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The Role of Model Validation for Assessing
the Size of the Unmodeled Dynamics

Lennart Ljung,Fellow, IEEE, and Lei Guo,Senior Member, IEEE

Abstract—The problem of assessing the quality of a given, or es-
timated, model is a central issue in system identification. Various
new techniques for estimating bias and variance contributions to
the model error have been suggested in recent literature. In this
contribution, classical model validation procedures are placed at
the focus of our attention. We discuss the principles by which we
reach confidence in a model through such validation techniques
and also how the distance to a “true” description can be estimated
this way. In particular, we stress how the typical model validation
procedure gives a direct measure of the model error of the model
test without referring to its ensemble properties. Several model
error bounds are developed for various assumptions about the
disturbances entering the system.

Index Terms—Model approximation, model validation, system
identification.

I. INTRODUCTION

M ODEL validation always plays a major role in system
identification as a basic instrument for model structure

selection and as the last “quality control” station before a
model is delivered to the user [9], [15].

Methods for robust control design have pointed to the need
for reliable model error bounds, for linear models preferably
described as bounds on the frequency functions. A large
number of approaches have been developed for this; see, e.g.,
[7], [8], [4], [3], and [16]. For recent work on model validation
in a worst-case context see [12] and [14]. Many of the con-
tributions use deterministic frameworks to describe the noise
and disturbances appearing in the system in order to avoid
probabilistic, “soft,” bounds. Approaches like “unknown-but-
bounded” noises (the disturbances are assumed to be bounded,
but no other assumptions are invoked), see, e.g., [13], lead to
set-membership procedures which determine all models that
are consistent with the noise bound given; see, e.g., [1], [11],
and [17].

In this contribution we shall take a different perspective.
We place model validation in focus and try to interpret several
identification concepts and approaches as well as model quality
aspects through the “eyes” of model validation.

We place ourselves in the following situation. A model is
given and is denoted by (a more specific notation will follow
later). We are also given a data set consisting of measured
input–output data from a system. We do not know, or do not
care, how the model was estimated, or constructed, or given.
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We might not even know if the data set was used to construct
the model. (However, some issues will turn out to depend on
this fact.)

Our problem is to figure out if the model is any good
at describing the measured data and perhaps also to give
a statement how “far away” the model might be from a
true description. We would like to approach this problem as
naked as possible, and remove common covers such as “prior
assumptions,” “probabilistic frameworks,” “worst case model
properties,” and the like. With what are we then left?

Well, a natural start is to consider the model’s simulated
response to the measured input signal. Let that simulated
output be denoted by We would then compare this model
output with the actual measured output and contemplate how
good the fit is. This is indeed common practice and is perhaps
the most useful, pragmatic way to gain confidence in (or reject)
a model. This will be the starting point of our discussion.

We shall first, in Section II, discuss some typical statistics
around the measured and simulated outputs. Note that “statis-
tics” here means some bulk, numerical descriptions of the fit;
this has nothing to do with probability theory. In particular, we
shall discuss conventionalresidual analysisin this framework.

Section III gives the main theorem: a connection of the
algebraic nature between the model error, the input signal,
the model validation test quantity, and a noise/correlation
term. The basic unknown quantity in this expression is the
noise/correlation term. In Sections IV and V the size of
this term is estimated in a deterministic and a stochastic
framework, respectively.

