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For n � 0, let Fn+1 = �ftu; 1; td; 1; � � � ; tu; k ; td; k ; � � � ;
tu; k +1; td; k +1; � � � ; tu; k ; td; k g. Sincex(�n; �n) = �n,
�(�n�) = 1, �(�n) = 0; x(�n; Tn+1) = �n, �(Tn+1�) = 1,
�(Tn+1) = 0, [�n; Tn+1] is a regenerative cycle forfx(�n; t); �(t)g.
By Lemma 1.2 it is seen that["n+1jFn] = 0. Thus f"n; Fng
is a martingale difference sequence. Along the same lines as in
Theorems 3.1–3.3, we arrive at the following results for the adaptive
control scheme II.

Theorem 4.1: Suppose: 1) that conditions A0) and A2)-1) hold
with q0 = 2. Thenlimn!1 �n = �0 a.s. and 2) that conditions A0),
A2), and A3) hold withq0 = 2. Then j�n � �0j = o(a�n) a.s. for
all � 2 [0; 1 � 1=(2�)).

Theorem 4.2: Suppose that conditions A0)–A3) hold withq0 = 4,
� > 2=3. Then

�n � �0p
an

d�!
n!1

N (0; �21):

Theorem 4.3: The assertions of Theorem 3.3 remain true for the
adaptive control scheme II.

It is of interest to extend our results to failure-prone manufacturing
systems with multiple machine states or multiple part types.
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Prediction-Based Discrete-Time Adaptive
Nonlinear Stochastic Control

Chen Wei and Lei Guo

Abstract—Adaptive control of a class of discrete-time parametric-strict-
feedback nonlinear systems with additive white noises is considered in
this paper. The control law is designed based on weighted least squares
(WLS) algorithms and on recursive adaptive predictors. Global stability
and tracking error bounds are established for the closed-loop systems.

Index Terms—Adaptive nonlinear control, discrete time, global stabil-
ity, prediction, stochastic systems.

I. INTRODUCTION

In recent years, much progress has been made for adaptive control
of continuous-time nonlinear systems (cf., e.g., [6] and [8]–[12]). The
counterpart result for the adaptive control of discrete-time nonlinear
systems, however, has been hindered by some inherent difficulties in
discrete-time models, as mentioned in [5] and [7] and as shown in [3].

The main difficulty lies in the fact that the nonlinear damp-
ing approach which is so successful for the controller design of
continuous-time nonlinear systems fails in the discrete-time case. This
accounts for the situation that most of the existing results deal with
only systems with nonlinearities having a linear growth rate [7]. In
an effort to remove the linear growth constraints, [5] analyzed the
stability of a first-order discrete-time deterministic adaptive system,
and [4] studied the global stability and instability of a class of
least squares (LS)-based discrete-time deterministic adaptive control
systems. Recently, Guo [3] found the limitations of adaptive control
for discrete-time nonlinear systems by studying the critical stability
of a class of nonlinear stochastic control systems. It was also shown
in [3] that recursive adaptive nonlinear control schemes that have
been proven to be stable in the noise-free case, may indeed lose their
stability in the presence of (even) zero mean bounded white noises.
Thus, it is necessary to take the noise effects into account in the
study of adaptive systems.

In this paper, we shall extend the existing stability results estab-
lished for deterministic systems in [7] to the stochastic case by using
a prediction-based design procedure and the weighted least squares
(WLS) algorithm. Under the presence of random noises, both the
stability of adaptive nonlinear control systems and the output tracking
error bounds are established.

II. THE MAIN RESULTS
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A. Problem Formulation

Consider the discrete-time parametric-strict-feedback control sys-
tems, as shown in (1) at the bottom of the page, wherey(k); u(k);
and wi(k); 1 � i � n are the system output, input and noise,
respectively,x(k) = [x1(k) � � � xn(k)]

� is the measured state vector,
� 2 Rp is an unknown parameter vector, and�i(�); 1 � i � n

are known nonlinear vector-valued functions. This model may be
regarded as the stochastic analogue of the deterministic one studied
in [7].

The control objective is to design a feedback control sequence
fu(k)g, such that the system output sequence tracks a reference
signal fy�(k)g.

In order to analyze this control problem, we introduce the following
conditions.

