, if ( O k ,  Y k )  + (Om, y,), 

f ( a O k  + e l ,  8kyk + 01) + f(cl.8, + e l ,  o m y m  + ~ 1 )  as k + ~4 

for almost every (e l ,  u l )  E R2[pCl'eb]. Hence by the dominated convergence 
theorem and the definition of T ,  

= Tf ( O m  3 y m ) 
which is the desired result. W 

Lemma 2.1, together with the results of Tuominen and Tweedie (1979) and 
Meyn and Tweedie (1992), allows an application of the rich theory of 
irreducible Markov chains, as described in Nummelin (1984) for instance, 
which is based upon the notion of status sets (Tweedie, 1976). A particular 
instance of a status set is a small set (Nummelin, 1984), where we call a set 
S E %(X) small if there exists a non-trivial measure 
such that 

Z"(x, B )  3 y (B)  B E B ( X ) ,  x 

We say that # is v-irreducible (or just irreducible 
bility measure v is unimportant) if 

m 

G(x, B )  b Pk(x ,  B )  > 0 
k=l  

Y on 3 ( X )  and I E Z, 

E s. 
if the specific irreduci- 

for every x E X and every set B E g ( X )  of positive v-measure. An irredu- 
cible Markov chain can be further classified as either periodic or aperiodic, 
just as in the discrete state space case (Nummelin, 1984). 

Here we establish the existence of a family of small sets for the Markov 
chain # and prove that the chain is irreducible. 

 LEMMA^.^. Suppose that conditions (Al)  and (A2) hold for the model (2), 

(i) there exists x* E X ,  (e*, u*) E supp pw, such that, when 

(ii) the Markov chain @ is pirreducible with q(*) 2 T ( x * ,  a ) ;  

(iii) every compact subset of X is small, and hence # is aperiodic. 

(3). Then 

(ek,  u k )  = (e*, u*) for all k, then for all initial conditions @k + x *  as k + 00; 

PROOF. From condition (A3) and Jensen's inequality it follows that 
exp [pE{lell/(l - la[)}] < exp(p) and hence E(lell) < 1 - la[. This implies 
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the existence of (e*,  v*) E supp f iw with le*l < 1 - lwl. If, with this choice of 
(e*, u*), we set (ek,  uk) = (e*, u*) for all k 3 1 then, by (2), 

e* e* 4 lim e k  = - 
k-m 1--Ly 

for every initial condition a,-, E X. Hence, by (l) ,  

and this proves (i). To prove (ii), let A E G ( X )  have positive pmeasure. By 
Lemma 2.1 there exists an open set N containing x*  such that infxENP(x, A )  
> 0. Also, by (i), G(y, N) > 0 for all y E X which shows that 

G(y, A )  a I N G(y, dz)f‘(z ,  A )  > 0, 

proving (ii) . 
Since Q, is pirreducible, there exists a small set A E B ( X )  with d A )  > 0, 

and hence an open set N containing x*  with infXENP(x, A) > 0. It follows 
from Proposition 2.11 of Nummelin (1984) that N is also small. 

X be compact. A slight strengthening of the results (8) and (9) 
may be used to show that, for some k E h,, Pk(x, N) > 0 for every x E F. 
Since P has the Feller property, the function Pk( - , N) is lower semi-continu- 
ous (Cogburn, 1975) and hence infxEFPk(x, N) > 0. Since N is small, 
Proposition 2.11 of Nummelin (1984) may be applied once more to show that 
F is small. 

Let F 

3. Lp STABILITY 

Here we establish stability of the nonliner difference equations (2), (3). 

PROPOSITION 3.1. Suppose that conditions (Al )  - (A3) hold. Then for every 
(deterministic) initial condition 

where p and y are defined in condition (A3) and 11x11, 4 E ( ( X ( ~ ) ” ~ .  

To prove this result we first expand the representation (3) and then make a 
number of estimates based upon this expansion. 

The following equality is obtained by iterating equation (3): 

First let us consider the term n%jtli. 
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LEMMA 3.1. We have the bound 

( j  3 1). 

PROOF. We have, by the estimate x G exp (-1) exp ( x ) ,  

But since, by (2), 
k k k 

we have 

Equations (11) and (12) imply the result. H 

In order to apply (10) and Lemma 3.1 to infer the Lp boundedness of y ,  
we shall require the following result. 

