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The Role of Model Validation for Assessing
the Size of the Unmodeled Dynamics

Lennart Ljung,Fellow, IEEE and Lei Guo,Senior Member, IEEE

Abstract—The problem of assessing the quality of a given, or es- We might not even know if the data set was used to construct
timated, model is a central issue in system identification. Various the model. (However, some issues will turn out to depend on
new techniques for estimating bias and variance contributions to this fact.)
the model error have been suggested in recent literature. In this . . . -
contribution, classical model validation procedures are placed at Our pr_oplem is to figure out if the mode is any good )
the focus of our attention. We discuss the principles by which we at describing the measured data and perhaps also to give
reach confidence in a model through such validation techniques a statement how “far away” the model might be from a
and also how the distance to a “true” description can be estimated trye description. We would like to approach this problem as

this way. In partlculqr, we stress how the typical model validation naked as possible, and remove common covers such as “prior
procedure gives a direct measure of the model error of the model e
probabilistic frameworks,” “worst case model

test without referring to its ensemble properties. Several model assumptlorgs, ! )
error bounds are developed for various assumptions about the properties,” and the like. With what are we then left?

disturbances entering the system. Well, a natural start is to consider the model’'s simulated
Index Terms—Model approximation, model validation, system €Sponse to the measured input signal. Let that simulated
identification. output be denoted by. We would then compare this model
output with the actual measured output and contemplate how
|. INTRODUCTION good the fit is. This is indeed common practice and is perhaps

rrRhe most useful, pragmatic way to gain confidence in (or reject)

identification as a basic instrument for model structur® model. This will be the starting point of our discussion.

selection and as the last “quality control” station before aWe shall first, in Section Il, discuss some typical statistics
model is delivered to the user [9], [15] around the measured and simulated outputs. Note that “statis-

Methods for robust control design have pointed to the ne & here means some'bulk, num'e'ncal descrlptlon§ of the fit;
for reliable model error bounds, for linear models preferab 's has nothing to do with probability theory. In particular, we

described as bounds on the frequency functions. A lar all discuss conventionadsidual analysisn this framework.

. Section Il gives the main theorem: a connection of the
number of approaches have been developed for this; see, e'%ébraic natSre between the model error, the input signal

[7], [8], [4], [3], and [16]. For recent work on model validation® e : ) .
in'a worst-case context see [12] and [14]. Many of the cofhe model val!datlon test quant'lty,.and. a n0|se/gorrte_latlon
tributions use deterministic frameworks to describe the noig%r_m./The Iba_5|c unknown quan.tlty in this O(Iaxpreismn. IS thfe
and disturbances appearing in the system in order to avgﬁl‘a'se corre atlon_ term. !n Sections IV an vV the Slzﬁ o
probabilistic, “soft,” bounds. Approaches like “unknown-butthis term is estlma}ted in a deterministic and a stochastic
bounded” noises (the disturbances are assumed to be bouanmework' respectively.
but no other a_ssumpt|ons are myoked), see, e.g., [13], IeadAt.OSome Notations
set-membership procedures which determine all models that ) ] . )
are consistent with the noise bound given; see, e.qg., [1], [11 We shall use the following notation. The input will pe
and [17]. enoted by, () and the output by(¢). The data record thus is

In this contribution we shall take a different perspective. ZN = {y(1),u(1), -, y(N),u(N)}. (1)
We place model validation in focus and try to interpret sever.

identification concepts and approaches as well as model qu % paper be considered as a deterministic sequence, unless

aspects through the eyes of mod(_al valllda'u.on. .otherwise stated. We denote its periodogram by
We place ourselves in the following situation. A model is )

given and is denoted b (a more specific notation will follow 5> 1
later). We are also given a data s&Y consisting of measured [Un (W) = N
input—output data from a system. We do not know, or do not

care, how the model was estimated, or constructed, or giv&tf'e| - | denotes the absolute value of a scalar. We use

M ODEL validation always plays a major role in syste

he input sequencdu(t),t = 1,---,N} will throughout

N

Z u(t)e_i‘“'t

t=1

(2)

Manuscript received October 19, 1995; revised February 14, 1997. Recom- H ' H

mended by Associate Editor, G. G. Yin. to denote the Euclidian norm of a vector, while
L. Ljung is with the Department of Electrical Engineering, Laing N
University, Linkbping, S-58183, Sweden. lvl|lr = v Ru

L. Guo is with the Institute of Systems Science, Chinese Academy of . . . . .
Sciences, Beijing, 100080, P.R. China. Is a weighted quadratic norm. For a mattix,|| is the matrix

Publisher Item Identifier S 0018-9286(97)06593-8. norm induced by the Euclidian vector norm.