A1) The noise sequencefwi(k); Fkg (1 � i � n) is a mar-
tingale difference sequence (wherefFkg is a family of
nondecreasing�-algebras) with conditional variance�2i , i.e.,
E[w2i (k + 1)jFk] = �2i a.s. 8k; 1 � i � n: We also
assume that

lim
t!1

1

t

t

k=1

jwi(k)j
2 = �

2
i a.s. 1 � i � n: (2)

A2) There exists a constantL1 > 0 such that

j�i(�1)� �i(�2)j �L1j�1 � �2j; 8 �1; �2 2 R
i
;

1 � i � n� 1

j�n(x)j �L1jxj; 8 x 2 R
n
:

A3) fy�(k)g is a bounded deterministic reference signal.

B. Parameter Estimation

First, similar to [7], put (1) into a compact form

x(k + 1) = Ax(k) + bu(k) + �k� +Wk+1

y(k) = Cx(k)
(3)

where

x(k) =

x1(k)
x2(k)

...
xn(k)

; Wk =

w1(k)
w2(k)

...
wn(k)

�k =

�1(x1(k))
�

�2(x1(k); x2(k))
�

...
�n(x1(k) � � � xn(k))

�

(4)

A =

0 1 0 � � � 0
0 0 1 � � � 0
� � �
0 0 0 � � � 1
0 0 0 � � � 0

; b =

0
0
...
0
1

C = [1 0 � � � 0 0 ]: (5)

Next, use the matrix version of the recursive WLS algorithm [1]
to estimate�

�k+1 = �k + Pk�
�
kQk(x(k+ 1)� x̂(k + 1)) (6)

Pk+1 = Pk � Pk�
�
kQk�kPk (7)

Qk
�
= [��1k I + �kPk�

�
k]
�1 (8)

x̂(k + 1)
�
= Ax(k) + bu(k) + �k�k (9)

where the initial values�0 and P0 > 0 are chosen arbitrarily and
f�kg is the weighting sequence defined by

�k =
1

log1+� rk
; rk

�
= kP�10 k+

k

i=0

k�ik
2 (10)

where� is some positive constant.

C. Prediction and Controller Design

Iterating (1) step by step, we get the following “input–output” form:

y(k+n) = u(k)+�
�

n

i=1

�i(k+n�i)+

n

i=1

wi(k+n�i+1) (11)

where

�i(k)
�
= �i(x1(k) � � � xi(k)); 1 � i � n: (12)

If �i(k+n�i) (1 � i � n) were known at stepk, we see from (11)
that the “certainty equivalence” adaptive tracking control would be

u(k) = y
�(k + n)� �

�
k

n

i=1

�i(k + n� i):

But at stepk, xi(k + j); j > 0 are unknown. A natural way is
to use their predicted values. The minimum variance predictors for
xi(k + j) and�i(k + j) at time k are

xi(k + jjk)
�
= E[xi(k + j)jFk]

�i(k + jjk)
�
= E[�i(k + j)jFk] (13)

where 1 � i � n � j; 1 � j � n � 1. Clearly, the conditional
expectation depends on the unknown parameter�. Using the param-
eter estimate�k to replace�, we can define the following optimal
prediction-based adaptive predictors:

xi(k + jjk)
�
= E[xi(k + j)jFk]�=�

�i(k + jjk)
�
= E[�i(k + j)jFk]�=� (14)

where1 � i � n � j; 1 � j � n � 1 and�k is defined by (6)–(9).
Because of the nonlinearity involved, these adaptive predictors are
hard to calculate. Instead, we use the following approximate adaptive
predictor expressed in a recursive form:

x̂i(k + jjk)
�
= x̂i+1(k + j � 1jk) + �

�
k �̂i(k + j � 1jk) (15)

�̂i(k + jjk)
�
= �i(x̂1(k + jjk) � � � x̂i(k + jjk)) (16)

x̂i(kjk)
�
= xi(k); �̂i(kjk)

�
= �i(k) (17)

where1 � i � n � j; 1 � j � n � 1.
Now, at stepk, the adaptive control law can be defined as

u(k) = y
�(k + n)� �

�
k

n

i=1

�̂i(k + n� ijk): (18)

