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The information uncertainty coupled with the structural complexity is more pertinent than the rate of
parameter changes in characterizing the capability of adaptation for time-varying systems.

Abstract

The primary function of adaptation is to deal with systems with uncertain and time-varying dynamics. However, a natural question
is: how fast must the rate of change of the uncertain dynamics be, before it can no longer be captured by adaptation? In order to
initiate an understanding of this problem, we consider in this paper a "rst-order linear system with time-varying unknown parameters
modeled as a "nite state hiddenMarkov chain. It is shown that the key factor inherent in characterizing the capability of adaptation is
the information uncertainty coupled with the structural complexity of the systems under control, rather than the existence of a certain
critical rate of parameter changes that has been conjectured by many in the area. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Adaptive control is designed primarily for dealing with
systems with uncertain and changing structure and/or
environments, which has been a main focus of investiga-
tions in automatic control for the past several decades
and has been an area of many successful practical ap-
plications.
Intuitively, adaptation should at least be able to cap-

ture slowly time-varying structure of a system, as has
been shown rigorously for a large class of linear "nite
dimensional adaptive control systems in both the deter-
ministic framework (e.g. Ioannou & Tsakalis, 1985;
Middleton & Goodwin, 1988) and the stochastic frame-
work (e.g. Guo, 1990; Meyn & Brown, 1993). There are
also considerable research e!orts devoted to the identi-

"cation of time-varying systems, see, Benveniste (1987),
Millnert (1987), Guo and Ljung (1995), and Zames, Lin,
and Wang (1994), among many others. To get a compre-
hensive understanding of the capability of adaptation,
one is naturally concerned about the following questions:
(i) How fast can the rate of parameter changes be cap-
tured by adaptation? (ii) Is there a critical value, that we
can "nd, of the rate of parameter changes in determining
the adaptive stabilizability? (iii) What are the limitations
of adaptation? (iv) What are the key factors on which the
capability of adaptation depends? There is still a lack of
theoretical understanding of these questions.
As a starting point towards understanding the above

questions, we consider in this paper a "rst-order linear
control system with the unknown time-varying param-
eter process modeled as a "nite state Markov chain, with
states denoted by �a

�
, 1)i)N�. The Markovian

transition probability p
��

will then provide a natural
measure of the rate of parameter changes, while the
degree of dispersion of the states �a

�
, 1)i)N� may be

regarded as a measure of the model complexity.
To understand the capability of adaptation, one

needs a precise de"nition of it "rst. By adaptation we
mean adaptive feedback which captures the uncertain
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�The traditional on-line identi"cation-based certainty equivalence
principle is only an example of such philosophy.

information of the system by properly utilizing the mea-
sured on-line system data.� However, as mentioned by
AstroK m and Wittenmark (1995), since it is practically
di$cult, in general, to distinguish adaptive feedback from
ordinary nonlinear feedback by looking at either the
software or the hardware of a controller, we will speak of
adaptive feedback as any causal functions of the observed
output process. This will prevent us from restricting the
capability of adaptation at the outset by (arti"cial) de"ni-
tion. Thus, the capability of adaptation that we are going
to investigate is also the capability of generally de"ned
feedback.
With the above formulated framework, we are able to

explore rigorously and quantitatively what the capability
(and limitations) of adaptation is, and how, if at all, it
depends on the rate of changes of the unknown system
parameters. It turns out that the key factor inherent in
characterizing the capability of adaptation is the in-
formation uncertainty of the underlying Markov chain,
described by the transition probability �p

��
�, coupled

with the model complexity exhibited by the dispersion of
the states �a

�
�. However, the rate of parameter changes, is

found not to be a key factor in characterizing the capabil-
ity of adaptation, since there is not a monotonic depend-
ence relationship between the two. This fact is made more
evident by studying a simpli"ed example of systems
where theMarkov chain is of only two states. In this case,
an explicit connection between the information uncer-
tainty and the Shannon information entropy is estab-
lished, showing that the capability of adaptation can
reach its maximum in both cases where the rate of para-
meter changes is fast or slow.
Besides, this paper will also study the worst case where

the transition probability �p
��
� is unknown and treated as

arbitrary. A necessary and su$cient condition on the
structural complexity is found for robust stabilizability in
this case, which demonstrates how conservative the worst
case framework can be.
The aforementioned results will be presented in the

following section, with proofs of these results given in
Section 3. Section 4 concludes the paper.

2. The main results

Consider the following "rst-order time-varying linear
stochastic system:

y
���

"a(�
�
)y

�
#u

�
#w

���
, t*1, y

�
3R�, (1)

where y
�
, u

�
, w

�
and �

�
are the system output, input, noise

and unknown time-varying parameter processes, respec-

tively. Assume that

(A1) ��
�
� is a homogenous hidden Markov chain with

"nite states taking values in �1, 2,2,N�, and with
probability transition matrix P"(p

��
)
���

, where
p
��
OP(�

���
"j��

�
"i).

(A2) �w
�
� is a martingale di!erence sequence indepen-

dent of ��
�
�, with Ew�

�
"��

�
'0, ∀t*1.

(A3) a
�
Oa

�
,∀iOj, where a

�
Oa(i),1)i)N.

