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On Critical Stability of Discrete-Time
Adaptive Nonlinear Control

Lei Guo, Senior Member, IEEE

Abstract—In this paper, we examine the global stability and
instability problems for a class of discrete-time adaptive nonlinear
stochastic control. The systems to be controlled may exhibit
chaotic behavior and are assumed to be linear in unknown
parameters but nonlinear in output dynamics, which are charac-
terized by a nonlinear function [say,f(x)]. It is found and proved
that in the scalar parameter case there is a critical stability phe-
nomenon for least squares (LS)-based adaptive control systems.
To be specific, let the growth rate off(x) bef(x) = O(kxkb) with
b � 0, then it is found that b = 4 is a critical value for global
stability, i.e., the closed-loop adaptive system is globally stable if
b < 4 and is unstable in general ifb � 4. As a consequence, we
find an interesting phenomenon that the linear case does not have:
for some LS-based certainty equivalence adaptive controls, even
if the LS parameter estimates are strongly consistent, the closed-
loop systems may still be unstable. This paper also indicates
that adaptive nonlinear stochastic control that is designed based
on, e.g., Taylor expansion (or Weierstrass approximation) for
nonlinear models, may not be feasible in general.

Index Terms—Adaptive control, discrete-time, global stability,
instability, least squares, nonlinear system, random noises.

I. INTRODUCTION

T HE discrete-time single-input/single-output nonlinear sto-
chastic model that can be conveniently used in adaptive

control may be described as follows:

(1)

(2)

where , , and are the system output, input, and noise
sequences, respectively, is a known non-
linear function of , and is an unknown parameter.

Though this model seems to be special, it can be justified
from both black-box and grey-box modeling viewpoints. On
the one hand, (1) may be regarded as an approximation to
the familiar nonlinear auto-regressive with exogenous inputs
(NARX) model as discussed in, e.g., [1], since the nonlinear
term may be viewed as a finite sum of a certain basis
function expansion of an unknown nonparametric function of

. Various basis functions may be used in this expansion
(cf., [2]), and a typical and classical case is the Taylor series
or polynomial expansion where the basis function consists of
multinomials in the components of . On the other hand,
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many practical systems may be modeled as (1) by use of the
basic principles in physics, chemistry, or biology. Three typical
situations of (1) may be illustrated as follows.

1) Bilinear models: Such models arise naturally in many
chemical and biological processes (cf., [3]–[5]), where
the nonlinearity is characterized by some linear products
of the input and output variables. The simplest bilinear
model appears to be the following one (cf., [18]):

(3)

and we shall return to this model shortly.
2) Hammerstein models: This kind of model is linear in

output process but nonlinear in input process with non-
linearity typically characterized by a polynomial. Some
practical extremum control problems may be investi-
gated based on such models (cf., [6]).

3) Models with output nonlinearity: This case is perhaps
more realistic and more interesting. A typical situation
may be described as follows:

(4)

It is worth noting that if the system is uncontrolled ( )
and undisturbed ( ), then (4) may be reduced to
several standard chaotic models extensively studied in chaos
dynamical systems. The celebrated Logistic map [7], the two-
dimensional H́enon map [8], and the cubic map [9], are such
examples. These examples suggest that complex behavior
may not necessarily require complex mathematical models.
We shall in this paper focus on models that have output
nonlinearities.

