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Abstract This paper considers the adaptive control of discrete-time hybrid stochastic systems with 
unknown randomly jumping parameters described by a finite-state hidden Markov chain. An intuitive yet 
longstanding conjecture in this area is that such hybrid systems can be adaptively stabilized whenever 
the rate of transition of the hidden Markov chain is small enough. This paper provides a rigorous posi- 
tive answer to this conjecture by establishing the global stability of a gradient-algorithm-based adaptive 
linear-quadratic control. 
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1 Introduction 

1 . 1  System models 
Fault-prone dynamic systems may experience abrupt changes in their structures and parame- 

ters, caused by such phenomena as component failures and changing subsystem interconnections. 
We can model such systems as operating in different "forms", each of which corresponds to some 
combination of these events. Thus, let us consider the following discrete-time hybrid systems with 
Markovian jumps : 

= A(r , )x ,  + B ( r , ) u ,  + F ( r t ) w t + l ,  t 3 0 ,  (1 .1)  

where x ,  E Rn and u, € Rm are the state and input of the system respectively, w ,  E Rn is the 
noise, 1 r, , t = 0 , 1 , 2 ,  ... 1 is an unknown (or hidden) homogeneous Markov chain taking values 
in Y d  1 1,2, ... , N 1 with one-step transition probability matrix 

where 
pe = P ( r , + l  = j l  r, = i). 

For r, = i ,  we denote A(r , )  = A,, B(T , )  = B, and F ( r , )  = F , ,  where the A:s , B:s and 

F: s are, respectively, known matrices in Bn " " , 'Rn " " and R n x n ,  such that 
)I A, - A, 1 1  + I( B, - B, 1 1  + 11 F, - F, 11  # 0 for i + j . Here and hereafter, ( 1  ( 1  denotes 

the Frobenius norm of a matrix, defined by 1) A 1 1  A 1 Tr ( AAr ) 1 for any matrix A , where 
Tr ( ) is the trace operator. Also, we will use 1 )  1 1  to denote the Euclidean norm of a vector 

or induced Euclidean norm of a matrix, which can be defined as / I  A 11 2 = d m )  . 
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It may be worth noting that in the continuous-time case, the corresponding hybrid systems 
may be modelled by the following stochastic differential equation: 

dx, = [ ~ ( r : ) x ,  + B(r:)u,]dt + F(r:)dw,,  t 2 0,  (1 .2 )  

where r: E Y i s  a Markov process with N states, ( w,  ,el is an Rn-valued standard Wiener pro- 
cess on a probability space (a , P ,F) , 0, = [ I ( , :  = , .-- , I ( , :  = N )  ] = is the indicator process for 

ri , and If is the transition probability rate matrix. It should be noted that eq. ( 1  . 3 )  is a gener- 

al representation of homogeneous finite state Markov chains''' . 
The systems described by ( 1 . l )  or ( 1 . 2 )  and ( 1 . 3 )  are called hybrid systems, since they 

combine a part of the state that takes values continuously ( x E R n )  and another part of the state 
that takes only discrete values ( r 6 Y )  . 

Over the past three decades, such hybrid systems have attracted considerable research inter- 
est. The study of the continuous-time models can be traced back at least to the work of Krasovskii 
et a1. ['I , where the Markovian jump linear quadratic (JLQ) optimal control problem (corre- 
sponding to the case F ( r', ) = 0 in ( 1 . 2 )  ) was dealt with. The previous works can naturally be 
divided into two groups (nonadaptive and adaptive) according to the availability of the jump pa- 
rameters. 