Obviously, it would be a trivial control problem if ��
�
�

were observable or available. For example, the simple
feedback u

�
"!a(�

�
)y

�
will be stable and optimal for

regulation, regardless of the degree of dispersion of �a
�
�

as long as a(�
�
) is available. In our present case, however,

the control problem is far from trivial, since the uncer-
tainty of ��

�
� compounded with the complexity (or de-

gree of dispersion in this case) of �a
�
� will make it

impossible to control in many cases no matter how we
design the adaptive feedback. To make this fact more
precise and to pursue further, we "rst give a de"nition of
adaptive feedback together with stabilizability.

De5nition 2.1. A control sequence �u
�
, t*1� is called

adaptive feedback, if at each time t*1, u
�
belongs to

�(y
�
,2, y

�
), the �-algebra generated by �y

�
,2, y

�
�, or, in

other words, if there exists a Lebesgue measurable func-
tion f

�
( ) ) such that u

�
"f

�
(y

�
, y

�
,2, y

�
). Furthermore,

system (1) is said to be stabilizable by adaptation if there
exists a sequence of adaptive feedback �u

�
� such that the

output process is bounded in the mean square sense, i.e.,

lim
���

Ey�
�
(R, ∀y

�
3R�.

Our main objective is to clarify which cases in (1) can
be controlled by adaptive feedback and which cases can-
not, or in other words, to understand quantitatively the
capability and limitations of adaptation in the presence
of information uncertainty and structural complexity.
For this purpose, we introduce a matrix function
C( ) ) :R�PR���, de"ned as follows for any
<"(v

�
, v

�
,2, v

�
)�3R�:

C(<)O�(a
�
!v

�
)�p

��
�
���

. (2)

Let the minimum spectrum radius of C(<) over R� be
denoted by �H, i.e.,

�HOmin
��	�

�(C(<)), (3)

where �(A) denotes the spectrum radius of a matrix A, i.e.
�(A)"max

�
��

�
(A)� with �

�
(A)'s being the eigenvalues

of A. The following theorem shows how important
the value of �H is in characterizing the capability of
adaptation.
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�To avoid con#icts with the traditional notation for positive de"nite
matrices, throughout this paper,A�0means that all the elements of the
matrix A are positive. Likewise, we can de"ne A_0. Furthermore,
A�B means A!B�0 and A_B means A!B_0.

Theorem 2.1. Consider the control system (1). Assume that
assumptions (A1)}(A3) hold and that the probability
transition matrix satisxes P�0.� Then, the necessary and
su$cient condition for system (1) to be stabilizable by
adaptation is �H(1.

Remark 2.1. The proof of Theorem 2.1 given in the next
section is constructive in the case �H(1, where we can
see that a recursive stabilizing adaptation law can be
constructed in this case.

By (2) and (3), it appears that the quantity �H depends
on �a

�
� and �p

��
� in a rather complicated way. To make it

more clear in understanding how the capability of ad-
aptation depends on both the complexity and uncertain-
ty of the system, measured by �a

�
!a

�
� and �p

��
�,

respectively, we present the following corollary whose
proof is also given in the next section.

Corollary 2.1. Under the conditions of Theorem 2.1, we
have
(i) System (1) is stabilizable by adaptation, if

�
��
����

(a
�
!a



)�p

��
p
�


(1, ∀i: 1)i)N.
(ii) System (1) is not stabilizable by adaptation, if

�
��
����

(a
�
!a



)�p

��
p
�


*1, ∀i: 1)i)N.

To further understand why the capability of adapta-
tion may not be a monotonic function of the rate of
parameter changes in general, we consider the following
example:

Example 2.1. Let the Markov chain ��
�
� have two states

�1,2� only and let p
��

"p
��
. Obviously, the rate of

parameter changes can be simply described by
p
��

3[0,1]. Now, by the fact that N"2, p
��

"p
��
, and

p
��

#p
��

"1, i"1,2, it follows from Corollary 2.1
that the system is stabilizable if and only if
(a

�
!a

�
)�(1!p

��
)p

��
(1. Let us denote I(p

��
) as

I(p
��
)O1!(a

�
!a

�
)�(1!p

��
)p

��
, (4)

which may be regarded as a measure of the capability of
adaptation, and may be further represented by

I(p
��
)"1!C;, (5)

where CO(a
�
!a

�
)� and ;O(1!p

��
)p

��
can be inter-

preted as measures of the structural complexity (degree of
dispersion) and the information uncertainty of the sys-
tem, respectively. Obviously, the system is stabilizable
� I(p

��
)'0. Now, the following two facts are most

intriguing to us:

Fact 1. The capability of adaptation I(p
��
) is a monotonic

function of the uncertainty ; but is not monotonic in the
rate of transition p

��
. Furthermore, there does not exist

a critical rate of transition pH
��

3(0, 1) such that the system is
stabilizable or I(p

��
)'0�p

��
3[0, pH

��
). Moreover, the

capability of adaptation I(p
��
) achieves its maximum

when the uncertainty ; reaches its minimum. However,
; reaches its minimum in both cases where the changing
rate p

��
is `slowa (p

��
+0) and `fasta (p

��
+1). The

minimum capability of adaptation is reached at p
��

"�
�
,

corresponding to the case where the uncertainty ; reaches
its maximum.