Over the past three decades, extensive study has been made
on the adaptive control of linear stochastic models where
in (1) the function takes the special form

. Almost all of the theoretical progress has been
concerned with minimum phase linear stochastic systems,
and the most recent advances can be found in, for example,
[10]–[15]. As far as adaptive control of nonminimum phase
stochastic systems is concerned, the stability analysis has been
hampered mainly by the fact that the estimated models may
not be uniformly controllable. This difficulty has recently been
circumvented in [16] by using the self-convergence property
of a class of weighted least squares (WLS) together with a
method of random regularization. Consequently, a simple and
complete solution can be given to both the stochastic adaptive
pole-placement and linear-quadratic-Gaussian (LQG) control
problems [16].
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One may naturally expect that the existing results on linear
stochastic systems can at least be extended to the nonlinear
system (1) with satisfying the following growth condition
for some :

(5)

where and are constants. Unfortunately, even
for minimum phase nonlinear stochastic systems, the only case
that can be dealt with by the existing methods is the linear
growth case, i.e., in (5) (cf., [17]). Indeed, to the best of
the author’s knowledge, there are as yet no concrete stability
results on stochastic adaptive control of (1) when the function

has a growth rate faster than linear.
Notwithstanding this, a great deal of effort has been made in

the literature. In particular, Cho and Marcus [18] showed that
bilinear stochastic models are in general nonminimum phase
(in the sense that bounded output does not imply bounded
input), and hence minimum variance control may not be
feasible for such class of systems. Based on this observation,
they considered a weighted one-step-ahead certainty equiva-
lence adaptive control for the first-order model (3) by using
a stochastic gradient (SG) estimation algorithm. The stability
proof of the closed-loop adaptive systems in [18], however,
requires a certain condition on the on-line parameter estimate.
A more recent work on adaptive bilinear control may be found
in [19], where stability analysis was carried out under a certain
condition on the output process. Neither of the conditions in
[18] and [19] is as yet known to be verifiable. In Appendix
A, however, we shall show that by using a regularized WLS
estimate similar to that used in [15] and [16], the condition
imposed on the parameter estimate in [18] can be dispensed
with, giving a complete stability result on adaptive control of
(3).

Adaptive control of (4) is, apparently, closely related to
the problem of controlling chaos, which has attracted much
research interest in recent years. Various approaches have been
suggested in the literature (see, e.g., [20]–[22]), yet complete
and rigorous theoretic results seem to be hard to find.

In the deterministic framework, significant progress has
been made in adaptive nonlinear control in the past sev-
eral years (cf., e.g., [23]–[26]), and most of the results are
concerned with continuous-time systems. Unfortunately, it
has been found that the existing continuous-time methods
are hardly applicable to the discrete-time case, due to some
inherent difficulties in discrete-time models, as detailed in an
interesting paper [27]. As a matter of fact, even in the noise-
free case, there are as yet no general discrete-time adaptive
nonlinear control results that allow the nonlinear function to
grow at a rate faster than linear. In recent work [28], the
standard LS-based adaptive regulation control was analyzed
for a class of discrete-time deterministic nonlinear systems.

We shall in this paper be concerned with the more realistic
(and more complicated) stochastic case, dealing with adaptive
control of discrete-time stochastic systems possessing output
nonlinearities [see (6)]. The main contribution is to establish
that in the scalar parameter case, the value in (5) is a
critical case for global stability of a class of adaptive nonlinear
stochastic tracking control systems. As a consequence, we find

that in general it is impossible to have global stability results
for stochastic adaptive control systems when the nonlinear
function is a high-order polynomial of its variables. This
means that adaptive control based on the method of Weierstrass
approximation (i.e., to approximate nonlinear functions by
polynomials) may not be feasible in general. Also, we shall
conclude an interesting fact that the linear case does not have:
for some LS certainty equivalence adaptive controls, even if
the on-line LS parameter estimates are strongly consistent, the
closed-loop systems may still blow up.

The remainder of the paper is organized as follows:
Section II presents the main results on both instability and
stability of adaptive systems, together with some remarks
and discussions; Sections III and IV give the proof for the
main theorems; and some concluding remarks are made in
Section V. Appendix A also contains a stability result on
adaptive bilinear stochastic control.

II. THE MAIN RESULTS

Throughout the sequel, we shall focus on stochastic systems
with output nonlinearities and consider the following special
case of (1) and (2):

(6)

where is a random or deterministic unknown param-
eter.