LEMMA 3.2. Under conditions (A1)-(A3) we have for all k a 0 

PROOF. By (2) we have 

lekl  ldlek-ll -k lekl 
k 

6 Ialkleo( + C Ialk-i\eil 
i= 1 

Hence by condition (Al) 

By Jensen's inequality and condition (A3) we have 
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and this combined with (13) implies that, for all k 3 1, 

PROOF OF PROPOSITION 3.1 From (10) and condition (Al)  we have 

By Lemmas 3.1 and 3.2, 

from which the result follows. 

4. PROOFS OF THE MAIN RESULTS USING A STOCHASTIC LYAPUNOV FUNCTION 

The proof of Theorem 1.1 and Theorem 1.2 depends on the existence of a 
certain test function on the state process (6, y), which we construct in this 
section. 

The following three lemmas allow us to construct the appropriate Lyapu- 
nov-Foster test function for the process CP. We first bound the process y .  

By (10) and Lemma 3.1 we have for all k E E+ 

k t  Uk+l denote the first squared term in (14): 

By rearranging terms we obtain 

Uk+l = 
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which implies that for all k 3 0 

U k + l  = 

(15) 
Squaring both sides of (15) gives 

2 
Ui+l = e x p ( m  14 - 2) 

Hence, using the estimate 2xy S EX' + &-'y2, we have, for any E > 0, 

Ui+l 

This implies the following result. For k E Z+, denote by Gk the a-algebra 

pk = a{@O, . . .,@k} k E Z+. 

LEMMA 4.1 Under conditions (A1)-(A3) we have, for any E > 0, 

E(Ui+llVk-l) 

Y 2 W  + d E ( W G k - 1 )  + (1 + E-l)llulll;exP(& I L ) )  k 3 0. 

Given this result we now obtain a similar result for exp [{2lal/(l - lal)}lO,(]. 

LEMMA 4.2. Under conditions (A1)-(A3) we have 

PROOF. For all k 3 0 we have, by (2), 
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To complete the proof, use the inequality xy S IaIxI"I-' + (1 - lal)y(l-lml)-l. 

Consideration of the third term in the sum (14) motivates the following 
result. 

LEMMA 4.3. For all k 3 1 we have 

The proof follows directly from conditions (Al) and (A3) and Jensen's 
inequality. 

In the following result we combine the preceding bounds to construct an 
appropriate test function. 

PROPOSITION 4.1. There exists an adapted process { ( v k ,  @ k )  : k 2 O }  such 
that 

( i )  E ( v k + l l @ k )  P v k  + R 0-s. 

for all k E Z+ and all initial conditions, where p < 1 ,  R < CQ and 6 > 0. 

PROOF. Let E be a small positive constant to be specified below, and for 
k 3 0 make the definition 

+ E 2 E ( U 2 k + l l @ k )  

+ E 3 y : .  

It is easily seen that the conditional expectation may be defined so that, for 
each k,  v k  is a continuous function of (ao,. . ., @ k ) .  When k = 0, we define 
the product 

to be equal to 1. 
For k 3 0 we have by Lemmas 4.1-4.3 and equation (14) 
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2)) 

+ c1 
where C1 S 03 is a constant independent of (Oo, yo). So, after rearranging 
terms, 

+ {y2(1 + E )  + 3E}E2E(U2k+iICFk) 

+ c1 
pvk + c1 

where p = max {la[ + y2e2(1 + E-l)l[ulll;, y2 + 3e3, y2(1 + E )  + 3 ~ } ,  and 
/3 < 1 for E sufficiently small. 

PROOF OF THEOREM 1.1 AND THEOREM 1.2. It is a consequence of Lemma 
2.2, Proposition 4.1 and Theorem 6.1 of Meyn and Tweedie (1992) that CP is 
geometrically ergodic. In particular, Q, is positive Harris recurrent and hence 
the first limit follows from the law of large numbers of Athreya and Ney 
(1980). 