Fact 2. Our uncertainty measure ; is closely related
to the well-known Shannon information entropy, which
is a measure of information uncertainty dexned by
H"!��

���
p
��
log p

��
in the current case (see e.g. Cover

& Thomas, 1991). Note that H can be rewritten as
H"!(1!p

��
) log (1!p

��
)!p

��
log p

��
and that the

dependence of H on p
��

3(0,1) is completely similar to that
of ; as dexned above. Hence, it is not dizcult to see that
there exists a monotonically increasing function m( ) ) such
that ;"m(H). This fact justixes why we refer to ; as the
measure of information uncertainty here. Now, by (5) we
have I"1!Cm(H), which implies that the capability of
adaptation is also a monotonically decreasing function of
the Shannon information entropy H.

Finally, we present a theorem on stabilizability in the
`worst casea framework where the transition probability
�p

��
� is not known and is treated as arbitrary.

Theorem 2.2. The necessary and su$cient condition
for the existence of a robust stabilizing control law for
system (1) with arbitrary unknown transition matrix P is
max

�������
�a

�
!a

�
�(2.

Remark 2.2. Comparing the conditions imposed on �a
�
�

in Corollary 2.1 with those in Theorem 2.2, one may "nd
how conservative the `worst casea framework can be.
Besides, we remark that the noise variance ��

�
does not

a!ect the stabilizability in both Theorems 2.1 and 2.2;
however, it does a!ect the upper bound of the output as
can be seen from the proofs.

3. Proofs of the main results

3.1. Some preliminaries

For simplicity of presentation, we introduce the fol-
lowing notations:

F
�
O�(�

���
,w

�
; 1)i)t), F�

�
O�(y

�
, i)t), (6)

�
�
O[p(�

�
"1),2, p(�

�
"N)]�, eO(1,2,1)�. (7)
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Moreover, without causing any confusions with (2), for
a random variable � taking values in R�, we denote

C(�)O�(a
�
!v)�p

��
�
���

. (8)

To prove the necessity part of Theorem 2.1, we need
the following four lemmas whose proofs are given in
Appendix A.

Lemma 3.1. Let P�0, JH
�
Oe, and dexne

JH

��
O[JH


����
,2,JH


����
]�, k*0 with J


����
recursively

dexned by (1)i)N)

JH

����

"min

���	� �

�
�
���

(a
�
!x


��
)�p

��
JH

���. (9)

Then, we have (1) JH


�0, and for 1)i)N

JH

����

"

�
���

(a
�
!a

�
)�p

��
p
��
JH

�

)JH

�

p
��
JH

��

#p
��
JH

��

#2#p
��

JH

��

, (10)

where the minimum value is attained atXH


O(xH


�
,2, xH


�
)�

with xH

��

expressed as 1)i)N,

xH

��

"

a
�
p
��
JH

��

#a
�
p
��
JH

��

#2#a
�
p
��
JH

��

p
��
JH

��

#p
��
JH

��

#2#p
��
JH

��

, (11)

i.e. JH

��

"C(XH


)JH



.

(2) For any <
�
,<

�
,2,<

�
3R� and t*1, we have

C(<
�
) )C(<

�
)2C(<

�
) ) e_JH

�
.

Lemma 3.2. Let P�0 and let us dexne

	

��

"(	

����

,2, 	

����

)�

O�
JH

����
JH

��

,2,
JH

����
JH

��

�
�
, (12)

where JH


is as dexned in Lemma 3.1. Then there exists

a vector XH
�

3R� and positive numbers J
���

3R�,
i"1,2,N, such that (i) 	

���
P

���
�H'0, i"1,2,N; (ii)

JH
���
/�H

�
P

���
J
���

'0; (iii) XH



P


��
XH

�
, and �(C(XH

�
))"�H,

where �H is dexned in (3), and XH



is dexned as in
Lemma 3.1.

Lemma 3.3. For any t*1, there exists a deterministic
vector <

�
3R� satisfying

min
���F�

E[(a(�
�
)!�

�
)��F

�
]

"e� )C�(<
�
) ) [I

	������

,2, I

	������

]� a.s.,

where C(<
�
) is dexned in (2).

Lemma 3.4. If 



�0 is an N-dimensional deterministic

vector, �


is a random variable, then

min
�
�F



�



)EC�(�


) ) [I

	�
����

y�


,2, I

	�
����

y�


]�

" min
�
��	�
�� 



�



)EC�(�


) ) [I

	�
����

2I

	�
����

]�y�



.

To prove the su$ciency part we need to construct
a feedback law "rst. Without loss of generality, we as-
sume that the states of the Markov chain satisfy
a
�
(a

�
(2(a

�
, and we denote dOmin

���
�a

�
!a

�
�.

Introduce a function �(x):

�(x)"�
1, !R(x)a

�
#�

�
d,

2, a
�
#�

�
d(x)a

�
#�

�
d,

�

N!1, a
���

#�
�
d(x)a

���
#�

�
d,

N, a
���

#�
�
d(x(#R.

(13)

Let JH
�
Oe. For t*1, recursively de"ne

JH
�
O(JH

���
,2,JH

���
)� by (10), and denote <

�
as <

�
"XH

���
whereXH

�
is as in Lemma 3.1. Now, de"ne the control law

by

u
�
"!<�

�
) �
I
	�		�������
�����
��


�

I
	�		������� 
�����
��


� ) I
	������


) y
�

O!�
�
) I

	������

y
�
, (14)

where I
	 � 


is the indicator function, and �
�
is de"ned in an

obvious way.
To show that the above de"ned adaptation law is

indeed stabilizing, we need the following lemmas whose
proofs are given in Appendix B.