The standard LS estimate for can be recursively defined
by

(7)

(8)

(9)

where are the deterministic initial conditions of the
algorithm, and is possibly a random initial value of the
system.

Let be a known bounded deterministic reference signal
to be tracked. The certainty equivalence adaptive tracking
control is defined by

(10)

substituting this into (6), we have the following closed-loop
equation:

(11)

where .
To facilitate the analysis of the above closed-loop control

system, we need the following definitions.
Definition 1: The closed-loop control system (6)–(10)

is said to be globally stable, if for any initial conditions
, the averaged input and output signals are

bounded almost surely, i.e.,

a.s. (12)
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Definition 2: The nonlinear system (6) [or the nonlinear
function ] is said to belong to a class with ,
if there exist two constants and such that

(13)

where denotes the Euclidean norm.
We shall first show that if the nonlinear stochastic system

(6) belongs to with , then the closed-loop adaptive
system (6)–(10) may not have global stability in general.

A. An Instability Theorem

For the above purpose, we need only consider the following
typical situation:

(14)

(15)

where is a random (or deterministic) unknown
parameter, and is the LS estimate generated by (7) and (8).

Let us denote for

(16)

(17)

Note that the first set is related to the initial conditions,
and the second is related to the noise distributions. More
discussions on will be given in Remark 2.1.

Theorem 2.1:Consider the closed-loop adaptive control
system described by (14) and (15) with . Then on the

set , the long run average

as

at a rate faster than exponential.
The proof of this theorem is given in Section III. This result

actually is concerned with the pointwise property of on
. Several remarks explaining Theorem 2.1 are now in order.
Remark 2.1—Discussions on : It is worth noting that

deterministic disturbances are not excluded in Theorem 2.1.
In particular, if (e.g., the Bernoulli distribution),
then it is obvious that . In general, if is an
i.i.d. sequence with distribution function Lipschitz continuous
at the origin, and with , and for
some , then it is easy to show that always
holds.

Theorem 2.1 concerns the instability of the LS-based adap-
tive control (15). One may naturally ask: can we find another
controller that can stabilize (14) in the case of ? The
following remark gives a negative answer to this question.

Remark 2.2—Nonstabilizability of (14) When :
Consider (14). Let be a white noise (i.i.d.) sequence
with standard Gaussian distribution , and let the
unknown parameter be a random variable with Gaussian
distribution . Assume that the initial value is either
deterministic, satisfying , or random with the
tail of its distribution nonzero (e.g., the Gaussian distribution).

Assume also that are independent. Then,
it can be shown (see Appendix B) that no almost surely
stabilizing controller exists for (14) with , i.e., for any
feedback control sequence , there exists a set with
positive probability such that

as on

Remark 2.3—Consistency of LS:Let be determin-
istic and the initial values satisfy the conditions
required in defined by (16). Also let the noise be
i.i.d. with symmetric Bernoulli distribution. Then we have

.
Furthermore, by (7) and (8), it can be derived that

(18)

where and

(19)

By Theorem 2.1, there is a constant such that for
all large

(20)

Hence a.s. By applying first the martingale conver-
gence theorem and then the Kronecker lemma to the series

, it follows that a.s.
Consequently, by (18) we know that , a.s. This fact
together with Theorem 2.1 shows that in the control law (15)
even if the LS parameter estimate converges to the true
parameter almost surely, the closed-loop system (14) and
(15) is still unstable almost surely.

Remark 2.4:Theorem 2.1 can be generalized to systems
more general than (14). For instance, consider the following
system:

where the nonlinear function satisfies
Then the result of Theorem 2.1 is

still true, and the proof is completely similar.

B. Global Stability

Now, to show that is really a critical value for global
stability, we have to prove that the closed-loop control system
(14) and (15) is indeed globally stable whenever . This
will be proved in a somewhat more general setting, namely,
(6) with and with . We need the
following noise conditions.