0018-9286/97$10.001 1997 IEEE



LJUNG AND GUO: ROLE OF MODEL VALIDATION 1231

The given model(¥ will be assumed to be linear, and a < for correlation between residuals and past inputs, let
function of the shift operatog in the usual way is7(¢). The

simulated output will thus be (1) = [u(®), u(t = 1), ut = M+ 1" (12)
§(t) = Glgu(t). (3  and
N

The model may contain a noise assumption, typically in the Ry — 1 T

» . ; . . == He(t). 13
form of an additive noise or disturbane€t), with certain NTN ;‘p( Jelt) (13)
properties. It would then be assumed that the actual output is
generated as Now form the following scalar measure of the corre-

Ym(t) = é(q)u(t) +u(t). (4) lation between past inputs (i.e., the vectpy and the

residuals:

(We append a subscript: to stress the difference with the N 9
measured output.) The model could contain some “prejudice” o 1 Z (B)e(t) (14)
about the properties af(¢), but this is not at all essential to NTN po v .
our discussion. A typical, conventional assumption would be - Ry

that v(¢) is generated from a white noise source through a

. : Note that this quantity also can be written as
linear filter

u(t) = H(g)e(t). 5) N = T Ry e (15)

Most of the model validation tests are simply based on the Where
difference between the simulated and measured output

Peu = [Feu(0), -, Peu(M = 1) (16)
(1) = y(t) = §(t) = y(1) = Glu(t). © i
For added generality, we shall consider possibly prefiltered N
model errors Peu(T) = = e(t)u(t — 7). (17)
e(t) = L@)[y(t) - ()] = L(@ly(®) - G@u®)]. () =

For example, if the model comes with a noise model (
then a common choice of prefilter &(q) = H~1(q), since
this would makes(¢) equal to the model'prediction errors
This choice of prefilter is, however, not at all essential to o

5 Now, if we were prepared to introduce assumptions about
1)he true system (the measured dad), we could use the
above statistical measures to make statements about the re-
llﬁtionship between the model and the true system, typically
using a probabilistic framework.

discussion. If we do not introd licit tions about th
In any case we shall call(¢) the model residual§model We do not Introduce any explicit assumptions about e
leftovers). true system, what is then the value of the statistics (8)—(14)?

Well, we are essentially left only witinduction That is to
say, we take the measures as indications of how the model
will behave in the future also: “Here is a model. On past
Typical model validation tests amount to computing thgata it has never produced a model error larger than 0.5. This

model residuals and giving some statistics about them. N@fgiicates that in future data and future applications the error
that this as such has nothing to do with probability theory. (i{ill also be below that value.”

is another matter thatatistical model validatiomften is com-  Thjs type of induction has a strong intuitive appeal.
plemented with probability theory and model assumptions 10| essence, this is the step that motivates the “unknown-but-
make probabilistic statements based on the residual statistiggunded approach.” Then a model or a set of models is sought

see, e.g., [2]) o . that allows the preceding statement with the smallest possible
The following statistics for the model residuals are oftegound or perhaps a physically reasonable bound.

IIl. MODEL VALIDATION : STATISTICS AROUND THE RESIDUALS

used: Note, however, that the induction step is not at all tied
« the maximal absolute value of the residuals to the unknown-but-bounded approach. Suppose we instead
M5 = max |e(8)]; 8) select the measurgs, as our primary statistic for describing
1<t<N

the model error size. Then the least squares (maximum likeli-
« mean, variance, and mean square of the residuals  hood/prediction error) identification method emerges as a way
N to come up with a model that allows the “strongest” possible
ms = % Z e(t) (9) Statement abou_t past behaylor. .
par How reliable is the induction step? It is clear that some sort
N of invariance assumption is behind all induction. To have some
Vi = 1 Z(E(t) —my)? (10) confidence in the induced statement about the future behavior
N —1 of the model, we thus have to assume that certain things do
1 X not change. To look into the invariance of the behavioe of
Sy = N z:s(t)2 = (m%)? + V& (11) itis quite useful to reason as follows. [This will bring out the
t=1 importance of the statistics (14)].
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It is very useful to consider two sources for the model Theorem 3.1:Assume that the data s&t¥ in (1) is subject
residuale: one source that originates from the inpuft) and to (19). Let& be a given model, and Iélj\‘f be formed from
one that does not. With the (bold) assumption that these ttfe® data by (12)—(14). Assume that there existssaich that
sources are additive and the one that originates from the ingtit > 6. Then the model error (20) obeys
is linear, we could write for some transfer functi6h . 1/2

e(t) = G(ghult) + v(t). (18) [% /_W |G ) PIL(™)P | Un(w)]? dw}

Note that the distinction between the contributions e fun- 12y 1/2

damental and has nothing to with any probabilistic framework. <@ +n) {N } + (1 +n)ey