Lemma 3.5. Let P�0 and �H(1. Then there exist t
�
'0

and N�N matrix C
H
satisfying �(C

H
)O�

H
(1 such that

C(<
�
)�^C�

H
, ∀t*t

�
, where <

�
is dexned as above.

Lemma 3.6. For any 	'0 and d'0, there exists a con-
stant M�'0 such that system (1) under control (14) satis-
xes (∀t*2)

Ey�
���

I
	��� ����� �����


) I
	������


)M�#	 )Ey�
���

. (15)

Lemma 3.7. Let P�0 and �H(1, and let us denote


���
OE[I

	����

2I

	����

]�y�

���

�I
	��� ����� ������������


. (16)

Then for any 	'0 and t*t
�
, there exists a constant

MH such that system (1) under control (14) satisxes


���

^C�
H

) 
�
#(MH#	Ey�

���
) )C�

H
e#��

�
e, (17)

where t
�
and C

H
are dexned as in Lemma 3.5.

Corollary 3.1. Under the assumptions of Lemma 3.7, there
exist constants c

�
'N, �3(0,1) and M

�
"M

�
(t
�
) such

that ∀t*t
�

e�
���

)M
�
#	Ey�

����
) c

�
�������#2

#	Ey�
���

) c
�
�. (18)
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Lemma 3.8. Let �b


� be a sequence of positive numbers

satisfying the following inequality:

b

��

)M#� ) max

����


b
�
, ∀k*k

�
, (19)

where M'0 and �3(0,1) are constants and k
�
'0 is an

integer. Then

b


)max�b
� , b
���

,
M

1!��, ∀k*k
�
.

3.2. The proof of Theorem 2.1

(i) Necessity: We will show that if �H*1, then no
matter how the feedback control u

�
3��y

�
,2, y

�
� is con-

structed, the output sequence is always divergent in the
sense that lim

���
Ey�

�
"R, ∀y

�
3R�. Now, for any

feedback sequence �u
�
� with u

�
3��y

�
,2, y

�
�, let us de-

note �


O!(u



/y



)I

	�
��

. Then

Ey�
���

"E(a(�
�
)y

�
#u

�
)�#��

�

*��
�

#E(a(�
�
)!�

�
)�y�

�

"��
�

#E�E((a(�
�
)!�

�
)��F

�
) ) y�

�
�

*��
�

#E�min���F�

E((a(�
�
)!�

�
)��F

�
) ) y�

� �
"��

�
#e� )C�(<

�
) )E[I

	������

,2, I

	������

]�y�

�
,

(20)

where the last relationship follows from Lemma 3.3 with
<

�
3R� being a deterministic vector. Next, for any

j3�1,2,N�, we have

Ey�
�
I
	������


"E[a(�
���

)y
���

#u
���

]� ) I
	������


#��
�
EI

	������


*E[a(�
���

)!�
���

]�y�
���

) I
	������


#��
�

)EI
	������


"E�E[(a(�
���

)!�
���

)� ) I
	������


�F
���

] )y�
���

�

#��
�

)EI
	������


.

Note that �
���

is F
���

measurable, and ��
�
� is a

Markov chain, we then have

Ey�
�
I
	������


*E�
�
�
���

(a
�
!�

���
)�p

��
I
	������


) y�
����

#��
�

)EI
	������


.

Consequently, by denoting

x
�
O[I

	������

y�
�
2I

	������

y�
�
]�

and recalling the notations in (6)}(8), we then have for
any 
3R� with 
�0,


�Ex
�

*
� )E

�
�
���

(a
�
!�

���
)�p

��
I
	������


) y�
���

�
�
�
���

(a
�

!�
���

)�p
��
I
	������


) y�
���

#��
�

� ) �

EI
	������


�

EI
	������


�
"
� )EC�(�

���
)x

���
#��

�

��

���

* min
	����F���


�EC�(�
���

)x
���

#��
�

��

���

" min
	�����	����



� )EC�(�
���

)x
���

#��
�

��

���
, (21)

where for the last equality we have used Lemma 3.4.
Since �

���
3�(�

���
), we may assume that the minimum in

(21) is reached at �
���

"��
���

v
�����

I
	������


. Let us de-
note <

���
"(v

�����
,2, v

�����
)�. Then by (21), we know

that for any t*2 and 
�0, there is<
���

3R�which may
depend on 
 such that


�Ex
�
*
�C�(<

���
)Ex

���
#��

�

��

���
. (22)

Let us set 

�
"C(<

�
)e and take 


�
OC(<

���
)


�
. Since

e�0 and P�0, it is easy to verify that 

�
�0. Similarly,

we have 

�
�0. Hence, by (22) with 
"


�
we have


�
�
Ex

�
*
�

�
Ex

���
#��

�

�
�
�
���

. (23)

Now, the term 
�
�
Ex

���
can be analyzed by applying

(22) again with 
"

�
and with t replaced by t!1.