A1) is a martingale difference sequence where
is a nondecreasing sequence of-algebras with
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. Also, assume that

a.s. for some (21)

a.s. (22)

and

a.s.

as (23)

where is defined as in (13), and is defined by (19)
with defined by (9).

Theorem 2.2:Consider the stochastic control system (6)
with . Assume that the nonlinear function satisfies
condition (13) with . Assume also that the noise condition
A1) is satisfied. Then, the closed-loop adaptive control system
described by (6)–(10) is globally stable and the tracking error

satisfies

a.s. (24)

The proof is given in Section IV.
Remark 2.5:The phenomenon that is a critical

case for global stabilizability is mainly determined by: 1) the
inherent nonlinear structure of the systems to be controlled; 2)
the uncertainties of the system parameter; and 3) the random
noises involved. It does not depend on the performance index
to be minimized. It does not even depend on the particular
LS algorithm used in the analysis (see Remark 2.2). From
the analysis in the next two sections, it can be seen that
the asymptotic behavior of the closed-loop control system
essentially hinges upon a two-dimensional linear map whose
behavior is determined mainly by the roots of the quadratic
equation: . Note that is precisely
the critical case for this equation to have real or complex roots.

Remark 2.6: In the noise-free case where in (6) , it
has been shown in [28] that the critical case for global stability
of the closed-loop system (6)–(10) with is ,
where is defined in (13). Consequently, by Theorem 2.1 we
find that in the case where , although the LS-based
control algorithm (7)–(10) can stabilize the (deterministic)
system (6) with , it cannot stabilize the actual stochastic
system (6) in general. This instability phenomenon is different
from those already known in the literature of robust adaptive
control (cf., e.g., [30]), since here we are concerned with the
standard LS-based control algorithms together withwhite noise
disturbances.

Remark 2.7:Condition (23) can be verified also for a
large class of systems with possibly unbounded noises. In
fact, if a.s., then by using
the martingale convergence techniques as used in, e.g., [15,
p. 448], it can be shown that for any , (6) gives

a.s. This can then be used in
guaranteeing (23). For example, for the case of (14) we have

. Hence, similar to (20) we know that a.s.
Consequently, (23) is implied by , a.s., which

in turn is implied by, for example, the assumption that
is i.i.d. with .

III. T HE PROOF OF INSTABILITY

The proof of Theorem 2.1 is divided into several lemmas.
Throughout this section, the system and controller are defined
by (14) and (15), and the sets and are defined by (16)
and (17) with . To facilitate the instability analysis, we
need to establish a chain of inequalities satisfied by, and
this is the content of our first lemma.

Lemma 3.1:On the set
we have

where and is defined by (19).
Proof: First, note that , so by (11)

(25)

Note also that by (19)

(26)

It follows from (25) and (26) that

(27)

But, by the fact that , we have on

From this and (27) it follows that
. This completes the proof.

To analyze the chain of inequalities in Lemma 3.1, we need
to find a lower bound to , and this is done in the following
lemma.

Lemma 3.2: If for some

then on , we must have

where is defined in Lemma 3.1.
Proof: Since , and on ,

, we have by the Schwarz inequality
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Consequently, by we have

or

(28)

Now, by the assumption we have

or

(29)

Hence, by (28) and (29) we obtain

Consequently, by (18) and , we obtain

From this, by the definition of and (26) we have for

(30)

Now, by (29)

So

Substituting this into (30) we obtain

(31)

Also, since for , , , we have

So (31) is also true for , and hence the proof is
completed.

The following lemma is the key leading to the instability
proof of the adaptive systems.

Lemma 3.3:On the set we have

Proof: We use induction. For

and the assertion holds for . Now, assume that on

(32)

holds for some . We need to prove that this inequality
also holds for .