1 . 2  Previous results on optimal (nonadaptive) control 
For the simplest complete observation case, ~worde r '~ ]  and  onh ham[^] solved the continu- 

ous-time JLQ problem with finite horizon, shortly after the work of Krasovskii et al.  ['I . Sworder 
used a stochastic maximum principle while Wonham used the dynamic programming. Wonham al- 
so solved the infinite horizon version of the problem and found a set of sufficient conditions to 
guarantee the existence of a unique, steady-state control law. The discrete-time versions of the 
JLQ problems were solved by Blair et a1. [51 and by Chizeck et a1. [61 using dynamic programming. 
In refs. [7-91 , necessary and sufficient conditions were derived for properly defined stochastic 
controllability and stabilizability . It was shown that the existence of a steady-state solution with fi- 
nite cost-to-go in the JLQ problem can be attributed to stochastic stabilizability. 

For the partial observation case where an output measurement of the states is available, 
~ariton''' ' gave some necessary conditions for the optimality of the output feedback control law for 
continuous-time models. For the discrete-time jump linear quadratic Gaussian (JLQG) problem, 
Ji et al. designed an optimal controller based on a separation theorem by using the Kalman filter 

[El for state estimation . 

1 . 3  Previous results on adaptive control 
Adaptive control deals with the case where the Markovian parameters cannot be observed di- 

rectly. For the continuous-time case, Wonham filtering is applicable to the estimation of the 
Markovian parameters. Caines et a1 .[''I used the Wonham filter and the dynamic programming 
approach to obtain the adaptive optimal control law with finite horizon for the continuous-time 
JLQG problem. In ref. [12]  , under the condition that both the jumping rate of the parameter 
process and the magnitude of the control Riccati equation together with its second derivatives are 
suitably small, Caines et al. gave a solution to the infinite time adaptive JLQG problem, showing 
that the closed-loop systems were stabilized in an average sense: 
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In a related work, Dufour et a1. [I3] presented a different adaptive control law by introducing a set 
of algebraic conditions, which can be applied to a class of systems where the controllability condi- 
tion used in ref. [ 121 fails. 

In the more complicated case where both the states and the parameters are not directly ob- 
served, ~worder"~] studied the control problem by introducing an unconventional measurement ar- 
chitecture. However, since no explicit solution could easily be obtained, an approximation to the 
quadratic-optimal regulator problem has to be made. The solution is in a form quite similar to that 
obtained in the complete observation case, but the gain equation is much more complicated. In 
ref. [ 151 , by introducing an exact transformation the adaptive JLQG control is embedded into an 
LQM (linear quadratic martingale) control with a completely observable stochastic control matrix. 
However, the martingales involved which drive the new linear systems are generally not Wiener 

d 

processes and the optimal control policy is unlikely to be practically implementable. Therefore, 
suboptimal policies are considered as approximation solutions. In a recent work, Dufour et al . [I6] 

considered adaptive control of hybrid systems with Markovian jump parameters, where two chan- 
nels are included in the model for indirect measurement of the state and the jump parameter. 
Suboptimal estimations for the state, the Markovian parameter and approximate control law were 
investigated, and upper bounds for the estimation errors were given for justification of such an ap- 
proach. However, only the finite horizon JLQG problem was studied in ref. [ 161 , where the sta- 
bility issue was not a concern. 

1 . 4  The contribution of the present paper 
From the above brief review, one can conclude that although considerable research has been 

conducted in the literature, the following basic problem still remains open: whether or not a sta- 
bilizing adaptive controller exists for the-hybrid system ( 1 . l )  if, besides the controllability condi- 
tion, one only knows that the transition rate of the hidden Markov chain is small enough. In this 
paper; we shall provide a positive answer to this problem. The adaptive controller is a certainty 
equivalent LQ control with parameter estimates given by a projected gradient algorithm["] . It will 
be shown that whenever the transition rate of the Markovian parameters is sufficiently small and a 
certain controllability assumption is satisfied, the model (1  . l )  can be adaptively stabilized in the 
sense that 

sug(El1 x,//' + E 11 u , / /  ') < = ,  
t a 

where r 3 1 is a constant. 
The remainder of this paper is organized as follows. In section 2 ,  we describe the parameter 

estimation algorithm and the adaptive control law. The main stability results are given in section 
3 ,  and their proofs are given in section 4 .  