Hence, there exists 
�

O
�

�
C�(<

���
) such that


�
�
Ex

���
*
�


Ex

���
#��

�

�
�
�
���

. Substituting this into
(23) gives 
�

�
Ex

�
*
�


Ex

���
#��

�

�
�
�
���

#��
�

�
�
�
���

.
Continuing this procedure, we "nally get


�
�
Ex

�
*
�

�
Ex

�
#��

�
[
�

���
�
�
#2#
�

�
�
���

], (24)

where 
�
�
"e�C�(<

�
)C�(<

���
)2C�(<

�����
). By Lemma

3.1, we know that 

�
*JH

�
. Hence, by (20) and (24),

Ey�
���

*��
�

#
�
�
Ex

�
*��

�
#
�

�
Ex

�
#��

�
[JH�

���
�
�
#JH�

���
�
�
#2#JH�

�
�
���

]. By Lemma 3.2, there exists c
�
'0

such that JH
�
_c

�
�H�e, ∀t*0. Also, by the de"nitions of

e and �
�
, it follows that ��

�
e"1. So, by �H*1 we have

Ey�
���

*��
�

#
�
�
Ex

�

#��
�
[c

�
�H��� ) e��

�
#2#c

�
�H ) e��

���
]

"��
�

#
�
�
Ex

�
#c

�
��
�

) (�H���#2#�H)

P

���

R.

(ii) Suzciency: We will show that if �H(1, then the
adaptation law de"ned by (14) is stabilizing for any initial
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condition y
�
3R�. For any t*t

�
, by (16) we have

Ey�
���

"Ey�
���

[I
	��� ����� �����


#I
	��� ����� �����


]I
	������


#Ey�
���

I
	������


"e�
���

#Ey�
���

I
	��� ����� �����


) I
	������


#Ey�
���

I
	������


. (25)

By (14), we have u
���

"0 and u
�
"0 on the set

�y
���

"0�. So, by (1), Ey�
���

I
	������


"E[a(�
�
)w

�
#

w
���

]�I
	������


)2max
��
��

�a


� ) ��

�
#2��

�
. Hence,

there is a constant M
�
such that Ey�

���
I
	������


)M
�
.

Substituting this into (25) and applying Lemma 3.6, we
have

Ey�
���

)e�
���

#M�#	Ey�
���

#M
�
, (26)

where 	'0 is an arbitrary constant. Now, let us take
	'0 to satisfy 	c

�
/(1!�)(1, where c

�
and � are

de"ned as in Corollary 3.1. By Corollary 3.1, it follows
from (26) that

Ey�
���

)M
�
#	Ey�

����
) c

�
�������#2

#	Ey�
���

) c
�
�#M�#	Ey�

���
#M

�

)M
�
# max

���
����

Ey�



) [c
�
�������#2

#c
�
�#1]	

)M
�
#

	c
�

1!�
max
���
��

Ey�


,

where we have used the fact that c
�
'1, and where

M
�
OM

�
#	Ey�

����
) c

�
#	Ey�

����
) c

�
#M�#M

�
.

Hence, by Lemma 3.8, we have Ey�
�
)max�Ey�

��
,Ey�

����
,

M
�
/(1!	c

�
/(1!�))�. This completes the proof of

Theorem 2.1. �

3.3. The proof of Corollary 2.1

By the de"nition of 	
��
in (12), the expression of JH

���
in

(10) and the fact that JH
��

"1, we know that
	
��

"�
��
����

(a
�
!a



)�p

��
p
�

, i"1,2,N. Moreover,

by Lemmas 3.2(i) and A.1, it is clear that min
�
�	

��
�)

�H)max
�
�	

��
�. Hence, if �

��
����
(a

�
!a



)�p

��
p
�


*1
for any i:1)i)N, then we have �H*1. Therefore, by
Theorem 2.1, we know that the system is not stabilizable.
Similarly, if �

��
����
(a

�
!a



)�p

��
p
�


(1 for any
i:1)i)N, then we have �H(1, and hence by Theorem
2.1, we know that the system is stabilizable. �

3.4. The proof of Theorem 2.2

Without loss of generality, we assume that a
�
(

a
�
(2(a

�
.

(i) Suzciency: Let u
�
"![(a

�
!a

�
)/2]y

�
. Then sub-

stituting it into (1), we have y
���

"[a(�
�
)!

(a
�

!a
�
)/2]y

�
#w

���
. It is quite obvious that

�a(�
�
)!(a

�
!a

�
)/2�)(a

�
!a

�
)/2, so Ey�

���
"E[a(�

�
)!

(a
�

!a
�
)/2]�y�

�
#��

�
(((a

�
!a

�
)/ 2)�Ey�

�
#��

�
. Since

by assumption 0((a
�

!a
�
)/2(1, we have for any

t*1, Ey�
���

)Ey�
�
#��

�
/(1!((a

�
!a

�
)/2)�), and hence

the desired result is true.
(ii) Necessity: Let us assume that the system is stabiliz-

able for any �p
��
� but a

�
!a

�
*2. Then we take a special

transition matrix as p
��

"p
��

"�
�
and p

��
"0, otherwise,

which means that the Markov chain reduces to a two-
state one within the "rst two steps, with a simpli"ed
transition matrix �p

��
�
���

"��
�
�
���

. Now, by the de"ni-
tion of C(<), we know that C(<)"�

�
�(a

�
!v

�
)��

���
.