Let us first show that for defined in Lemma 3.1 we
have or

(33)

For , we have by and

Now, for , by (32)

Hence, (33) is true.
Therefore, by Lemmas 3.1 and 3.2 we have on

(34)

In order to analyze (34), we introduce the following nota-
tions:

(35)

(36)

(37)

Then, by taking logarithm on both sides of (34) we have

From this and the fact that , it follows that

(38)
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where the initial condition is

(39)

By iterating (38), we have

(40)

Now, we proceed to analyze the right-hand side of (40). First,
it is easy to verify that

(41)

So, by the convexity of

which implies that

(42)

Also, note that for any , and
. We then have by (41) and (42)

(43)

Next, by (39)

(44)

where for the second to the last inequality we have used the
fact that is an increasing function of and .

Substituting (43) and (44) into (40), we get
Hence, by the definition of and in (37), we have

or . From
this it follows that

(45)

Now, since

Hence, by (45)

Consequently, the proof of Lemma 3.3 will be completed by
directly applying the following lemma.

Lemma 3.4:Let and be defined by (35) and (36)
with . Then

Proof: Note that and , so we have

From this it follows that

Note that , so we only need to prove that

For , this can be verified easily. For , by the Taylor
expansion we have

Hence, the proof is completed.
Proof of Theorem 2.1:By Lemma 3.3 we have

From this, we have by the Stirling’s formula

Hence, the proof of Theorem 2.1 is completed.
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IV. THE PROOF OF GLOBAL STABILITY

The proof of Theorem 2.2 is prefaced with three lemmas. A
crucial ingredient in this proof is the following useful technical
lemma on growth rate of nonlinear recursions.

Lemma 4.1: Let and be two positive nonde-
creasing sequences such that

(46)

and that , where , , and .
If , then is bounded and .

The proof is given in Appendix C.
Remark 4.1: If (a constant), then the conclusion

of Lemma 4.1 implies that is bounded. This case was
considered in [28], where it was also shown that the condition

cannot be relaxed in general.
Lemma 4.2: Under the conditions of Theorem 2.2, if
but , then

where is defined by (19) with defined by (9).
Proof: First of all, we prove that there exists a subse-

quence such that

(47)

Let denote the integer part of a real number ,
and let

Then we have

Hence by , we have
. This implies that ,

and hence (47) is proved.
By (47), we can take large enough such that

(48)

Now, let us denote , then by
[15, Corollary 3.1], we see that a.s. .
By this, (23), and the property , it follows that there
is an integer large enough such that

(49)

where and are the constants defined in (13) (this
inequality is obvious since when both sides of (49) are divided
by , the left-hand side will tend to zero as ).

Now, we take large enough such that both (48) and (49)
hold. For this fixed , we proceed to prove that

(50)

First, we prove (50) for .
By (11) and the definition of we have

(51)

For , by (48) we know that

substituting this into (51), we then get (50) for .
Next, we complete the proof of (50) by induction. Suppose

that for some (50) holds for all . Then by (13)
and (49) we have

(52)

and so . Consequently, substituting this
into (51) we have

Thus, (50) also holds for . This completes the
induction argument for (50). By (50) we know that (52)
actually holds for all and consequently

for all

which certainly means that .
Lemma 4.3:Consider (6) and the LS algorithm (7)–(9).

Assume that the noise condition A1) is satisfied [(22) and
(23) are not necessary here]. Then we have

a.s.

where and are defined, respectively, by

(53)

and

(54)
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Proof: Consider the Lyapunov function
where . By (6)–(9) we have the following
standard relationship (cf., e.g., [10, p. 808]):

Hence, we have

(55)

Now, it can readily be shown that
. Hence, similar to the proof of [15, Corollary 3.1

(i)], it can be derived from (55) that

a.s. (56)

Next, by the fact that (cf., [15, p. 438]) ,
we know that

(57)

Hence by the arbitrariness ofin (56) and (57) we get

and this completes the proof.
Proof of Theorem 2.2:First of all, we show that if

(58)

then Theorem 2.2 will follow immediately. By the fact that
(cf., [15, p. 438])

(59)

we have from (11) and (58)

(60)

By (13) we see that

(61)

Substituting this into (60) we are easily convinced of the fact
that . Consequently, by (60) and (61) we get
the desired result (24).