A. Some Notations

We shall use the following notation. The input will be
denoted by and the output by The data record thus is

(1)

The input sequence will throughout
this paper be considered as a deterministic sequence, unless
otherwise stated. We denote its periodogram by

(2)

Here denotes the absolute value of a scalar. We use

to denote the Euclidian norm of a vector, while

is a weighted quadratic norm. For a matrix, is the matrix
norm induced by the Euclidian vector norm.
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The given model will be assumed to be linear, and a
function of the shift operator in the usual way is The
simulated output will thus be

(3)

The model may contain a noise assumption, typically in the
form of an additive noise or disturbance , with certain
properties. It would then be assumed that the actual output is
generated as

(4)

(We append a subscript to stress the difference with the
measured output.) The model could contain some “prejudice”
about the properties of but this is not at all essential to
our discussion. A typical, conventional assumption would be
that is generated from a white noise source through a
linear filter

(5)

Most of the model validation tests are simply based on the
difference between the simulated and measured output

(6)

For added generality, we shall consider possibly prefiltered
model errors

(7)

For example, if the model comes with a noise model (5),
then a common choice of prefilter is since
this would make equal to the model’sprediction errors.
This choice of prefilter is, however, not at all essential to our
discussion.

In any case we shall call the model residuals(model
leftovers).

II. M ODEL VALIDATION : STATISTICS AROUND THE RESIDUALS

Typical model validation tests amount to computing the
model residuals and giving some statistics about them. Note
that this as such has nothing to do with probability theory. (It
is another matter thatstatistical model validationoften is com-
plemented with probability theory and model assumptions to
make probabilistic statements based on the residual statistics;
see, e.g., [2].)

The following statistics for the model residuals are often
used:

• the maximal absolute value of the residuals

(8)

• mean, variance, and mean square of the residuals

(9)

(10)

(11)

• for correlation between residuals and past inputs, let

(12)

and

(13)

Now form the following scalar measure of the corre-
lation between past inputs (i.e., the vector and the
residuals:

(14)

Note that this quantity also can be written as

(15)

where

(16)

with

(17)

Now, if we were prepared to introduce assumptions about
the true system (the measured data ), we could use the
above statistical measures to make statements about the re-
lationship between the model and the true system, typically
using a probabilistic framework.

If we do not introduce any explicit assumptions about the
true system, what is then the value of the statistics (8)–(14)?
Well, we are essentially left only withinduction. That is to
say, we take the measures as indications of how the model
will behave in the future also: “Here is a model. On past
data it has never produced a model error larger than 0.5. This
indicates that in future data and future applications the error
will also be below that value.”

This type of induction has a strong intuitive appeal.
In essence, this is the step that motivates the “unknown-but-

bounded approach.” Then a model or a set of models is sought
that allows the preceding statement with the smallest possible
bound or perhaps a physically reasonable bound.

Note, however, that the induction step is not at all tied
to the unknown-but-bounded approach. Suppose we instead
select the measure as our primary statistic for describing
the model error size. Then the least squares (maximum likeli-
hood/prediction error) identification method emerges as a way
to come up with a model that allows the “strongest” possible
statement about past behavior.

How reliable is the induction step? It is clear that some sort
of invariance assumption is behind all induction. To have some
confidence in the induced statement about the future behavior
of the model, we thus have to assume that certain things do
not change. To look into the invariance of the behavior of,
it is quite useful to reason as follows. [This will bring out the
importance of the statistics (14)].



1232 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 9, SEPTEMBER 1997

It is very useful to consider two sources for the model
residual one source that originates from the input and
one that does not. With the (bold) assumption that these two
sources are additive and the one that originates from the input
is linear, we could write for some transfer function

(18)

Note that the distinction between the contributions tois fun-
damental and has nothing to with any probabilistic framework.
We have not said anything about except that it would
not change if we changed the input We refer to (18)
as the separation of the model residuals intomodel errorand
disturbances.

Division (18) shows one weakness with induction for mea-
sures like and going from one data set to another.
The implicit invariance assumption about the properties of
would require both the input and the disturbancesto have
invariant properties in the two sets. Only if we have indications
that is of insignificant size, could we allow inductions from
one data set to another with different types of input properties.
The purpose of the statistics in (14) is exactly to assess
the size of We shall see this clearly in Section III. (One
might add that more sophisticated statistics will be required to
assess more complicated contributions fromto .)