Hence, we get

C(<)�
1

1�_
1

2�
(a

�
!a

�
)�

2
(a

�
!a

�
)�

2 �_�11�, ∀ <3R�.

So, by the theory of nonnegative matrix (Horn &
Johnson, 1985, p. 493), we have min

��	��(C(<))*1.
Hence by Theorem 2.1, we know that the system is not
stabilizable. This contradicts our assumption, and thus
the proof is completed. �

4. Concluding remarks

A fundamental issue in adaptive theory, is to under-
stand the capability, and limitations, of adaptation for
time-varying systems. As a starting point towards this
investigation, we have in this paper studied a "rst-order
linear control system with time-varying parameters
modeled by a hidden Markov chain. The basic insights
that we have obtained into the capacity of adaptation
and its inextricable link to structure complexity, informa-
tion uncertainty and the rate of parameter changes
should have meaningful implications for more general
time-varying systems. In particular, the demonstrated
fact that `uncertaintya is more pertinent than the `rate of
parameter changesa in characterizing the capability of
adaptation has furthered the existing understanding
of adaptation. For further investigation, it would be
of interest to characterize the capability of adaptation
for more general high dimensional time-varying systems,
by "nding an explicit necessary and su$cient con-
dition connected to structural complexity, and informa-
tion uncertainty, as was done in Theorem 2.1 and
Example 2.1.
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Appendix A. Proofs of Lemmas 3.1}3.4

Proof of Lemma 3.1. (1) We "rst prove that JH


�0.

By the assumption that P�0 and a
�
Oa

�
, iOj, it

follows that if JH


�0, then (a

�
!x


�
)�p

��
JH

�

#2

#(a
�

!x

�
)�p

��
JH

�

'0,∀x

�

3R�, i"1,2,N. Since
the optimization problem in (9) is solved essentially with-
in a closed set of R�, it is clear that the optimal value is
greater than 0. Hence, by induction we have JH



�0, as

long as J
�
�0. Note that (9) is simply an optimization

problem on nonnegative quadratic polynomials, so the
optimal value is simply (10) and the optimal solution
is (11).
(2) We use induction to prove the second conclusion.

First, for t"1, it is clear that

C(<
�
)e_�

min
����	�

�
�
���

(a
�
!x

���
)�p

��

�

min
����	�

�
�
���

(a
�
!x

���
)�p

���"JH
�
.

Hence, the conclusion is valid at t"1. Suppose that
the conclusion is true for t"k, i.e., for JH



de"ned by (10),

C(<
�
) )C(<

�
)2C(<



) ) e_JH



, ∀<

�
,2,<



3R�. By this

induction assumption and the fact that all the elements
of C(<) are nonnegative, we have for t"k#1,
C(<

�
) )C(<

�
)2C(<


��
) ) e_C(<

�
) ) JH



_JH


��
. Thus, by

induction we have completed the proof. �

To prove Lemma 3.2, we need the following two auxili-
ary lemmas.

Lemma A.1. Under the assumption and notations of
Lemma 3.2, we have for any integer k*1,

min
�����

	

��

) min
�����

	

����

) max
�����

	

����

) max
�����

	

��
. (A.1)

Proof. By Lemma 3.1, we have for 1)i)N,

JH

����

"min
� � 	

� �
�
�
���

(a
�
!u)�p

��
JH

��

"min
� � 	

� �
�
�
���

(a
�
!u)�p

��
JH

����

	

���.

So, we have

min
�����

	

��

) JH

��

)JH

����

) max
�����

	

��

) JH

��
.

Hence by the de"nition of 	

����

, we have
	

����

3[min
�
�	


��
�,max

�
�	


��
�], which is tantamount to

the desired result. �

Lemma A.2. Let P�0. Then there exist constants �'0,
c
�
'0 and �

�
3(0,1) such that

(1) min
�
JH

��
/max

�
JH

��

*�, ∀k; (2) JH

����

/JH

��

)c
�
,

∀k, i; and (3) (	�

��

!	�

��

))(1!�
�
)(	�



!	�



), where

	�


Omax

�����
	

��
, and 	�



Omin

�����
	

��
.

Proof. (1) We need only to verify the result for k*1.
By Lemma 3.1, we have JH



�0. Then by p

��
)1, it

follows that JH

��

"min
��	�[��

���
(a

�
!u)�p

��
JH

����

])
min

��	�[��
���

(a
�
!u)�JH


����
]O�



, k*1. On the other

hand, if we denote �Omin
���
p
��

'0, then it can be easily
veri"ed that JH


��
*��



, hence, it follows that

minJH

��
/maxJH


��
*��



/�



"�'0, k*1.

(2) By the following formula:

JH

����

"min
� � 	

�

�
�
���

[(a
�
!u)�p

��
JH

�
],

we have by setting u"0 and noting (1), JH

����

)

(��
���

a�
�
) )max

�����
JH

��

)(��
���

a�
�
)(1/�) ) JH


��
. So we

just need to take c
�
"(��

���
a�
�
)1/� for the desired result

to hold.
(3) As before, let us de"ne � and d by �Omin

���
p
��

'0
and dOmin

���
�a

�
!a

�
�'0. We consider two cases

separately.
Case 1: N"2 (without loss of generality, we assume

that a
�
'a

�
). In this case,

JH

����

"min
�


[(a
�
!u



)�p

��
JH

�

#(a
�
!u



)�p

��
JH

�
],

JH

����

"min
�


[(a
�
!v



)�p

��
JH

�

#(a
�
!v



)�p

��
JH

�
].