We have not said anything abouft) except that it would 00

not change if we changed the inpuft). We refer to (18) +(2+n)C, Z lo]. (21)

as the separation of the model residuals imodel errorand k=M

disturbances Here:

Division (18) shows one weakness with induction for mea- _ N o~ i
sures likeMs, and S5, going from one data set to another. ~ N ~ I/N)Z =i 5B (Bl s
The implicit invariance assumption about the properties of * o) = L{g)v(d); N
would require both the input and the disturbancesto have ~ ° Pk |52the impulse response df(q)G(q);
invariant properties in the two sets. Only if we have |nd|cat|ons [Un|" is the periodogram (2);
that & is of insignificant size, could we allow inductions from ° " = CM/VNG;
one data set to another with different types of input properties.” Cu = maXi<e<n [u u(t)]-

The purpose of the statistigg in (14) is exactly to assess If the input is tapered so that(t) = 0 for ¢ = N — M +

the size of(z. We shall see this clearly in Section Ill. (Onel;- -V, the number; can be taken as zero.

might add that more sophisticated statistics will be required to  Proof: See Appendix A.

assess more complicated contributions frarno «.) Let us make a number of comments.

In any case, it is clear that the induction about the sizee The theorem is really just a statement about the re-
of the model residuals from one data set to another is much lationship between the sequenca&) = L(g)[y(t) —
more reasonable if the statisti€y’ have given a small value Go(q)u(t)] ande(t) = L(¢)[y(t) — G(q)u(t)] on the one
[‘small” must be evaluated in comparison wiff§, in (11)]. hand and the given transfer functiofi$q), Go(q), G(q)

We might add that the assumption (18) is equivalent to together with the given sequenceg), y(¢) on the other
assuming that the datZ" have been generated by“@ue hand. There are as yet no stochastic assumptions whatso-
system” ever and no requirement that the “modé"may or may

not be constructed from the given data.

By the choice of prefiltel.(¢) we can probe the size of
the model error over arbitrarily small frequency intervals.
However, by making this filter a very narrow band,
we will also typically increase the size of the impulse
response tail. (Narrow band filters have slowly decaying

Ill. THE MAIN THEOREM impulse responses.)

The question now is, what can be said about the model error Note also that it: andy are subject ta/(t) = Go(q)u(t)+
G based on the information i ? Ideally we would like to v(t), then up(t) = L{gu(t) and yr(t) = L(q)y(t)
give bounds on/G(¢*)| valid for each frequency. This will be subject toyr = Go(Q)ur(t) + vr(t), where
will not be possible without detailed prior knowledge of the  vg(t) = L(q)v(¢). This means that the theorem could
system, but one has to be content with bounds on weighted also be applied directly using the sequenagsand yr,

y(t) = Go(q)u(t) + v(t) (19)

where

G(q) = Golq) — G(a). (20)

integrals like giving an alternative bound on the model error which
™ o could be both stronger and weaker than the one obtained
/ C(w)|G(e™)|? dw. with the filter L explicitly present as in Theorem 3.1.
- « If the model G(q) has been estimated as a#ith-order

In, e.g., [9, ch. 12], such measures are discussed in some detail FIR (finite impulse response) model from the data set

and also how the choice of weighting functiéhis related to

the intended use of the model (prediction, simulation, control,

etc.).

The procedure to obtain such bounds will be to apply the

residual analysis of Section Il. Form

e(t) = L(g)(y(t) — G(qhu(t))
and ther¢¥ as in (12)—(14). In these calculations replage)

ZN using the least squares method, then by construction

FM
Mo,

For the quantities on the right-hand side, we note fﬁét

is known by the user, as well ag N, and C,,. The tail

of the impulse responsg, beyond lag)M is typically not
known. It is an unavoidable term since no such lag has
been tested. The size of this term has to be dealt with by
prior assumptions.

« The only essential unknown termas,. We shall call this
“the correlation term.” The size and the bounds on this

outside the intervall, N] by zero. Then our main technical
result is the following theorem.
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term will relate to noise assumptions, and we will ded. The Case of Periodic Input
with these in some detail in the two following sections. |; is of course desirable that the quantity, should be as

* Choice of M: Note that the right-hand side of (21) i§mq|| as possible. We noted that the variable is a measure
independent oft/, which is a user choice. To get the besy e “correlation” between the noise sequeri¢e) and the
possible bound, one can thus try a differédtand pick 5t 4,(#). The Schwarz' type inequality (22) is the most
the one that minimizes the bound. Note that typically  ¢onservative bound allowing all kinds of relationships between
increases likel/ (it is a sum ofM positive terms), while o o signals. In fact, as always, equality in this bound
typical bounds ony increase likev/M. These terms that js 4chieved when the two signals are exactly “parallel.” To
increase Wl_thM should be br_:llanced against the last te”Bet beyond this bound we thus have to invoke some kind
of (21), which decreases with!. of independence properties betwezft) and u(t). As soon

as we introduce a stochastic framework for the signals, it is

easy and “classical” to introduce independence, but even in

a deterministic perspective some things can be obtained. One
The termzy measures the correlation between the inpyfay is to assume that the input is periodic and that the noise