In any case, it is clear that the induction about the size
of the model residuals from one data set to another is much
more reasonable if the statistics have given a small value
[“small” must be evaluated in comparison with in (11)].

We might add that the assumption (18) is equivalent to
assuming that the data have been generated by a“true
system”

(19)

where

(20)

III. T HE MAIN THEOREM

The question now is, what can be said about the model error
based on the information in ? Ideally we would like to

give bounds on valid for each frequency This
will not be possible without detailed prior knowledge of the
system, but one has to be content with bounds on weighted
integrals like

In, e.g., [9, ch. 12], such measures are discussed in some detail
and also how the choice of weighting functionis related to
the intended use of the model (prediction, simulation, control,
etc.).

The procedure to obtain such bounds will be to apply the
residual analysis of Section II. Form

and then as in (12)–(14). In these calculations replace
outside the interval by zero. Then our main technical
result is the following theorem.

Theorem 3.1:Assume that the data set in (1) is subject
to (19). Let be a given model, and let be formed from
the data by (12)–(14). Assume that there exists asuch that

Then the model error (20) obeys

(21)

Here:

• ;
• ;
• is the impulse response of ;
• is the periodogram (2);
• ;
•

If the input is tapered so that for
the number can be taken as zero.

Proof: See Appendix A.
Let us make a number of comments.

• The theorem is really just a statement about the re-
lationship between the sequences

and on the one
hand and the given transfer functions
together with the given sequences on the other
hand. There are as yet no stochastic assumptions whatso-
ever and no requirement that the “model”may or may
not be constructed from the given data.

• By the choice of prefilter we can probe the size of
the model error over arbitrarily small frequency intervals.
However, by making this filter a very narrow band,
we will also typically increase the size of the impulse
response tail. (Narrow band filters have slowly decaying
impulse responses.)

• Note also that if and are subject to
then and

will be subject to where
This means that the theorem could

also be applied directly using the sequencesand
giving an alternative bound on the model error which
could be both stronger and weaker than the one obtained
with the filter explicitly present as in Theorem 3.1.

• If the model has been estimated as anth-order
FIR (finite impulse response) model from the data set

using the least squares method, then by construction

• For the quantities on the right-hand side, we note that
is known by the user, as well as and The tail
of the impulse response beyond lag is typically not
known. It is an unavoidable term since no such lag has
been tested. The size of this term has to be dealt with by
prior assumptions.

• The only essential unknown term is We shall call this
“the correlation term.” The size and the bounds on this
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term will relate to noise assumptions, and we will deal
with these in some detail in the two following sections.

• Choice of M: Note that the right-hand side of (21) is
independent of which is a user choice. To get the best
possible bound, one can thus try a differentand pick
the one that minimizes the bound. Note that typically
increases like (it is a sum of positive terms), while
typical bounds on increase like These terms that
increase with should be balanced against the last term
of (21), which decreases with

IV. NONPROBABILISTIC BOUNDS ON THECORRELATION TERM

The term measures the correlation between the input
and the filtered disturbance In a deterministic setting

it is not so easy to formalize what we should mean by
“uncorrelated disturbances.” One could of course postulate that
the disturbance sequence that we expect to enter the process
is such that quantities like decay like or
or in any other way. That would give us hard model error
bounds in Theorem 3.1.

We shall instead consider two other bounds onthat stem
from less complex assumptions, one that is always valid and
one that is valid for periodic inputs.

A. A Simple Bound

Suppose that is any sequence and all that is known
about it is an amplitude or an energy bound. By Lemma B.1

(22)

A bound on disturbance power or amplitude will thus directly
give a hard model error bound in (21).

Combining it with FIR-modeling, the result can then be used
in Theorem 3.1 to yield, for example, the following explicit
result.

Theorem 4.1:Assume that a tapered and bounded input
(the trailing values of are zero,

and ) has been applied to the system

(23)

where Let be constructed from the data as
an th-order FIR model, using the least squares method. Then

(24)

where is the impulse response of and is
the periodogram of the input.