With this controller applied to (11), the closed-loop equation is

y(k + n) = y
�(k + n) + �

�

n

i=1

�i(k + n� i)

xi(k + 1) = xi+1(k) + ���i(x1(k) � � � xi(k)) + wi(k+ 1)1 � i � n� 1
xn(k + 1) = u(k) + ���n(x1(k) � � � xn(k)) + wn(k+ 1)
y(k) = x1(k)

(1)
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� �
�
k

n

i=1

�̂i(k + n� ijk)

+

n

i=1

wi(k+ n� i+ 1): (19)

Remark 1: By transforming (1) into (11), the formula of the
optimal controller can be written immediately, and the necessity to
predict the states is obvious. In the noise-free case, the recursive
predictors (15)–(17) are the same as the optimal prediction-based
ones (14). Although (15)–(17) are not expected to perform better
than (14) in the stochastic case, they have the advantage of recursive
computations and do indeed give an adaptive controller that is robust
with respect to stochastic disturbances, as to be shown in Theorem
1 below.

D. The Main Results

We now present the main results on stability and tracking perfor-
mance of the closed-loop system (19).

Theorem 1: Consider the adaptive control system described by
(6)–(12) and (15)–(19). Let Conditions A1)–A3) be satisfied. Then
the closed-loop system is stable in the sense that asT ! 1

T

t=1

kx(t)k2 + ju(t)j2 = O(T ) a.s.

and the averaged squared tracking error satisfies

1

T

T

t=1

jy(t+ 1)� y
�(t+ 1)j

2
= O �

2 + o(1) a.s. (20)

where�2
�
= n

l=1
�2l .

We note that in the noise-free case (i.e.,�2 = 0), the right-hand
side (RHS) of (20) reduces too(1), which means that the tracking
error converges to zero in the averaging sense.

III. PROOF OF THE MAIN RESULTS

We first present some basic properties of the WLS algorithm,
which can be proven in a similar way to those established for linear
regression vector models (see [1] and [2]).

Lemma 1: If Condition A1) is fulfilled, then the WLS algorithm
defined by (6)–(9) satisfies

1) 1
k=1

~��k�
�
kQk�k

~�k < 1 a.s.;
2) �k converges to some finite random vector� almost surely;
3) 1

k=1
k�k+q � �kk

2 < 1 a.s.8 q > 0;

where ~�k
�
= � � �k.

We remark that the property 1) is nothing but the matrix analogue
of [2, Lemma 1, property (iii)].

Lemma 2: Under Conditions A1)–A3), we have

kx(k + 1)k2 = O(kx(k)k2) + o(k): (21)

Proof: First of all, by (2) it follows that ask ! 1

jwi(k)j
2 = o(k) a.s. 1 � i � n: (22)

Next, from Condition A2) we see that

k�i(x)k � L1kxk+ L2; 1 � i � n (23)

whereL2
�
= max1�i�n�1 k�i(0)k.

Then, by (4), (12), (15)–(17), (23), and 2) of Lemma 1, the
following result can be derived inductively:

k�̂i(k + jjk)k = O(kx(k)k) +O(1) (24)

where1 � j � n � 1; 1 � i � n � j. Therefore, substituting (24)
into (18), and applying Condition A3) and 2) of Lemma 1, we have

ju(k)j = O(kx(k)k) +O(1): (25)

Finally, from (1), (22), (23), and (25), the desired result (21)
follows immediately.

Now, let us introduce the following notations for prediction errors:

~xi(k + jjk) =xi(k + j)� x̂i(k + jjk) (26)

~�i(k + jjk) =�i(k + j)� �̂i(k + jjk) (27)

where1 � j � n � 1; 1 � i � n � j. The following two lemmas
are devoted to establish upper bounds for these prediction errors.

Lemma 3: Under Conditions A1)–A2), it holds that

j~xi(k + jjk)j2 + k~�i(k + jjk)k2

= O

j�1

l=0

k�k+l
~�k+lk

2 + kWk+l+1k
2

+o kx(k + l)k2 + o(1); 8 k � 0

where1 � j � n � 1; 1 � i � n � j.
Proof: We inductively prove the result for1 � j � n � 1.