» and the filtered disturbancé. In a deterministic setting term is not. We have the following result.

it is not so easy to formalize what we should mean by | emma 4.1:Under the notation of Theorem 3.1, assume

“uncorrelated disturbances.” One could of course postulate thigt the input is periodic with period®, then the following
the disturbance sequence that we expect to enter the proggsisnd holds:

is such that quantities like decay likel/N or 1/N log N
or in any other way. That would give us hard model error
bounds in Theorem 3.1.
We shall instead consider two other boundsrgnthat stem
from less complex assumptions, one that is always valid and . 1 X N
one that is valid for periodic inputs. Viw) = VN Zv(t)e (26)
t=1

IV. NONPROBABILISTIC BOUNDS ON THE CORRELATION TERM

ry < Cn - max [V (w)] (25)

whereV (w) is the discrete time Fourier transform oft)

. and
A. A Simple Bound
. 'mp ) und e s oo L+log(N/P+1) MP e
uppose thati(t) is any sequence and all that is known N N 75 G

about it is an amplitude or an energy bound. By Lemma B.1 o ] ] )
The proof is given in Appendix B. Note that the requirement

1/2 that Ry > 61 effectively means thaP > M.
1 Zfﬂ(t)l ' (22) The lemma says that for periodic input and for noises

with suitably smooth spectrum, the model error decays like

O(1/+/N), except that a factor with logarithmatic order of

A bound on disturbance power or amplitude will thus directlifcreasing is neglected. This is essentially the same result that

give a hard model error bound in (21). is obtained in the classical stochastic framework (see below).
Combining it with FIR-modeling, the result can then be used With this lemma used in Theorem 3.1, the only remaining

in Theorem 3.1 to yield, for example, the following explicitinknown quantity is the noise periodograb(w)|?. It should

result. also be noted that the typical model validation companion test,
Theorem 4.1:Assume that a tapered and bounded inpifie one that checks the whiteness of the residuals, indeed is a
u(t),t = 1,---, N (the trailing M values ofu(t) are zero, Way to evaluate this quantity and also secure the flatness of the
and |u(t)| < C,) has been applied to the system spectrum ofy. This test consequently links up with an attempt
to quantify the total model error according to Theorem 3.1
y(t) = Golq)u(t) + v(t) (23) and the lemma above.

For the periodic input case, there is apparently also a close

et ()] < . Lt ()b consruced rom th it X B0 TS0 31, e v rina, and some i
an Mth-order FIR model, using the least squares method. Th P '

ﬁn e.g., [9, Sec. 6.3], it is shown that

1 ™ o . - 1/2 érei‘“ (e
= [ 16oe) = Gy (PN de ME®) = Go(e™)
2m - VN(w) . i . o
U @) + vanishing term for periodic input.
oo (@
<Co+2Cu Y Il (24) o8

k=M
Here Uy andVy are the Fourier transforms of the input and
where ;. is the impulse response @y(q), and |[Ux(w)|? is the noise, and the ETF& is the ratio between the output and
the periodogram of the input. input Fourier transform. For a periodic input and a nonperiodic
Remark: A lower bound on the matriXy is not required noise, the error thus decays lik¢+/N at those frequencies
for this result. present in the input.
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V. PROBABILISTIC BOUNDS ON THE CORRELATION TERM B. Bounds with Probability One

The division of the model residual (18) into a model Let us assume that either:
error part and a disturbance part clearly manifests that thep) {v(t)} is bounded deterministic andu(t)} is a
disturbances should have nothing to do with the input. To for- Zero mean Stationary autoregressive moving average
malize this notion, it is customary to introduce a probabilistic (ARMA) process;
framework and assume thatandv are mutuallyindependent  2) {u(t)} is bounded deterministic anf(¢)} is a zero
sequences of random variables. It might be stressed that it is mean stationary ARMA process.
this independent assumption that is the essential contrlbutlonl-hen the correlation termxy in Theorem 3.1 can be
of the probabilistic framework and that gives the basic mOdsgtlmated by the
properties.