2 Adaptive controller design 

Let us consider the following jump parameter linear model 
%,+I = A(r , )x t  + B ( r t ) u t  + wt+l ,  t 3 0, 

with a long run average quadratic index: 

1 J (  u ) = lim sup - -C E ( x b ~ x ~  + uLRut) , 
T-00 T ,=, 
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where Q and R are two positive definite matrices. 
In this paper, we are interested in the case where both the Markov chain { r, 1 and its transi- 

tion probabilities ( pe 1 are unknown a priori. Therefore, the controller has to be defined based 
on adaptive estimations of the jump parameters. 

To describe the estimation algorithm, we introduce the following notations : 

8, a [ A ( r t ) , B ( r t ) l r ,  9, A [xZ,uZlr ,  
N N 

Note that 9 i s  the smallest convex set ( a  simplex) which contains the finite set { [ Ai , Bi ] ' , i = 
1 , 2 , . . . , ~ 1  . 

With these notations, the model ( 2 . 1  ) can be rewritten in a compact form : 

~ t + l  = eZ~)t + ~ t + l .  ( 2 .3 )  
We estimate 8, recursively by the f?ollowing projected gradient algorithm[171 

where nB( A 1 denotes the projection on the convex set 9 o f  an ( rn + n )  x n matrix A ,  i .  e .  
n B ( A  1 = ar% min I1 A - B I1 , 

E P  
(2 .5)  

and where d is a suitably large constant which will be specified later. The initial value Po can be 
chosen as an arbitrary element in 9. 

Now, the adaptive control law can be defined as 

Ut = - ( R + hip$,) - l  B;PJ$, g - K , ~ , ,  ( 2 . 6 )  
where PC is the solution to the following algebraic Riccati equation: 

P, = $PJ, - A;PB,(R + B;P$,)-~B;PJ, + Q ,  

8, A [ A , ,  (2 .7 )  
Substituting (2 .6 )  into (2 .3 )  gives the closed-loop equation 

%,+I  = Ftxt + 8 Zy, + wt+l ,  ( 2 .8 )  
where 

F, = ~ , - ~ , ~ , , 8 ,  = 8 , - 8 , .  (2 .9 )  
Note that by ( 2 . 9 )  , the algebraic Riccati equation (2 .7 )  can be rewritten as 

P, = KP,F, + G R K ,  + Q. (2.10)  
We conclude this section by giving some interpretations about the adaptive control law 

( 2 . 6 )  . Given the existing results in the nonadaptive case where both the Markov chain and the 
transition probability are known, it is natural to design the certainty equivalence adaptive control 
via a set of coupled Riccati equations described as in refs. [5]  , [6 ]  and [ 8 ] ,  with the corre- 
sponding unknown parameters replaced by the estimated ones. However, in this framework, the 
estimation of the unknown transition probabilities 1 pe 1 of the Markov chain presents a daunting 

challenge['81 . In order to avoid such a difficulty, it seems to be feasible to design the adaptive 
controller via the decoupled certainty equivalent Riccati equation ( 2 . 7 )  , if the transition proba- 
bilities p i ,  i # j , are small enough. An additional advantage of this design is the simplicity of the 
adaptive controller structure. 

3 The main result 

To establish the global stability of the closed-loop system ( 2 . 8 )  , we need the following as- 
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sumptions : 
A l )  1 w, , t 2 1 / is an independent noise sequence and there exist constants r > 0 ,  b 30, 

such that su Ee' " "1 " ' 6  eb . 
tP ? 

A21 For any element M E 9, the corresponding pair [ A , B ] with [ A , B ] 4 M is control- 
lable, where 9 is defined in (2 .2 )  . 