Next, we prove (58) by considering the following three cases
separately.

Case i): . In this case, (58) holds trivially
since is nondecreasing.

Case ii): , and . By
Lemma 4.2, (58) holds again in this case.

Case iii): . In this case, , as
. Similar to (51) we have

So, by conditions (13) and (22) we have

(62)

where (without loss of generality we may assume
that ).

Now, applying Lemma 4.3, we know that
a.s. . Also, since , we can take

small enough such that . Therefore,
applying Lemma 4.1 to (62) we know that (58) is also true.
This completes the proof of Theorem 2.2.

V. CONCLUDING REMARKS

We have in this contribution found and proved the critical
stability of a class of discrete-time adaptive nonlinear stochas-
tic control systems. The implications of our results include
the following: 1) in the nonlinear case, strongly consistent
LS estimates may not ensure global stability of the certainty
equivalence adaptive control; 2) adaptive control laws that are
designed based on the Weierstrass approximation (or Taylor
expansion) of nonlinear stochastic systems may not be feasible
in general; 3) control schemes (including the LS-based ones)
that have been proved to be stable in the noise-free case
may indeed lose their stability in the presence of zero mean
bounded white noises; and 4) some chaotic dynamical systems
can be adaptively controlled to follow a desired orbit under
certain noisy environments. The results of this paper also
indicate what may be done and what cannot be done for more
general nonlinear stochastic systems.

Both the new results and the analytical methods provided in
this paper may be regarded as a start toward a more compre-
hensive investigation and understanding of adaptive nonlinear
stochastic control systems. Many interesting problems remain
open even for the seemingly simple nonlinear model (1) and
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(2); for example, it would be of interest to generalize Theorem
2.2 to the vector parameter case. Clearly, more efforts are
needed in this challenging field.

APPENDIX A
ADAPTIVE CONTROL OF (3)

Denote

and

then (3) can be written as a standard linear regression

Now, let be the WLS estimate for ,
which is recursively defined by [16, p. 80, eqs. (9)–(11)] (but
with the present regressors). Similar to (64) and (65) in [15,
pp. 443–444], we consider the following regularized WLS
estimate for :

(63)

with

where is the information matrix associated with WLS,
, and is the natural orthogonal basis

of , i.e., .
Then we have the following result.
Lemma A.1: Consider the bilinear model (3). Let the noise

process be a martingale difference sequence with the
conditional variance process almost surely bounded. Also let
the input process be adapted to . Then the regularized
WLS estimate defined by (63) has the following properties:

1) a.s.;

2) a.s.;

3) a.s. for some ;

where , and is the estimate
for given by .

Proof: The first two assertions follow directly from [16,
Lemma 2], since that lemma actually holds for general linear
regression models. So, we need only to prove 3). But, by using
[16, Lemma 1 (i)] and the fact that , we can prove 3) by
using the same technique as that used in the proof of [15, p.
444, Th. 6.3]. This completes the proof.

Remark: In comparison with the SG estimate used in
[18], the regularized WLS estimate not only has a faster
convergence rate, but also can guarantee the Property 3) of
Lemma A.1, which has previously been assumed as a condition
in [18].

Now, following [18] we consider the control performance

The certainty equivalence control is (cf., [18])

(64)

but here the estimates and are defined by the
regularized WLS estimate (63).

Note that the three properties of parameter estimates as
listed in Lemma A.1 are sufficient for the stability analysis
in [18] to carry through. Hence, following the proof of [18],
we can obtain the following theorem.

Theorem A.1:Consider the bilinear system (3) where the
noise process is a martingale difference sequence satisfying
(21). Then the certainty equivalence control (64) defined by
using the regularized WLS estimate (63) is stabilizing, i.e.,

a.s.