If the model G is obtained from a data set, independent 23 < Cxilog log N as. (33)
of Z%, then the results below will give direct probabilistic - N
bounds on the given model’'s error. If the model has bedéor a random variable”, with bounded variance. Together
estimated fromZ?¥, the results are more difficult to interpretwith some assumption about the decay of the tail of the

law of the iterated logarithm” (see, e.g., [5])

since there will be correlation between the ter@isndzy. impulse response and the measured valuéf{éf this bound
gives quite an explicit bound for the model error in (21).
A. Direct Probabilistic Bounds o 5 Note that, as indicated by (33), a bounded deterministic

disturbance{v(¢)} does not influence the asymptotic error

We shall in thi ti thett) i tati
e shall in this section assume that) is a stationary IEge{,md as long as the input sequefeét)} is suitably chosen

stochastic process with zero mean, independent of the in
(which we anyway treat as a deterministic sequence). T
covariance function ob(t) is assumed to decay so fast thaf
its Fourier transform, i.e., thepectrum is defined. It will be
denoted by®,(w). Under these assumptions, becomes a
random variable. According to Lemma B.1

also, [5] and [6]). This essentially improves the related
rror bounds derived in the existing deterministic framework
of system identification.

C. Hard Bound if the Model Validation Test Passes

M ‘ We can twist the probabilistic bounds of Section V-A
Ex3 < — max|L(c)|?®,(w). (29) around to give hard bounds on the model error, in case the
model validation test passes with a certain probability.
Moreover, under some weak assumptions the central limitLet us first describe the typical model validation test. If

theorem can be applied to show that ¢ is white noise and independent af then+.,, defined by
N (16), will be asymptotically normal with covariance matrix
By = —}/2 1 Z‘P £)i(t (30) Ry - E<2(t). Hence the test variable
1 -
N NI N =N (34)
converges in distribution to the normal distribution with zero 7(0)

mean and covariance matri where, according to (29) with

trS = lim ENz3% < P,
N—oo

7(0) = ¥ Z € (35)
where
Po = M max | L(c)[20y(w). (31) will be asymptotically x*-distributed with A/ degrees of
w freedom
From this we can develop direct probabilistic bounds #@r M~ xE(M). (36)

in (21), which also means that we obtain bounds for the
model error. A conservative bound is, e.g., obtained from tHd€ valldat|on procedure is thus to form (34) and check its

implication size in x?-confidence level tables.
Now, if, in a given cased turns out to be less than a
TN > €= (/3](\?))2 > ﬁgv for somei chosen test leve}? , we say that the hypothesis thaande are
M uncorrelated can be accepted—there is no conclusive evidence

against it. If such a test passes with a certain probability, we

gsan draw some conclusions about the actual model error. To

develop such a result, we first prove the following lemma.
Lemma 5.1: Suppose

N2
P(a:N>e)§MX1<M;> (32) A<B-¢4+C+D (37)

(subscript (i) denotes theith component). Sincéﬁ](f}))2 is
asymptoticallyy? distributed with one degree of freedom, w
find that (P(I") denotes the probability of the eveli}

where the last symbol is the probability thaty&-distributed \é\l:tirr?n?r{iiicagg;t;fs rasnud;prgs\éatr;;k?[les and and D are

random variable with one degree of freedom is larger than the
indicated argument ané, is defined by (31). Pl<C) > (38)
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Then

+D. (39)

EB? EC?
NG

(0% (0%

Proof: Multiply (37) with the indicator function/y for
the eventd = {¢{ < C¢}

Aly < BIyCe + Cly + DIy.
Then take expectation and use the Schwarz’ inequality
AP(H) < C:E(BIy) + E(CIy) + DP(H)
< Ce\/EB? - EI} +\/EC? - EI}, + DP(H)
=Ce/P(H)-EB2++/P(H)-EC?2+ DP(H)

which proves the result.

Based on this result and on Lemma B.1 we can formulate

Theorem 3.1 as follows.

Theorem 5.1:Assume that the data sgt¥ in (1) is subject
to (19). Assume the input is deterministic and that(t) is a
stationary stochastic process with spectr@yw). Let G be

1235

Some care has to be exercised regarding the tail term with
the impulse responses of the model error. To deal with this we
introduce the following procedure.

1) Assume that a prior bound is known for the tail of the
impulse response of the true syst&¥g(q)

Prm 2 Z |l90(2)]-
t=M
2) Any produced model is projected so that the tail of the
model’s impulse response is also bounded as in (41).
3) Pick a test length1.
4) Pick a test leveC; and estimate models in your favorite
model classes (subject to step 2) above) frBh until
a model is found that passes the validation test

M < (42)

for the dataZ™ [N defined by (14)]. For typical,
sufficiently large model classes it is always possible to
achieve (42). For example, an finite impulse response
model of lengthM gives &Y = 0.