Remark: A lower bound on the matrix is not required
for this result.

B. The Case of Periodic Input

It is of course desirable that the quantity should be as
small as possible. We noted that the variable is a measure
of the “correlation” between the noise sequence and the
input The Schwarz’ type inequality (22) is the most
conservative bound allowing all kinds of relationships between
the two signals. In fact, as always, equality in this bound
is achieved when the two signals are exactly “parallel.” To
get beyond this bound we thus have to invoke some kind
of independence properties between and As soon
as we introduce a stochastic framework for the signals, it is
easy and “classical” to introduce independence, but even in
a deterministic perspective some things can be obtained. One
way is to assume that the input is periodic and that the noise
term is not. We have the following result.

Lemma 4.1:Under the notation of Theorem 3.1, assume
that the input is periodic with period then the following
bound holds:

(25)

where is the discrete time Fourier transform of

(26)

and

(27)

The proof is given in Appendix B. Note that the requirement
that effectively means that

The lemma says that for periodic input and for noises
with suitably smooth spectrum, the model error decays like

except that a factor with logarithmatic order of
increasing is neglected. This is essentially the same result that
is obtained in the classical stochastic framework (see below).

With this lemma used in Theorem 3.1, the only remaining
unknown quantity is the noise periodogram It should
also be noted that the typical model validation companion test,
the one that checks the whiteness of the residuals, indeed is a
way to evaluate this quantity and also secure the flatness of the
spectrum of This test consequently links up with an attempt
to quantify the total model error according to Theorem 3.1
and the lemma above.

For the periodic input case, there is apparently also a close
link between Theorem 3.1, the above lemma, and some basic
results about the empirical transfer function estimate (ETFE).
In, e.g., [9, Sec. 6.3], it is shown that

vanishing term for periodic input.

(28)

Here and are the Fourier transforms of the input and

the noise, and the ETFE is the ratio between the output and
input Fourier transform. For a periodic input and a nonperiodic
noise, the error thus decays like at those frequencies
present in the input.
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V. PROBABILISTIC BOUNDS ON THE CORRELATION TERM

The division of the model residual (18) into a model
error part and a disturbance part clearly manifests that the
disturbance should have nothing to do with the input. To for-
malize this notion, it is customary to introduce a probabilistic
framework and assume thatand are mutuallyindependent
sequences of random variables. It might be stressed that it is
this independent assumption that is the essential contribution
of the probabilistic framework and that gives the basic model
properties.

If the model is obtained from a data set, independent
of , then the results below will give direct probabilistic
bounds on the given model’s error. If the model has been
estimated from , the results are more difficult to interpret
since there will be correlation between the termsand

A. Direct Probabilistic Bounds on

We shall in this section assume that is a stationary
stochastic process with zero mean, independent of the input
(which we anyway treat as a deterministic sequence). The
covariance function of is assumed to decay so fast that
its Fourier transform, i.e., thespectrum, is defined. It will be
denoted by Under these assumptions, becomes a
random variable. According to Lemma B.1

(29)

Moreover, under some weak assumptions the central limit
theorem can be applied to show that

(30)

converges in distribution to the normal distribution with zero
mean and covariance matrix, where, according to (29)

where

(31)

From this we can develop direct probabilistic bounds for
in (21), which also means that we obtain bounds for the
model error. A conservative bound is, e.g., obtained from the
implication

for some

(subscript denotes the th component). Since is
asymptotically distributed with one degree of freedom, we
find that denotes the probability of the event

(32)

where the last symbol is the probability that a-distributed
random variable with one degree of freedom is larger than the
indicated argument and is defined by (31).

B. Bounds with Probability One

Let us assume that either:

1) is bounded deterministic and is a
zero mean stationary autoregressive moving average
(ARMA) process;

2) is bounded deterministic and is a zero
mean stationary ARMA process.