It is easy to see that the corresponding minima are

uH


"

a
�
p
��
JH

�

#a
�
p
��
JH

�

p
��
JH

�

#p
��
JH

�

,

vH


"

a
�
p
��
JH

�

#a
�
p
��
JH

�

p
��
JH

�

#p
��
JH

�

,

By this and (1), we have

uH


!a

�
"

(a
�
!a

�
)p

��
JH

�

p
��
JH

�

#p
��
JH

�

"

(a
�
!a

�
)p

��
p
��

�#p
��

,

which implies that there exists a constant � such that
�uH



!a

�
�*�'0. Similarly, it can be shown that there

exists ��'0 such that �a
�
!uH



�*�� and �a

�
!vH



�*

��, i"1,2.
Next, without loss of generality, we assume 	�



"	


�
and 	�



"	


�
. Then

JH

����

"(a
�
!uH


��
)�	�



)JH


����
p
��

#(a
�
!uH


��
)�	�



) JH


����
p
��

)	�



�
�
���

(a
�
!uH


��
)� )JH


����
p
��

!(	�



!	�


)(a

�
!uH


��
)� )JH


����
p
��
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)	�


JH

�

!(	�



!	�


)���� ) JH


����

)�	�
 !��� )
1

c
�

(	�



!	�


)�JH


��
.

Likewise, we have JH

����

)[	�



!��� ) (1/c
�
)

(	�



!	�


)]JH


��
. So, 	�


��
)	�



!(���/c

�
) ) (	�



!	�



).

By Lemma A.1, 	�

��

*	�


, and consequently, 	�


��
!

	�

��

)(1!���/c
�
) ) (	�



!	�



).

Case 2: N*3 . For k*1, there are at least two
elements 	


���
and 	


���
in the set �	


�
,	


�
,2,	


�
�, both of

which are either less than or equal to (	�



#	�


)/2, or

greater than or equal to (	�



#	�


)/2. Without loss of

generality, we assume that both 	

���

and 	

���

are less
than or equal to (	�



#	�



)/2. We may also assume

that j
�
"1, j

�
"2. For any i3�1,2,N�, let uH


��
be the

solution of the minimization problem: min
�
��

��
���

(a
�
!u


��
)�p

��
JH

��
. Then

JH

����

"min
�


�
�
���

(a
�
!u



)�p

��
JH

��

)

�
�
���

(a
�
!uH


��
)�p

��
) 	


��
JH

����

)	�

 �

�
�
���

(a
�
!uH


��
)�p

��
JH

�����

!

	�



!	�



2
) [(a

�
!uH


��
)�p

��
JH

����

#(a
�
!uH


��
)�p

��
JH

����

]

)	�


JH

��

!

	�



!	�



2
) �

� min
�����

JH

����

) [(a
�
!uH


��
)�#(a

�
!uH


��
)�]

)	�


JH

��

!

	�



!	�



2
) � )

d�

4
) min
�����

JH

����

. (A.2)

Now, since by (2) and (1),

min
�����

JH

����

* min
�����

1

c
�

)JH

��

*

1

c
�

) � ) JH

��
,

we have by (A.2),

JH

����

)	�


JH

��

!

1

c
�

�� )
d�

4
)
	�



!	�



2
)JH


��

"�	�
 !

d���

8c
�

) (	�



!	�


)� ) JH


��
.

By Lemma A.1, 	�

��

*	�


, so we have

	�

��

!	�

��

)(1!d���/8c
�
) ) (	�



!	�



). �

Proof of Lemma 3.2. By Lemma A.2, we know that 	
���
,

1)i)N, tend to the same limit �
�
'0 as tPR. Let

us write 	
���

"�
�
#�

���
, then it is easy to see that

��
���

�)(	�
�

!	�
�
))(1!�

�
)��� ) (	�

�
!	�

�
)

O(1!�
�
)��� ) �. (A.3)

Furthermore, by JH
���

"	
���

) 	
�����

2	
���

)JH
��

"

��

��

(�
�
#�

���
) ) JH

���
, we have JH

���
/��

�
"��


��
(1#(1/

�
�
)�

���
) )JH

���
, where the product converges to a positive

number by (A.3). So there exists J
���

'0 satisfying:

JH
���

��
�

PJ
���

'0, tPR. (A.4)

Next, we proceed to prove that �H"�
�
. By Lemma

3.1, C(XH
�
)JH

�
"JH

���
, hence we have C(XH

�
) )JH

�
/��

�
"

JH
���

/����
�

) �
�
. By (11) it is obvious that the value ofXH

�
is

related to the ratios between the components of JH
�
, so if

JH
�
/��

�
has a limit, then XH

�
has a limit XH

�
too. Now, let

tPR, we get C(XH
�
)J

�
"�

�
J
�
. Since C(XH

�
)_0, by

the theory of nonnegative matrix (Horn & Johnson, 1985,
p. 493), we have �(C(XH

�
))"�

�
. So by the de"nition of

�H, we have �
�
*�H. Hence, if �

�
"�H were not true, we

would have �
�
'�H. By (3) we may assume that CH is the

matrix satisfying �(CH)"�H. Therefore, by Lemma 3.1(ii)
we see that (CH)�e_JH

�
or

(CH)�e

��
�

_
JH
�

��
�

.