(41)

a given model, independent &, and let the test quantity ~For models found in this way we have the following resuilt.
¢ be formed from the data by (12)—(14) and (34). Assume Theorem 5.2:Assume that the data s&t" in (1) is subject
that Ry > 61. Perform the test to (19), where the tail of the true impulse response is bounded
as in (41). LetG be any model estimated from the data
according to the procedure outlined above. Then the model’s
mean-square error obeys

M
~ <x1.

Assume that this test passes with probability at leasthen

the model error (20) obeys ™ L
o0 o e L[ B s b
[1 JC RS W} o
-— ¢ ¢ N{W W 3(1 2
2r J_ . < M[Cg + M max ®,(w)]
14 N w

n 121 1/2
T bl (E7(0)]

+ max[M|L(c™)* @, (w)]*/2]

= +12(24 n)*C253,. (43)

Heren, C,, and|U|? are defined as in Theorem 3.1. Moreover,
C¢ is the test limit for the validation ang,, is defined by
(41), and®,, is the spectrum of.

Proof: Square (21) and take expectation. Use Lemma B.1

_ ) for the z term. Then use that the impulse response of the
Here v and x, are the numbers associated with the test, apggel error is less than the sum of the responses of the true

[UxI?,n, pr, and C,, are defined as in Theorem 3.1, and thgysiem and the model. That concludes the proof.
same comment aboytand input tapering applies here also. ~The theorem tells us that the model mean-square error
Proof: Apply Lemma 5.1 to (21). Writg}/ asi-(0)é)/, is bounded by two terms: one that decreases\BsV and

and identify7_(0) with B and /&Y with ¢ in the lemma.  one that depends upon the tail of the impulse response. For
Note that (40) is a hard bound statement about the er@riradeoff between these two contributions, the best bound

of the (given or estimated) modél. It is true that we have is obtained by choosing/ so thatM/N ~ p,,. For an

to assume that the test passes with a certain probability, ghgponentially stable systefy,, ~ A*, which means thad/

this will of course not be easy to verify. By performing sshould be chosen as proportionalltg V. That gives a total

number of validation tests on different data sets, however, Wan-square error bound that decays [lifév log V.

get some insight in this probability.

+@2+m)Cu > okl (40)

k=M

D. Model Mean-Square Error Bounds VI. CONCLUSIONS

So far we have only made statements about one particular|n this paper we have studied what a typical model valida-
given modelG. If the model is given, and independent of theion test implies in terms of the model error, expressed in the
test dataz” (i.e., it has not been estimated from this data sefyequency domain.
there is really no reason to look into any ensemble propertiesThere has been considerable interest lately in quantifying

The situation is different if the model has been estimatedodel quality in terms of bounds on its frequency function,
using Z™. It will then depend on the-sequence. All inequal- e.g., [7], [8], [4], [3], and [16]. A substantial part of that
ities still hold, and it is meaningful to take the expectation thiterature deals the bias and variance contributions to the
look into the average properties of the model. mean-square error. The variance term is easily handled using
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“classical” probabilistic estimation theory (provided the bias iand define

negligible). It is a much more difficult task to estimate the size 1 X 2
of the bias error, and various approaches have been suggested g == Z w(t)p(t)
to deal with this. N o

N

Our main result, Theorem 3.1, gives a somewhat differegfg
perspective. It shows that a traditional model validation test
immediately gives a “hard” bound on an integral of the total 1 [
frequency domain model errdor the actual model under test B?
There is consequently no real need to look into the ensemble
properties. Indeed, it is much more natural to have a statem&hen forn = C,M/VN§
directly about the actual model with which we are working. B< 1408+ 2+nCupu. (47)
It is true that the hard bound depends on some priﬁrt
information (the decay of the true impulse response functio gro thenn can be taken as zero
and a term(z ) that reflects knowledge/assumptions abodt’® 'l ; Lo :
the noise in the true system. We have shown how the Iatter-rhe proof of the lemma will be given at the end of this
term can be bounded, with hard bounds, in probability and ﬁppendlx.
the mean square under various noise assumptions, includin
purely deterministic ones. '
Some numerical illustrations of how the results can be usedLet
are given in [10]. SN A
The model error bound does not come pointwise in the Gla) = Gola) - Gla)
frequency domain. In fact, based & data andM-lag tests, and
we can penetrate the frequency domain only up to a certain ¢
resolution. This is manifested as the bound on integrated
versions of the model error. The user has a certain amount ¢
of freedom to focus on narrow frequency regions using thg,en
prefilter L. For givenN and M these regions cannot, however,
be made arbitrarily narrow, since the tail term [last term in e(t) = a(t) +o(b).
(21)] would increase as the pass bandlofarrows. This, Thus

[N (™) P |Un ()] dow. (46)

:% .