Then, the correlation term in Theorem 3.1 can be
estimated by the “law of the iterated logarithm” (see, e.g., [5])

(33)

for a random variable with bounded variance. Together
with some assumption about the decay of the tail of the
impulse response and the measured value of, this bound
gives quite an explicit bound for the model error in (21).

Note that, as indicated by (33), a bounded deterministic
disturbance does not influence the asymptotic error
bound, as long as the input sequence is suitably chosen
(see also, [5] and [6]). This essentially improves the related
error bounds derived in the existing deterministic framework
of system identification.

C. Hard Bound if the Model Validation Test Passes

We can twist the probabilistic bounds of Section V-A
around to give hard bounds on the model error, in case the
model validation test passes with a certain probability.

Let us first describe the typical model validation test. If
is white noise and independent of then defined by

(16), will be asymptotically normal with covariance matrix
Hence the test variable

(34)

with

(35)

will be asymptotically -distributed with degrees of
freedom

(36)

The validation procedure is thus to form (34) and check its
size in -confidence level tables.

Now, if, in a given case turns out to be less than a
chosen test level we say that the hypothesis thatand are
uncorrelated can be accepted—there is no conclusive evidence
against it. If such a test passes with a certain probability, we
can draw some conclusions about the actual model error. To
develop such a result, we first prove the following lemma.

Lemma 5.1:Suppose

(37)

where and are random variables and and are
deterministic quantities. Suppose that

(38)
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Then

(39)

Proof: Multiply (37) with the indicator function for
the event

Then take expectation and use the Schwarz’ inequality

which proves the result.
Based on this result and on Lemma B.1 we can formulate

Theorem 3.1 as follows.
Theorem 5.1:Assume that the data set in (1) is subject

to (19). Assume the input is deterministic and that is a
stationary stochastic process with spectrum Let be
a given model, independent of , and let the test quantity

be formed from the data by (12)–(14) and (34). Assume
that Perform the test

Assume that this test passes with probability at leastThen
the model error (20) obeys

(40)

Here and are the numbers associated with the test, and
and are defined as in Theorem 3.1, and the

same comment about and input tapering applies here also.
Proof: Apply Lemma 5.1 to (21). Write as ,

and identify with and with in the lemma.
Note that (40) is a hard bound statement about the error

of the (given or estimated) model It is true that we have
to assume that the test passes with a certain probability, and
this will of course not be easy to verify. By performing a
number of validation tests on different data sets, however, we
get some insight in this probability.

D. Model Mean-Square Error Bounds

So far we have only made statements about one particular,
given model If the model is given, and independent of the
test data (i.e., it has not been estimated from this data set),
there is really no reason to look into any ensemble properties.

The situation is different if the model has been estimated
using It will then depend on the-sequence. All inequal-
ities still hold, and it is meaningful to take the expectation to
look into the average properties of the model.

Some care has to be exercised regarding the tail term with
the impulse responses of the model error. To deal with this we
introduce the following procedure.

1) Assume that a prior bound is known for the tail of the
impulse response of the true system

(41)

2) Any produced model is projected so that the tail of the
model’s impulse response is also bounded as in (41).

3) Pick a test length
4) Pick a test level and estimate models in your favorite

model classes (subject to step 2) above) from until
a model is found that passes the validation test

(42)

for the data [ defined by (14)]. For typical,
sufficiently large model classes it is always possible to
achieve (42). For example, an finite impulse response
model of length gives

For models found in this way we have the following result.
Theorem 5.2:Assume that the data set in (1) is subject

to (19), where the tail of the true impulse response is bounded
as in (41). Let be any model estimated from the data
according to the procedure outlined above. Then the model’s
mean-square error obeys

(43)

Here and are defined as in Theorem 3.1. Moreover,
is the test limit for the validation and is defined by

(41), and is the spectrum of
Proof: Square (21) and take expectation. Use Lemma B.1

for the term. Then use that the impulse response of the
model error is less than the sum of the responses of the true
system and the model. That concludes the proof.