APPENDIX B
PROOF OF REMARK 2.2

Let satisfy conditions of Remark 2.2.
Then it is well known that the LS algorithm (7) and (8)
with coincides with the standard Kalman filter, which
generates the minimum variance estimate forand produces
the conditional variance of the estimate, i.e.,

where .
Now, let be any measurable feedback control.

Then it is known (cf., [29]) that given , the conditional
distribution of is Gaussian with conditional mean and
variance respectively given by

and

Consequently, we have

a.s. (65)

where .
The idea behind the proof of nonstabilizability is as follows:

if starting with (65) we can show that on a set with positive
probability the relationship (34) appearing in the proof of
Lemma 3.3 holds in the current situation, then similar to the
proof of Theorem 2.1 we can show that at a rate faster
than exponential, resulting in the desired nonstabilizability.
To this end, we need to get an appropriate upper bound on

first.
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Denote

We now proceed to show that .
Set

Since and is conditional Gaussian (with
the conditional mean and variance denoted by and ,
respectively), we have for any

(66)

Now, by the mean value formula, for any and
there exists such that

where

which can easily be shown to be finite. Consequently, we have

(67)

Next, let be the indicator function of a set, then by the
measurability , , we have by (66) and (67)

Hence, we conclude that

Finally by (65), we know that on

which is similar to (34). Hence by the proofs of Lemma 3.3 and
Theorem 2.1, we conclude that on at a rate faster
than exponential, and hence the desired nonstabilizability is
proved.

APPENDIX C
PROOF OF LEMMA 4.1

We first prove several auxiliary results.
Lemma C.1:Let be a nonnegative sequence satisfying

where is a constant, , and . Then
is bounded.

Proof: Denote and take large

enough such that . Then we have

and this implies that is bounded.
Lemma C.2:Let and recursively define a sequence

as follows:

(68)

If , then there exists a finite integer such that
.

Proof: First of all, implies that

(69)

which in turn implies that .
So we only need to prove that there exists a finite integer
such that

(70)

Now, consider the following function:

It is easy to see that is strictly increasing in
and .

Suppose that (70) were not true. Then we would have
, . Thus, by the increasing property

of we would have
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Continuing this argument, we would know that is mono-
tonically decreasing and has a lower bound .

Thus, there must be a real number
such that , and by (68) must satisfy

or is the real root of the quadratic equation
. However, the inequality means that there is no

real root for this equation, and we thus have a contradiction.
Hence, the lemma is proved.

Lemma C.3: Let and be recursively defined in
Lemma 4.1 and Lemma C.2 with . If
for some , then boundedness of implies
boundedness of .

Proof: First of all, by (68)

By , , and the inequality (46) for
we have

Hence, the boundedness of implies the

boundedness of by Lemma C.1. This
completes the proof.

Proof of Lemma 4.1:Without loss of generality, assume
that . We may also assume that (since otherwise,
Lemma C.1 can be applied to (46) to yield the desired result).

By (69) we have

(71)

Hence, by (46)

From this and Lemma C.1, we know that if
is bounded, then . Hence we only need
to prove that is bounded. We consider two cases
separately.

Case i) : Note that (71) implies

and so by (46)

Hence, by Lemma C.1, is bounded.
Case ii) : Now, by (46) again we have

Hence, by Lemma C.1 we know that in order to prove bound-
edness of , we only need to prove that
is bounded.

Now, consider the sequence defined in Lemma C.2.
Since , by (69), (46), and Lemma C.1, it is easy
to see that is bounded. If , then obviously

is bounded. Otherwise, if , then by (68)
it can easily be seen that , hence by Lemma
C.3, we know that is bounded. If , then
the proof is finished. Otherwise, if , then similarly
we can show that is bounded . Continuing
this argument, we know by Lemma C.2 that there must be a
finite integer such that is bounded and
that . Hence, is bounded and the proof
is completed.
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