The main stability result is stated as follows, its proof is given in section 4 .  
Theorem 3 .1 .  For the system ( 2 . 1  ) with both unknown Markovian jumps { r ,  } and un- 

known transition probability { pc / , let assumptions A1 ) and A2) hold, and the initial state xo 

satisfy E 11 xo 11 k a , V s > 1. Assume that d in the estimation algorithm ( 2 . 4 )  is suitably 

large. Then under the adaptive control law ( 2 . 6 )  , there exists a real number A * > 0 such that 
whenever the the maximum transition rate A 4 max ( pi / satisfies A < A * , the closed-loop adap- 

i + j  

tive system is Lr-stable in the following sense: 

s u g ( E  la 
II x ,  II ' + Ell a, II '1 < a ,  

where r 2 1 is a constant. 
Remark 3.1. For the more general model (1 .1 )  , if assumptions A l )  and A2) are satis- 

fied, then the stability result of Theorem 3 .  1 still holds with only a slight modification of the 
bounds on d and A . The independence restriction on the noise can also be relaxed. In fact, it 
can be replaced by the following general one: 

for some constants r > 0 and b > 0 ,  the stability analysis remains the same. Note that this condi- 

tion includes a large class of correlakd stochastic noises[191 as well as any bounded deterministic 
disturbances. 

Remark 3.2. For systems with deterministic time-varying parameters 1 8: } , the follow- 
ing assumption which depicts the time-varying mode of the parameters is standard[207211 : 

A) For any t 3 0 and T > 0 ,  the following inequality holds : 

where E > 0 is a sufficiently small number characterizing the rate of parameter variations, and C 
> 0 is a constant. From Proposition A in the appendix, it can be seen that for systems with jump- 
Markov parameters, this assumption cannot be satisfied in general, regardless of how small the 
rate of the transition is. Hence the existing deterministic treatments in the literature do not apply 
to the present case. 

Remark 3.3. A rough, yet quantitative value for A * in Theorem 3 . 1  may be found in 
the proof presented in the next section. It is not surprising that this value is quite small in gener- 
al,  since it reflects both the nature of adaptation and the key idea behind the controller design 
philosophy. However, we conjecture that under the conditions of Theorem 3 .  1 ,  there exists a 

critical value A * , such that adaptive stabilization of the jump parameter system is possible when- 

ever the unknown transition probability satisfies A < A * , and is impossible in general whenever 

A 2 A * . Finding out such a critical value A * would be important for further understanding the 
nature of adaptive control. 
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4 Stability analysis of the closed-loop systems 

The proof of Theorem 3.1 is prefaced with several lemmas. We first present some properties 
on the Riccati equation ( 2 . 7 )  . 

Lemma 4.1 .  Under assumption A2) , there exist constants P > a > 0 and L > 0 ,  such 
that for any t 2 0 ,  

a 1  4 Pt 4 PI, (4 .1)  

1 1  ptt1 - P ,  1 1  G L  1 1  a t t1 - at 11 2 .  (4 .2 )  
Proof. By assumption A2) , the Riccati equation ( 2 . 7 )  has a unique positive definite so- 

lution P, p P (A, , B, ) for any t 2 0 .  Since this solution is analytic with respect to [ A ,  , B, ] (see 
ref. 1221 ) and the convex set 9 i s  closed and bounded, it is obvious that there exist P > a > 0 
such that ( 4 . 1  ) holds. Similarly, ( 4 . 2 )  holds because the partial derivatives of P, with respect 
to [ A , ,  B,] are bounded, which implies that the Lipschitz condition holds. 

Let us now introduce the following notations : 

where x E Rn , and P € Rn " is a positive definite matrix. It is easy to see that 1 )  I I  p is a 
norm, and that for any positive definite matrices P and U,  

In the following analyses of the closed-loop system (2 .8 )  , the above defined norm plays a 
key role. 

Lemma 4 .2 .  If assumption A2) is satisfied, then 
4. 

I I  % ,+I  I I  P,,, < A t  I I  I P, + I w,+l I P,+, + M ,  
with 

where a ,  p ,  L ,  K,, P;A~ defined by (4 .11 ,  ( 4 . 2 ) ,  ( 2 . 6 )  and ( 2 . 7 ) ,  respectively, and 
Amin( Q )  denotes the smallest eigenvalue of Q appearing in the cost functional. 