The theorem tells us that the model mean-square error
is bounded by two terms: one that decreases as and
one that depends upon the tail of the impulse response. For
a tradeoff between these two contributions, the best bound
is obtained by choosing so that For an
exponentially stable system which means that
should be chosen as proportional to That gives a total
mean-square error bound that decays like

VI. CONCLUSIONS

In this paper we have studied what a typical model valida-
tion test implies in terms of the model error, expressed in the
frequency domain.

There has been considerable interest lately in quantifying
model quality in terms of bounds on its frequency function,
e.g., [7], [8], [4], [3], and [16]. A substantial part of that
literature deals the bias and variance contributions to the
mean-square error. The variance term is easily handled using
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“classical” probabilistic estimation theory (provided the bias is
negligible). It is a much more difficult task to estimate the size
of the bias error, and various approaches have been suggested
to deal with this.

Our main result, Theorem 3.1, gives a somewhat different
perspective. It shows that a traditional model validation test
immediately gives a “hard” bound on an integral of the total
frequency domain model errorfor the actual model under test.
There is consequently no real need to look into the ensemble
properties. Indeed, it is much more natural to have a statement
directly about the actual model with which we are working.

It is true that the hard bound depends on some prior
information (the decay of the true impulse response function)
and a term that reflects knowledge/assumptions about
the noise in the true system. We have shown how the latter
term can be bounded, with hard bounds, in probability and in
the mean square under various noise assumptions, including
purely deterministic ones.

Some numerical illustrations of how the results can be used
are given in [10].

The model error bound does not come pointwise in the
frequency domain. In fact, based on data and -lag tests,
we can penetrate the frequency domain only up to a certain
resolution. This is manifested as the bound on integrated
versions of the model error. The user has a certain amount
of freedom to focus on narrow frequency regions using the
prefilter For given and these regions cannot, however,
be made arbitrarily narrow, since the tail term [last term in
(21)] would increase as the pass band ofnarrows. This,
again, is unavoidable, in light of the uncertainty principle
between frequency resolution and data record length.

APPENDIX A
PROOF OF THEOREM 3.1

A.1 Some Preliminaries

We shall use the following lemma.
Lemma A.1: Let

(44)

Assume that

(45)

Let

and define

and

(46)

Then for

(47)

If the input is tapered, so that are all
zero, then can be taken as zero.

The proof of the lemma will be given at the end of this
appendix.

A.2 Proof of the Theorem

Let

and

(48)

Then

Thus

(49)

where

and is defined in the theorem.
By Lemma A.1 we have that

which, together with (49), proves the theorem.

A.3 Proof of Lemma A.1

Denote

Then

(50)
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The second term is bounded by

(51)

under the assumptions of the lemma. Here, for convenience,
we introduced the notation

(52)

Inserting (50) into (46) gives

(53)

where we have used Lemma B.1 and (51) for the last inequal-
ity.

Let us now turn to the quantity First define

if
else.

Then

Let

so that

The element of is

so

(54)

(Note: If the input is tapered as defined in the theorem, this
bound is actually zero.)

Let be the Toeplitz matrix built up from analo-
gously to Then

(55)

This gives that

(56)

where, using (55) and the condition

(57)

Let us define the -norm of any complex function on
as

(58)

By (56), (57), and the definition of we then have

(59)

This implies that [by (52)]

(60)

Substituting this into (53), we have

(61)

which proves the desired result.

APPENDIX B
BOUNDS ON THE CORRELATION TERM

We shall in this Appendix study the term in Theorem
3.1 and develop a few bounds for it. Consider the quantity

(62)

where

(63)

Assume that is a sequence of column vectors of length
We have the following bounds on this quantity.