he input is tapered, so thafN — M +1)---u(N) are all

% Proof of the Theorem

(@u(?). (48)

again, is unavoidable, in light of the uncertainty principle 1/2 N
between frequency resolution and data record length. {% 3{4} = H% Zg(t)w(t)
t=1 R;,l
APPENDIX A 1SN 5
PROOF OF THEOREM 3.1 =¥ > ((t) + 5())e(t)
t=1 R;l
A.1 Some Preliminaries >y —zN (49)
We shall use the following lemma. where
Lemma A.1:Let 1 Y
o =% e
w(t) = N(q)u(t) = anu(t - k) t=1 R
k=0 . . .
and z is defined in the theorem.
Plt) = [“(t)]\’r' ou(t = M+ 1)] By Lemma A.1 we have that
1 « x 1/2
Ry =— t r t 1 AN —iw iw
A PMa 5 [ IR do]
N ~
1 iwt <A +mv+2+n)Cubu
r =— et 44 . .
Un(w) N = u(t)e (44) which, together with (49), proves the theorem.
Assume that A.3 Proof of Lemma A.1
Denote
|U’(t)|scu7 t:]-va T
Ry > 61. (45) n = [noni - -num|".
Then

Let 0o
oo w(t) =nTp(t) + Z nu(t — k)
Py = Z Ly k=M
k=M =nTp(t) +w(t). (50)
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The second term is bounded by This gives that
o0 x M—1
w(t)| = | Z niu(t — k)| < Cy (51) nTRyn = 2i Z nkmei“"(k_é)|UN(w)|2 dw + f1
k=M T = =0
under the assumptions of the lemma. Here, for convenience, o M1
we introduced the notation Z npe= ik |UN( )2 dw + f1 (56)
Cup=Cy P (52) 7| k=0
Inserting (50) into (46) gives where, using (55) and the conditidgy > 61
& [l =In (B = Bl < Sz < Mg
. 1= N — fiy N
=¥ Y e () + ()" (1)] N
t=1 R;l (57)
1 Let us define thel,-norm of any complex functiod’(w) on
= |[RY*n + Ry Z oroll [0, 2] as
t=1 1 g2 1/2
121 Flw :[—/ Flw de} . (58)
t=1 By (56), (57), and the definition af, we then have
> ||R”2n|| ~ Cu (53) |In?RY?
where we have used Lemma B.1 and (51) for the last inequal- M-1 ‘
|ty Z nke—zwk UN(CU) _ |f1|1/2
Let us now turn to the quantity’ Ryn. First define = 2
o Ju(®), ifl1<t<N iwk _ T pl/2
u(t) = {07 else. l kz;/lke Un( ) nlln® Ry
Then
, 1 N i 2 Z e “FUyn(w)|| - 77||nTR}\{2
Un @) = 5| ult)e =t )
t=1 , > B — paCu — nllnT R (59)
1 g B i . .
=% Z u(t)e ! This implies that [by (52)]
= In? B 2 - (B = Cl. (60)
1 =(+\a7 —tw(t—s
=N Z Z u(t)u(s)e (=) Substituting this into (53), we have
t=—o0 s=—00
1
0 0 3> ——[B—(2 Cw 61
I BN B2 B - @+0)Cul (61)
u(t)yu(t — 1)e .
e N . which proves the desired result.
Let APPENDIX B
= BOUNDS ON THE CORRELATION TERM
) = I Z u(tyu(t — ) We shall in this Appendix study the termy in Theorem
t=—oco 3.1 and develop a few bounds for it. Consider the quantity
N
so that |2
1 x ‘ rNy = N Zw t )
k=)= / Uy ()26 E=0 gy, =1 R3
™ —T
The (k,£) element of Ry is R;,I/Q;T w(t)p(t) (62)
N t=1
(ke _ 1
Ry = N Z uwlt—k+Lult—~04+1) where
t=max(k,{)
SO R 1 al T 63
. r=— t 4
|RED — #(k — )] < C2 - max(k, £)/N < CZM/N. (54) NTN ; P (1) 63)
(Note: If the input is tapered as defined in the theorem, this
bound is actually zero.) o Assume thatp(t) is a sequence of column vectors of length
Let Ky be the Toeplitz matrix built up fronf(7) analo- A7, We have the following bounds on this quantity.
gously to Ry. Then Lemma B.1:Let z be defined by (62)—(63). Then:

IRy — Ryl < CZMP?/N. (55) 1) % < (/N) B w®)]
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2) assume thatw(¢) is a stationary random process with Lemma B.2:Let x5 be defined by (62) and (63), and

spectrum®,,(w), independent ofp. Then assume thafzy > 61. Assume also that
(64) <P(t) = [U’(t)v U’(t - 1)7 Tt U’(t -M + 1)]T