For j = 1, by (1), (4), (12), (15), and (17), we see that

j~xi(k + 1jk)j2 = jxi(k + 1)� x̂i(k + 1jk)j2

= jxi+1(k) + �
�
�i(k) + wi(k+ 1)

� xi+1(k)� �
�
k�i(k)j

2

� 2j~��k�i(k)j
2 + 2jwi(k+ 1)j2

� 2k�k
~�kk

2 + 2kWk+1k
2
: (28)

Then, by (12), (16), (28), and Condition A2), we have

k~�i(k + 1jk)k2 = k�i(k + 1)� �̂i(k + 1jk)k2

= k�i(x1(k+ 1); � � � xi(k + 1))

� �i(x̂1(k + 1jk); � � � x̂i(k + 1jk))k2

�L
2
1

i

l=1

jxl(k + 1)� x̂l(k + 1jk)j2

�O k�k
~�kk

2 +O kWk+1k
2
: (29)

Hence, combining (28) and (29) we see that the lemma holds for
j = 1.

Now, assume that the lemma holds for somej � 1. Then by (1),
(4), (12), (15), and (23) we have for1 � i � n � j � 1

j~xi(k + j + 1jk)j2

= jxi(k + j + 1)� x̂i(k + j + 1jk)j2

= jxi+1(k + j) + �
�
�i(k + j) + wi(k+ j + 1)

�x̂i+1(k + jjk)� �
�
k �̂i(k + jjk)j

2

� 5j~xi+1(k + jjk)j2 + 5 ~��k+j�i(k + j)
2

+ 5j[�k+j � �k]
�
�i(k + j)j

2

+ 5j��k [�i(k + j)� �̂i(k + jjk)]j
2

+ 5jwi(k + j + 1)j2
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� 5j~xi+1(k + jjk)j2 + 5 �k+j
~�k+j

2

+ 5k�k+j � �kk
2 � 2L21kx(k + j)k2 + 2L22

+ 5k�kk
2 � k~�i(k + jjk)k2 + 5kWk+j+1k

2

� O

j

l=0

k�k+l
~�k+lk

2 + kWk+l+1k
2

+o(kx(k+ l)k2) + o(1); 8 k � 0 (30)

where the last inequality is derived from the induction assumption
and Lemma 1. Similar to the derivation of (29), by (12), (16), (30),
and Condition A2) it can be shown that

k~�i(k + j + 1jk)k2

= O

j

l=0

k�k+l
~�k+lk

2 + kWk+l+1k
2

+o(kx(k+ l)k2) + o(1): (31)

Therefore, combining (30) and (31) we see that the lemma holds for
j + 1. Hence, the lemma holds for any1 � j � n� 1.

The next lemma gives an estimation for the accumulated prediction
errors.

Lemma 4: Under Conditions A1)–A3), we have for1 � i �

n � j; 1 � j � n � 1

t

k=1

j~xi(k + jjk)j2 + k~�i(k + jjk)k2

= O(�2t) + o(rt) + o(t) (32)

where ~xi(�) and ~�i(�) are defined by (26) and (27),�2 is defined
in Theorem 1 and

rt
�
= 1+

t

k=1

kx(k)k2: (33)

Proof: By Lemma 3, we have

t

k=1

j~xi(k + jjk)j2 + k~�i(k + jjk)k2

= O

t+j�1

k=1

k�k
~�kk

2 +O

t+j�1

k=1

kWk+1k
2

+ o

t+j�1

k=1

kx(k)k2 + o(t): (34)

For the first term on the RHS of (34), by (8), (10), andPk � P0

we have

~��k�
�
kQk�k

~�k

� �min(Qk) � k�k
~�kk

2

� �
�1

k + �max(�kPk�
�
k)

�1
� k�k

~�kk
2

� (��1k + kP0k � k�kk
2)�1 � k�k

~�kk
2

� [log1+�
rk + kP0k � rk]

�1 � k�k
~�kk

2 (35)

and so by 1) of Lemma 1 and the Kronecker Lemma we have for
1 � j � n

t+j�1

k=1

k�k
~�kk

2 = o(rt+j�1) +O(1) = o(rt) + o(t) (36)

where for the last equality we have used (4), (10), (23), and Lemma 2.
For the second term on the RHS of (34), by (2) and (4) we have

for 1 � j � n

t+j�1

k=1

kWk+1k
2 = O(�2t) (37)

where�2 is defined in Theorem 1.
For the third term on the RHS of (34), by (33) and Lemma 2 it

can be seen that for1 � j � n

t+j�1

k=1

kx(k)k2 � rt +

j�1

l=1

kx(t+ l)k2 = O(rt) + o(t): (38)

Finally, substituting (36)–(38) into (34), we see that the lemma is
true.