The second limit follows from Theorem 6.1 of Meyn and Tweedie (1992). 
The central limit theorem and law of the interated logorithm follow from 

1 Proposition 4.1 and Theorem 9.1 of Meyn and Tweedie (1992). 

5 .  STATIONARITY WITHOUT THE EXISTENCE OF MOMENTS 

Suppose that condition (A3) is replaced by the following. 
(A3') For some 1 > E > 0 ,  

In this case the function 
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is smooth in a neighborhood of the origin with 

Hence, for all t > 0 suitably small, 

With 0 < t s E < 1, satisfying (16) fixed, observe that by (10) and Lemma 3.1 
we have 

k E Z+. 

Using (17) and repeating the argument used in the proof of Proposition 4.1 
gives Theorem 5.1. 

(17) 

 THEOREM^.^. If conditions (Al), (A2) and (A3') hold, then (0 ,  y) is 
geometrically ergodic. 

6. MULTIDIMENSIONAL MODELS 

Consider the multidimensional case (1) in which 

y k + l  = al(k)yk + * * + a m ( k ) y k - m + l  + u k + l  k 0. (18) 
Assume that the parameter process ( 8 ,  = ( a l ( k ) ,  . . ., ~ , ( k ) ) ~ }  is generated 
by the stable linear model 

so that (18) may be rewritten as 
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q k + l  = A k q k  + bUk+l. (20) 
This model will be shown to be stable by a reduction to the scalar case. 

6.1. Reduction to the scalar case 

For any positive definite matrix Q ,  let us denote the norm of a vector x as 

IxlQ = (xTQx)'D 

and the norm of a matrix A as 

We have the following simple result. 

LEMMA 6.1. Zf Q > 0 satisfies Q = ATQA + 1 ,  then 

where A,,, denotes the largest eigenvalue of Q. 

Throughout this section we assume that Q > 0 and R > 0 are solutions of 
the following Lyapunov equations: 

Q = STQS, + Z 

R = FTRF + Z 

where F is the matrix introduced in (19) and S1 denotes the shift matrix 
defined as 

It is easy to verify that Q is a diagonal matrix with diagonal entries 
(m, m - 1 , .  . ., 1). 

We may now formulate a key lemma. 

LEMMA 6.2. The following inequality holds: 

I q k l Q  x k  k a O  

where the stochastic process x is defined as xo = I qo I , So = a + PI 80 I and 

x k + l  = S k X k  + o k + l  

S k + l  = SSk + g k + l  

and where 
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PROOF. By (20) we have 

l Q ) k + l l Q  I S 1  + [ 3 1QlQ)kIQ + l b u k + l l Q  

Hence, using the notation introduced in the lemma, we have by Lemma 6.1 

Hence, since by assumption m0 = So, we have (Yk d 8k for all k E Z+. Also by 
assumptions we have I Q ) ~ \ ~  = x o ,  which by (21) implies that 

1Q)klQ xk k E b+ rn 

6.2. Geometric ergodicity 

With Lemma 6.2 at hand we are in a position to generalize Theorem 1.1. The 
multidimensional case presents some technicalities with respect to irreducibil- 
ity. Under conditions (Al) and (M), the process 8 evolving on R" will be 
geometrically ergodic if the matrix [F"-lGl.  . .IFGIG] has full row rank. 
That is, the pair of matrices ( F ,  G) is controllable. If this is not the case, let 
S denote the range space of this matrix, which is known as the controllable 
subspace in the linear systems literature. The set S is absorbing: if Bo E S, 
then 6k E S for all k E Z+. 

We take X = S X R as the state space for the process a, which under 
condition (Al) is a Markov chain with stationary transition probabilities. 

The following result follows from the same argument used in Lemma 2.2, 
by considering the rn-step transition function P" . 

LEMMA 6.3.  Suppose that conditions (Al)  and (A2) hold for the model (18), 
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(19). Then the Markov chain (6, y )  is irreducible and every compact subset of 
X is small, and hence Q, is aperiodic. 

We may now state the main result of this section, which uses the following 

(A4) For some p =- 2, 

moment conditions on the ‘disturbance process’ (e, v) .  

THEOREM 6.1. Suppose that conditions (Al),  (A2) and (A4) hold for the 
Markov chain CP described above. Then the conclusions of Theorem 1.1 
follow. 

PROOF. Theorem 6.1 is a consequence of Lemma 6.3, Proposition 3.1 and 
Proposition 4.1 applied to the bilinear model defined in Lemma 6.2. These 
results allow us to use the same argument that was used to prove Theorem 
1.1. I 
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