Proof. Since 11 11 p i s a n o m ,  by ( 2 . 8 ) ,  wehave 

I 1 I P < I FA I P + I wt+l I 1  y,, + I I /  P,+, 9 
(4 .6)  

where P, + 1 is the solution of the Riccati equation ( 2 . 7 )  . 
Now we proceed to analyze the right-hand-side of ( 4 . 6 )  . By ( 4 . 4 )  , we have 

I I  Fr, I pa+, 4 ( I  + J I P I  - P, I . I P I ) I I  Fr, 1 P, .  (4 .7)  

Furthermore, by ( 2  .10 ) we have 
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( 4 . 8 )  
where p is determined by ( 4 . 1 )  . Define 

Then, it follows from ( 4 . 8  ) that 

11 F+, 11 P, 4 A 11  x, I/ P,. 
On the other hand, by the property of projection in ( 2 . 4 )  , we have 

where a,  is defined by ( 4 . 3 )  . 
Substituting ( 4 . 2 )  , ( 4 . 9 )  and ( 4 . 1 0 )  into ( 4 . 7 )  , we get 

where a and L are given by ( 4 . 1 )  and ( 4 . 2 )  respectively. 
For the last term on the right-hand-side of ( 4 . 6 ) ,  we have 

1 1  1, p,+l 4 J a , (  d + I1 9, I1 2, I1 PC+,  I1 

4 c1& 1 1  xt I p, + M ,  ( 4 . 1 2 )  

where c and M are defined by ( 4  .5  ) . 
Substituting ( 4 . 1 1  ) and ( 4 . 1 2 )  into ( 4 . 6 )  yields Lemma 4 . 2 .  
Lemma 4.3. For a ,  defined in ( 4  .3 ) , the following inequality holds, 

where Tr { 1 denotes the trace of a matrix, I (  .) is the indicator function, n is the dimension of 
the state x, in the system ( 2 . 1 )  , r, is the Markovian parameter, and G is a constant defined by 

G A - max 1 1  [Ai ,B, l  - [Aj,Bjl  112. 
I 6  b j 6  N 

Proof. First of all, by Proposition B in the appendix, we know that 
G g max 11  8' - 8 "  1 1 2 ,  

B , B * E P  
( 4 . 1 3 )  

where 9 is defined in ( 2 . 2 )  . 
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Now, suppose that TI and T2 are two real matrices or vectors with the same dimension. By 

(TI  - Tz)'(Tl - T2) = TiT1 + T;T2 - T;T2 - TiTI  2 0,  
we have 

TiT2 + TiT1 < TiT1 + TIT2. (4.14) 
Note that a,, 1 ,8, + 1 and 8, are all in 9, it follows from (4.13) and (4.14) that 

[ a t + ,  - ~ t + l l r [ ~ t t l  - e,+ll 
= [ a t t l  - 8, + 6, - 6t+l l r [8 t+l  - e, + e, - o,,,I 
= [a,+, - ~ , l r [ ~ t t 1  - 8,l + lo, - 8,+1l r~8 ,  - 8,+11 

+ [&+I - 8tlr[8, - 8,,11 + [8, - 8,+,lr[a,+I - 8,l 

< [ a t + ]  - 8 t l r [8 t+ l  - 8,l + 3 ~ ~ 1 ( r < + r ' + ~ )  I,xm, (4.15) 

where I, . , is the n x n identity $matrix. Taking trace on both sides of (4 .15 ) gives 

~ r i ~ : + ~ 8 , , 1  1 < ~ r l [ 8 , , 1  - 8,1'[8,+1 - O,] 1 + 3 n ~ ~ I ~ ~ , , . , + ~ ) .  (4.16) 

Denote 

Then we have 

and so 

(4.18) 
By the simple inequality 2 a 1 1  9, 1 1  < d + 1 1  9, 1 1  and the property (4 .13 ) , we have 

Taking trace on both sides of (4.18) , using (4.3) and (4.19) we get 

Now, since 8, E 9, by Proposition C in the appendix, it follows from (2.4) and (4.17) 
that ( 1  a,, 1 - 8, 1 1  < 1 1  H, ( 1  , which in conjunction with (4.20) ~ i e ld s  

~ r { [ a , + ,  - ~ , l ~ [ B , , l  - 6,lt < T~(HZH,I 
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Hence by (4.16) and (4 .21) ,  we have 

(4.22) 
and Lemma 4 .3 follows easily from ( 4  .22) . 