Lemma B.1: Let be defined by (62)–(63). Then:

1) ;
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2) assume that is a stationary random process with
spectrum independent of Then

(64)

Proof: Set

(65)
Then

(66)

Let Then so that the
eigenvalues of are either zero or one. Hence

(67)

which proves claim 1) of the lemma.
We now turn to claim 2). By the properties of we know

that there is anorthogonalmatrix

(68)

such that

(69)

Hence

(70)

Taking expectation and using the identity

(71)

we have

(72)

since This completes the proof.

Lemma B.2: Let be defined by (62) and (63), and

assume that Assume also that

where is a periodic sequence with periodicity

Then

(73)

Here is the periodogram of

Proof: We have

Let us consider the terms in the last factor. Writeas

where means the integer part of Then
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Here we defined

(Note that the expression in fact is independent of We
shall soon establish that

(74)

We can now collect this bound together with the inequality
above and (74) to find that

which gives the desired result of the lemma.
It now only remains to establish (74). The integrand in the

definition of can be summed to

It is easy to see that the integral over this function, with
periodicity will in fact be independent of Let us take

The denominator is then equal to Jordan’s
inequality

for

thus gives that

We also have that the integrand is bounded by its maximal
value (obtained for

We now have

REFERENCES

[1] J. R. Deller, “Set membership identification in digital signal processing,”
IEEE ASSP Mag.,vol. 4, pp. 4–20, 1989.

[2] N. R. Draper and H. Smith,Applied Regression Analysis,2nd ed. New
York: Wiley, 1981.

[3] G. C. Goodwin, M. Gevers, and B. Ninness, “Quantifying the error in
estimated transfer functions with applications to model order selection,”
IEEE Trans. Automat. Contr.,vol. 37, pp. 913–929, July 1992.

[4] G. C. Goodwin and M. Salgado, “A stochastic embedding approach for
quantifying uncertainty in estimation of restricted complexity models,”
Int. J. Adaptive Control Signal Processing,vol. 3, pp. 333–356, 1989.

[5] L. Guo and C. Wei, “Robust identification of systems with both bias
and variance disturbances,”Chinese Sci. Bull.,vol. 39, no. 20, pp.
1673–1679, 1994.

[6] H. Hjalmarsson and L. Ljung, “A discussion of “unknown-but-bounded”
disturbances in system identification,” inProc. 32nd IEEE Conf. Deci-
sion Contr.,San Antonio, TX, 1993.

[7] R. L. Kosut, G. C. Goodwin, and M. P. Polis, Eds., Special Issue on
System Identification for Robust control Design,IEEE Trans. Automat.
Contr., vol. 37, 1992.

[8] R. L. Kosut, M. K. Lau, and S. P. Boyd, “Set-membership identification
of systems with parametric and nonparametric uncertainty,”IEEE Trans.
Automat. Contr.,vol. 37, pp. 929–942, July 1992.

[9] L. Liung, System Identification—Theory for the User.Englewood
Cliffs, NJ: Prentice-Hall, 1987.

[10] L. Ljung and L. Guo, “Classical model validation for control design
purposes,”Math. Modeling Syst.,vol. 3, pp. 27–42, Jan. 1997.

[11] M. Milanese and R. Tempo, “Optimal algorithms for robust estimation
and prediction,”IEEE Trans. Automat. Contr.,vol. 30, pp. 730–738,
1985.

[12] K. Poolla, P. P. Khargonekar, A. Tikku, J. Krause, and K. Napal,
“A time-domain approach to model validation,”IEEE Trans. Automat.
Contr., vol. 39, pp. 951–059, 1994.

[13] F. C. Schweppe,Uncertain Dynamical Systems.Englewood Cliffs, NJ:
Prentice-Hall, 1973.

[14] R. S. Smith and J. C. Doyle, “Model invalidation: A connection between
robust control and identification,”IEEE Trans. Automat. Contr.,vol. 37,
pp. 942–952, July 1992.
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