M
Er% < ~y max @, (w).
where {u(t)} is a periodic sequence with periodicity €

Proof: Set
W= [w(l),---,w(N)]T, V= [‘P(l)v"W(P(N)]T(é ) [1700). Then
S) - 2
Then 22 < max |[W(w)|? - (1 +log(1N+ N/P))
N 2 ¥
> _|[p-1/21 MP? )
=Ry = t)p(t . . ma .
TN NN ;w( )e(t) 5 lléntfxéxp|u(t)| (73)
5 .
_ %WT\IJT(\IJ\IJT)*\I/W (66) Here [W(w)|* is the periodogram ofu(¢) .
N
Let H = UT(WUT)"'0. Then H? = H, so that the W) = | S w(t)eiet
. . N
eigenvalues ofd are either zero or one. Hence t=1
N Proof: We have
WIHW < WIW = w(t)|? (67) L 2
t=1 22 = || R =S w(t o(t
which proves claim 1) of the lemma. N NN ; (B (t)
We now turn to claim 2). By the properties &f we know N 2
that there is arorthogonal matrix <(5N%)~1 w(t)p(t)
t=1

P =[p1, -, pn], ps = [ps1, -+ psn]” € RN (68)
27 N
such that — (5N?)L i/ <Zw(t)e—iwt>
I 0 2
H:P< 34 0>PT:[Plv"-,pM][le'-,pM]T- (69) T \i=
N 2
Hence . <Z (p(s)@isw) dw
wivT(weh)~tow s=1
M M N 2y—1 L e —iwt
=3 WTp)? =S wips). (70) =ONIT 2 |5, / D wlte
s=1 s=1 j=1 3=0 t=1
Taking expectation and using the identity N 4 2
. Zu(s —)e”e | dw
s=1
1 [~ 4 .
Ew(jHw(k) = —/ B (w)e ™ FI) duy (72) M-1
(Fywk) 2 J_ () <(6N)? -In§x|W(w)|2- Z
we have | | ‘ 2
. <%/0 Sz::]Lu(s—‘y)e o dw) .

Let us consider the terms in the last factor. WiKeas

EwTvT(wuh)y~low
N
NIP|:F:| +7’,7’ c [O,P—l]

| M N
_ . —iw(k—j)
=5 52:1 /_7T D, (w) E PsjPskC 7 dw

LM e Ji_l 2 where [k] means the integer part & Then
—iwq o | N
T or ;/_W @y(w) ;ste Y dw % i ;u(s e dw
S I L . : 1 g [ [ ‘
< max G p(w) Z %/ Zpsje_“"f dw < %/ [Z Z w(Pt + s — j)e=(Pt+s)
s=1 T a=1 0 |s=1| t=0
M N r |y Pl-1
= nax Pu(w) YD P + >0 Y wPt+s— )TN do
s=ly=1 s=r41| t=0
= M max @, (w) (72) Y N & i (Pt+s)
“u )y |& ; u(s — j)e

since ||ps|| = 1,Vs. This completes the proof.
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P |Iv/Pl-1 ‘
+ Z Z u(s — j)e T dy

1 g [ /e
Sor [ Xl o e
T Jo s=1 t=0
r [N/ P]-1 ‘
+ Y fu(s=5)l-| Y @I dy
s=r—+1 t=0

=" lu(s = )| (P,[N/P))

+ Y lu(s = HIr(P[N/P] - 1).

s=r—+l1 [1]
Here we defined
1 27 | R (Pr+s) [2]
P - w(Pt+s .
(P, R) 27r/0 ;e dw 3l
(Note that the expression in fact is independentsdf We
shall soon establish that [4]

7(P,R) < 1+log(R+1). (74) 5
We can now collect this bound together with the inequality
above and (74) to find that [6]
23 <(6N)7L. max |W(w)|*
M-1 N 2/ P 2 (7]
: Z <<1+1og<{ﬂ +1))) > lu(s)|
j=0 s=1 [8]
which gives the desired result of the lemma.

It now only remains to establish (74). The integrand in thgoj
definition of + can be summed to

[10]
[11]
1— ein(R-l—l)
rlw) = ‘1—71’ 12
[13]

It is easy to see that the integral over this function, with4]

periodicity /P, will in fact be independent oP. Let us take

P = 1. The denominator is then equal 2ain(w/2). Jordan’s

inequality ]
[16]

[17]

2
sinz > —=z, for we[0,7/2]
7r

thus gives that
mw
< — 0, .
rlw) £ LY € [0, 7]

We also have that the integrand is bounded by its maximal
value (obtained forw = 0)
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We now have

1 ™
i K(w) dw
—;/0 K(w) w—;/o r(w) dw

1 /7
+ —/ r(w) dw
T Jm/(R+1)

1 /(R
<1 / (R+1) dw
™ Jo

+1/ T dw=1+1log(R+1).
T Jr/(R+1) W
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