Lemma 4 .4 .  Let { r, , t 3 0 1 be the Markov chain in the model (2 .1  ) with N states and 
with transition probability { py } . Then for any t > h > 0 ,  

where A = maxi+gy, and C is an arbitrary constant. 
Proof. Let K be the o-algebra generated by ( ri , i < t , i . e . K = o ( ri , i < t ) . By 

the property of conditional expectation, it follows that 

By the Markov property[231, we have 

 ex^{ ecl(;+;+) IS} = E e ~ ~ { e ~ ~ ( ~ + ~ + ~ )  1 a ( r t )  } 

where a ( r , )  denotes the a-algebra generated by r,. Now, we proceed to estimate the upper 

bound of ~ [ I ( r , + r , + ~ )  1 o ( r t ) ]  . First, note that 

= x P( r,+l = j lr, = i )  . ~ ( r ,  = i )  < ( N  - l ) ~ P ( r ,  = i ) .  (4.25) 
j+ i 

Since E [ I ( ~ , + ~ , + , )  ( o ( r , ) ]  is a constant a . s .  on { r , =  i t ,  by (4 .25) ,  it is easy to see that 

~ [ ~ ( ~ + : + ~ ) J a ( r , ) l <  ( N  - I ) A ,  a.s .  on i r ,  = i i ,  

which results in 

~ [ I ( r , + r , + ~ )  I ~ ( r , ) ]  < ( N  - l ) A ,  a . s .  on a. (4.26) 

By (4.23) , (4.24) and (4.26) , it is easy to conclude that 

< .-- 
< e x p { e C A ( ~  - l ) ( t  - h ) } .  

Lemma 4 . 4  will play a key role in establishing the global stability. This lemma shows that 
the possible undesirable effects on stability resulting from parameter jumps can be dominated by 
the transition probability. 

Proof of Theorem 3.1.  First of all, for any x 3 0, E > 0 ,  we have 
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By (4.27) , it is easy to see that 

Substituting (4.28) into the right-hand-side of (4.27) , we have 

3E x4 
x < - + -  

2 3 2 ~ ~ '  

By taking x as 6, and respectively in (4.27) , and x as &, in (4.29) , we can 
estimate the quantity A,  defined in Lemma 4 . 2  as follows : 

= c2 + cga, + c4 I1 wt+l I/ ', 
where 

It is obvious that 
i 

C T r [ 8 $ ,  - O~,le,+l] = ~ r [ e f , ~ e , + ~  - Bj',l&l] < ~ r ( e f + ~ e ~ , ~ )  < nG2, (4.32) 
I =  i + l  

where n is the dimension of the state in model (2 .1  ) and G is defined in Lemma 4 . 3  . By Lem- -. 
ma 4 .3  and (4.32) , we have 

For x 3 0 ,  it is easy to verify that x 6 ex - ' . By this, (4 .30)  and (4.33 ) , we have for 
any r > l ,  p > 1 and j >  i ,  

Let us now take A * as 
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Then for any A E ( 0 ,  A * ) , there must exist a constant p > 1 such that 

- 1  -1  N o w , l e t u s d e n o t e q ~ ( l - p  ) a n d c 5 ~ ~ 4 + c j  ( 7 + - &) , and take d large enough, 

such that pqrc5/r < 1.  This is possible since c4 and hence c5 is a decreasing function of d . By 
Jensen's inequality and assumption A l )  , it follows that 