The right-hand side tends to a vector with nonzero com-
ponents as tPR by (A.4), while the left-hand side tends
to zero by �

�
'�H. This is a contradiction, which shows

that �
�
"�H is true. �

Proof of Lemma 3.3. For �
�
3F

�
, we have

E[(a(�
�
)!�

�
)��F

�
]"E[(a(�

�
)!x)��F

�
]�
���

"E[(a(�
�
)!x)���

���
]�
���

"

�
�

�����

(a
�
!�

�
)�p

��
I
	������


.

From this we see that the coe$cient of I
	������


, denoted
as �

�
(�

�
), is a nonnegative quadratic function of �

�
with

deterministic coe$cients. So on ��
���

"i�, there exists
a deterministic v

��
that minimizes �

�
(�

�
). Thus, de"ning

<
�
O(v

��
,2, v

��
), we get

min
���F�

E[(a(�
�
)!�

�
)��F

�
]

"

�
�

�����

(a
�
!v

��
)�p

��
I
	������


"e� )C�(<
�
) ) [I

	������

,2, I

	������

]� a.s. �

Proof of Lemma 3.4. If we denote

JO
�



)EC�(�


) ) [I

	�
����

y�


,2, I

	�
����

y�


]�,
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then J must have the form: J"E[�
�
(�



) ) I

	�
����

#2

#�
�
(�



) ) I

	�
����

] ) y�



, where �

�
(�



), j"1,2,N are

nonnegative quadratic polynomials of �


. So, there exists

a unique deterministic v

�

3R� that makes �
�
(�



) reach its

minimum for any j. Hence, a lower bound to J is
J*E[�

�
(v


�
)I

	�
����

#2#�

�
(v


�
)I

	�
����

]y�



, ∀�



3

F


. Now, if we set �



"��

���
v

�

) I
	�
����


, then J can
reach its minimum, and obviously, �



3�(�


��
). �

Appendix B. Proofs of Lemmas 3.5}3.8 and Corollary 3.1

Proof of Lemma 3.5. By Lemma 3.2, we see <
�
has a

limit XH
�

and so lim
���

C(<
�
)"C(XH

�
). Also, by

�(C(XH
�
))"�H, it is clear that we can select a �'0 small

enough such that �H(�(C(X
�
)#� ) ee�)(1. Thus, if we

denote C
H
OC(XH

�
)#� ) ee� and �

H
O�(C(XH

�
)#� ) ee�),

then there exists t
�
'0 such that C(<

�
)^C

H
, ∀t*t

�
.

This completes the proof. �

Proof of Lemma 3.6. By the de"nition of <
�
, we know

that ��<
�
��)
Nmax

��
��
�a



�, so there exists M'0

such that [a
�
!�

�
I
	������


]�)M, ∀t'0, where �
�
is de-

"ned in (14). Hence denoting 	
�
"I

	��� ����� ������������

, we

have from (1)

Ey�
���

	
�
"E�[a

�
!�

�
I
	������


]y
�
#w

���
��	

�

)M )Ey�
�
	
�
#��

�

)2M� )Ey�
���
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Now, notice that
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Substituting this into (B.1), we have
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Proof of Lemma 3.7. For any i3�1,2,N�, we have by
denoting 	

�
"I

	��� ����� ������������

,
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By (1) it can be seen that on the set ��w
�
/y
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Hence �((y
�
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)/y

���
)"�

���
, on the set
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�
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O0�. Substituting this into (14),

we know that on the set ��w
�
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. So, by (B.2),

EI
	����


y�
���

) 	
�

"E�E��a�!
�
�
���

v
��
I
	������
�

�
I
	����


	
�
�F

��y�� �
#��

�
P(�

�
"i)

"E�E[(a
�
!v

��
I
	������


!2

!v
��
I
	������


)� ) I
	����


��
���

] ) 	
�
y�
�
�

#��
�

)P(�
�
"i)

"E
�
�

��

I
	�����



(a
�
!v

�

)�p


�
	
�
y�
�

#��
�

)P(�
�
"i)

)

�
�

��

(a
�
!v

�

)�p


�
)EI

	�����


y�
�
#��

�
)P(�

�
"i).

Hence, by this , (16) and (2), we have
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Now, it is easy to verify that if 0^A
�
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�
, and

0^A
�
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�
, then A

�
A

�
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�
B
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. Hence, by denoting
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]�, it follows from Lemma

3.5 that for t*t
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By (14), we have u
���

"0 and u
���

"0 on the set
�y

���
"0�. So, by (1),
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Therefore, substituting this into (B.3) and by Lemma 3.6,
we have
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Proof of Corollary 3.1. By Lemma 3.7, we have
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Now, by Lemma 3.5 we know that there exist con-
stants c

�
'N and �3(�H,1) such that e�(C�

H
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∀k*0. Hence, by the fact that 
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Finally, by denoting M
�
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�
N )Ey�
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�
/
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�
c
�
/(1!�), we get the desired result. �

Proof of Lemma 3.8. Obviously, when k"k
�

the
inequality is valid. We proceed to prove the result
by induction. Suppose that when k)K, we
have b
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Hence, in any case we have b
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(1!�)�, and the proof is completed by the induction. �
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