We are now in a position to give the proof of Theorem 1.
Proof of Theorem 1:It follows from (4), (12), (17), (19), and

(27) that
t

k=1

jy(k + n)� y
�(k + n)j2

=

t

k=1

n

j=1

~��k+n�j�j(k + n� j)

+

n

j=1

[�k+n�j � �k]
�
�j(k + n� j)

+

n

j=1

�
�
k [�j(k + n� j)� �̂j(k + n� jjk)]

+

n

j=1

wj(k + n� j + 1)

2

� 4n

t

k=1

n

j=1

�k+n�j
~�k+n�j

2

+ 4n

t

k=1

n

j=1

k�k+n�j � �kk
2

� k�j(k + n� j)k2

+ 4n

t

k=1

n�1

j=1

k�kk
2k~�j(k + n� jjk)k2

+ 4n

t

k=1

n

j=1

kWk+n�j+1k
2
: (39)

As to the second term on the RHS of (39), by (4), (12), (23), (38),
and 3) of Lemma 1, it is clear that

t

k=1

n

j=1

k�k+n�j � �kk
2k�j(k + n� j)k2

= O

t

k=1

n

j=1

k�k+n�j � �kk
2 � [kx(k + n� j)k2 + 1]

= o

t+n�1

k=1

kx(k)k2 +O(1)

= o(rt) + o(t): (40)
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For the third term on the RHS of (39), by 2) of Lemmas 1 and 4
we have

t

k=1

n�1

j=1

k�kk
2k~�j(k + n� jjk)k2

= O

t

k=1

n�1

j=1

k~�j(k + n� jjk)k2

= O(�2t) + o(rt) + o(t) (41)

where�2 is given in Theorem 1.
Therefore, by substituting (36), (37), (40), and (41) into (39), we

have

t

k=1

jy(k + n)� y
�(k + n)j2 = O(�2t) + o(rt) + o(t): (42)

From (1), (42), and Condition A3), we then have

t

k=1

jx1(k + n)j2 =

t

k=1

jy(k + n)j2 = O(t) + o(rt): (43)

Now, starting from (43) and repeatedly using (1), (2), and (23)
we have

t

k=1

jxj(k + n� j + 1)j2 = O(t) + o(rt); 1 � j � n

which implies that

t

k=1

jxj(k)j
2 = O(t) + o(rt); 1 � j � n: (44)

Finally, it follows from (4), (33), and (44) thatrt = O(t) + o(rt):
Therefore,

rt = O(t): (45)

Hence the desired stability follows from (44), (45), and (25), and (20)
follows from (42) and (45). This completes the proof of Theorem 1.

IV. CONCLUDING REMARKS

In this paper, we have studied the adaptive control of a class of
discrete-time stochastic nonlinear systems whose nonlinearities sat-
isfy the linear growth condition. (This condition cannot be essentially
relaxed in general as recently shown in [13].) The prediction/WLS-
based adaptive control is shown to be globally stable in the presence
of random noise. Of course, there are many problems which still
remain open. For example, 1) it would be of considerable interest
to find a simple recursive procedure for calculating the optimal
prediction-based adaptive predictors (14) and 2) it is not clear if the
WLS algorithm used in the controller design can be replaced by the
standard LS. These belong to a further investigation.
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Discrete-Time Approximated Linearization
of SISO Systems Under Output Feedback

J. P. Barbot, S. Monaco, and D. Normand-Cyrot

Abstract—This paper deals with higher order approximation for
discrete-time systems. It is shown that approximated feedback lineariza-
tion at the second order can always be achieved under feedback compen-
sation based on an approximated observer. An example is given in order
to illustrate the control design and the efficiency of the proposed method.

Index Terms—Dynamic state feedback, nonlinear discrete-time systems,
nonlinear observer, quadratic approximation.

I. INTRODUCTION

The paper deals with output feedback control for achieving an
approximated feedback linearization of a given nonlinear single-
input/single-output (SISO) discrete-time system. The control scheme
is the usual one based on an approximated observer coupled with
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