(4.36) 
Hence, by the independence of 1 C, 1 , we have 

To estimate the last term in (4 .34)  , we have by Lemma 4 . 4  

Hence by (4 .35)  , the Hijlder inequality, (4 .37)  and (4.38)  , it follows that 

b 1 } (4.39) exp{pr(j - i ) c 5  ;]* e x p [ ; ~ ( ~  - l ) ( j  - i ) e 3 ~  r W 3 C  

To further analyse the RHS of -. (4 .39)  , we now take E appearing in (4.31)  as 

then by (4 .31 ) ,  

Next, we may choose d large enough to satisfy the following constraints : 

Lqrc5 < r .  
Hence, substituting (4 .35)  , ( 4  .40) and (4.41 ) into (4.39)  , it is easy to verify that 

Now we are in a position to prove the Lr-boundedness of x, and u, . By Lemma 4 .2 ,  we have 

where Ei = II wi  1 1  p + M. 
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Hence, by the Minkowski and the HBlder inequalities, it follows from (4 .43)  that 

where p and q are positive numbers defined as above, which satisfy p - ' + q - ' = 1 . 
By (4.45)  and the L,,-boundedness of ( 1 1  xo 1 1  po , , i 8 1 1 , it follows that 

supE II x,  II ;, < 00 , (4.45)  

which in conjunction with ( 2 . 6 )  and ( 4 . 1  ) yields the Lr-boundedness of 1 u, 1 . Hence 

sup( E 11  x,  1 1  ' + E ) I  u, 1 1  ') < 00 , and this completes the stability proof. 

5 Conclusion 

In this paper, the adaptive control of discrete-time hybrid systems with unknown Markovian 
jumps is considered. The projected gradient algorithm is used to estimate the unknown time-vary- 
ing system parameters which are driven by the hidden Markov chain. A simple adaptive LQ con- 
troller is designed based on a decoupled certainty equivalent Riccati equation. Under a suitable 
controllability condition on the hybrid system, it is shown that the closed-loop adaptive system is 
globally stable whenever the transition probability of the hidden Markov chain is small enough, 
giving a complete solution to a basic unsolved problem in this area. 

We have in this contribution concentrated on the stability issue of the adaptive LQ control of 
the jump Markov model ( 2 . 1  ) , under the condition that the unknown transition probability of the 
hidden Markov chain is small enough. For further investigation, it would be of considerable inter- 

est to determine the largest possible vahe or critical value of the bound A * for the transition 
probability, as explained in Remark 3 . 3 .  On the other hand, it would also be of interest to study 
the asymptotic optimality of the performance of the adaptive LQ control, as the rate of the Marko- 
vian transition diminishes, i . e . A * +0.  

Appendix 
Proposition A. Let r, E 1 1 , 2  I be a two-state Markov chain. If there exists 6 > 0 such 

1 
t h a t p 1 2 > 6  andpZ1 > 6 ,  then for any pair C > O  and e  > 0 ,  with e s v 4 -  1 1  [ A ~ , B ~ ]  - 2 
[ A2, B2 I II , there always exists T o ,  such that for all t and T 3 To 

Proof. Denote 

By the Markov property, we have 
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2 . - *  

2 s T ~ ( r t + l  = 1 ) .  
Similarly, we have 

P ( S 2 )  2 G * P ( ~ , + ~  = 2 ) .  
C For E < Y , when T > - , it is obvious that 
V 

Hence, by ( ~ . 1 ) - ( ~ . 3 ) ,  we have 

P { g  1 1  - 8, 1 1  > ET + C 3 G T ~ ( r t + l  = 1 )  + 6 T ~ ( r t + l  = 2 )  = G T .  
i= t t l  

This completes the proof. 
I 

Proposition B . Let 9 be the set defined as in ( 2 . 2 )  and G be the number defined in 
Lemma4.3. Then G =  rnax 1 1  8' - 8 "  1 1  2 .  

B ' . B € B  

Proof. By definition ( 2 . 2 )  , we need only to show that 
max I I  8 ' -  8 " 1 1 2 <  G. 

O ' , B € I  

For simplicity, denote M, = [ Ai , Bi 1 ' . We now prove ( A .  4 )  by induction for N  2 2 ,  
If N = 2 ,  then for any 01 ,8"ELPwith  

8' = A I J l l  + A2M2, A 1  + A 2  = 1 ,  
8 "  = plM1 + p2M2, p1 + p2 = 1 ,  

where A ,  and p,  ( i = 1  , 2 )  are nonnegative constants, it is easy to see that 

I 1  8' - 8" I/ 2 

= I I  ( 1  - A2)Mi + A2M2 - ( 1  - p2)Ml  - p2M2 I I  2 

= I I  ( p z -  Az)M1 - ( p 2 -  A2)MzIIz  
= 1 p 2 - ~ 2 1  1 1  M ~ -  ~ ~ 1 1 ~ ~  1 1 ~ ~ -  ~ ~ 1 1 ~ .  

Hence, the proposition holds for N  = 2 .  
Next, let us assume that ( A . 4 )  holds for N =  k -  1 3 2 .  
To prove ( A  . 4 )  for N  = k  , we first show that for any matrices L ,  M  and N with the same 

dimension, we have 
max 1 1  ( 1  - A1)L + AIM - ( 1  - p 1 ) N  - p l M  11 2 

A ,  , p , E  t O , I l  

s maxi 1 1  L  - M  / /  2 ,  1 1  L  - N  I /  2 ,  1 1  N  - M  (-4.5) 
This can be easily verified by observing that 

( 1  - A1)L + AIM - ( 1  - p 1 ) N  - p l M  
= ( 1  - h l ) [ ( l  - p l ) ( ~  - N )  + p l ( L  - M ) ]  + A l ( l  - p I ) ( M  - N ) .  

Now, let 8' , 0 " € B with 
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and set 

by ( A . 5 ) ,  we then have 
I I  6'' - 8 "  ( 1  = ( I  ( 1  - A1)L + AIMl - ( 1  - , u l )N  - p lM1 ( I  2 

6 maxi 1 1  L -  M1 112,  1 1  L -  NI I2 ,  1 1  MI - N i l 2 / .  (A .6 )  
Now, by the induction assumption, we have 

I I  L  - N 1 1  2 6 max I I  Mi - Mj 11 2 
2s i ,  js k 

k 

Also, since x A i / ( l  - A ~ )  = 1 ,  

Similarly, 

= max I I  Mi - M1 1 1  2 .  
2s i s  k 

I I  N  - M1 112 6 max I I  Mi - M1 112. 
2 < t & k  

Combining ( A .  6 )  -(A. 9 )  , we finally get 
I 1  Or - O r ' l l  max I 1  M~ - Mill 2 .  

lc i , j <  k 

Hence, (A .  4) holds for all N 3 2 ,  and the proof of Proposition B is completed. 
Proposition C. Let 1~91 _=.I be the projection operator defined by ( 2 . 5 )  . Then for any 

matrix A E R( + ") " , 
I I n & A ) - B I I  6 I I A - B I I ,  V B € B .  

Proof. By the definition of the projection in ( 2 . 5 )  we have 

I I ~ & A ) - A I I ~ <  I I A - B I 1 2 ,  V B E g .  
Now, rewriting A - B as [ A - n 9 (  A ) ] + [ n g (  A ) - B ] and expanding the square on the 
RHS, we get 

Z T ~ { [ A  - n & ~ ) l ' [ n & A >  - B ] }  + 11 n & A )  - B 11 3 0,  V B E 9. 
By the arbitrariness of BE B a n d  the convexity of g, it is easy to show that 

T ~ { [ A  - H & A ) ] ' [ ~ & A )  - B I I  a 0, V B E 9. 
Hence, 

1 1  A - B 1 1 2  = 1 1  A - n & A )  + n & A )  - B / I 2  3 1 1  n & A )  - B [ I 2 ,  
which is the desired result. 
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