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with �i(�) a nonlinear function. Pre-assigning the values of�i results
in a nonlinear equation which is linear in the unknown parametersWi.
These parameters can be determined using a least-squares method [7].
The chosen values for�i are equally spaced within the range of de-
flection of the asperity (the maximum value ofz). The more elements
used, the more accurate the approximation will be, but on the other
hand the computational complexity is proportional to the number of
elements used. The mimimum�i-value is limited by the noise on the
measurement results. If the�i-value is smaller than the noise level, the
model will create inner loops due to the noise and not to the change in
deflection.

The advantage of the Maxwell slip implementation is the elimina-
tion of the stack overflow problem. Looking at the free response of
a mass-spring system with limited friction from an initial state which
does not correspond to an equilibrium, the position and the state vari-
ablez will have a lightly damped oscillating behavior, resulting in sev-
eral velocity reversals without closing of inner loops, causing the ad-
dition of maximum and minimum values ofFh(z) on the stacksmin
andmax. When the maximum lengths of the stacks are limited this can
lead to the problem of stack overflow. The Maxwell slip method uses
only a fixed number of memory places equal to the number of elements
used in the implementation.

In the Maxwell slip implementation, the initial curve of the hys-
teresis behavior is implicitly taken into account in the equations. For
the implementation described in [10], working on the initial curve and
reentering the initial curve needs an extra implementation for those two
cases.

V. CONCLUSION

This paper briefly discusses the integrated friction model structure,
called the Leuven model, and proposes two improvements to this
model. The first modification reformulates the nonlinear state equation
in order to obtain always a continuous friction force. The second
modification solves the problem of stack overflow, which may occur
with the implementation method of the hysteresis force proposed in
[10]. The General Maxwell slip model is a better way to implement
the hysteresis force. Even with a limited number of elements, it is
possible to approximate the hysteresis force accurately.
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A Limit to the Capability of Feedback

Yanxia Zhang and Lei Guo

Abstract—Feedback is ubiquitous and is a basic concept in the area of
control, where it is used primarily for reducing internal or external un-
certainties, or both. In this note, we will study the capability of feedback
in dealing with both internal and external uncertainties for a class of th
order nonlinear autoregressive control systems. The size of the uncertainty
is described by the Lipschitz constant (say ) of the uncertain nonlinear
function in consideration. It is shown that if and satisfy a certain in-
equality, then there exists no globally stabilizing feedback for the corre-
sponding class of uncertain systems, and thus finding a quantitative limit
to the capability of the feedback mechanism in dealing with structural un-
certainties.

Index Terms—Feedback, nonlinear, stability, uncertainity.

I. INTRODUCTION

Feedback is ubiquitous and is a basic concept in automatic control.
Its primary objective is to reduce the effects of the plant uncertainty
on the desired control performance. The uncertainty of a plant includes
both internal (structure) uncertainty and external (disturbance) uncer-
tainty and, in general, the former is harder to cope with than the latter.
How to design efficient feedback laws to cope with various plant un-
certainties has been a key issue in the development of automatic con-
trol [1]–[3]. However, from a philosophical point of view, there must
be some limits to the capability of feedback in dealing with uncertain-
ties. Finding such limits is of fundamental importance, since control
scientists may not waste their time on constructing control laws for
systems with uncertainties which are already beyond the capability of
control, while control engineers may be more cautious (or confident)
when applying their new control methods (robust, adaptive, intelligent,
etc.) bravely to complex systems which practically contain many un-
certainties.

Unfortunately, the question about the limits of feedback is a conun-
drum and on which only a few existing areas of control theory can
shed some light. Robust control and adaptive control are two such areas
where structural uncertainty of the plant is the main concern in the con-
troller design.

Robust control usually requires that the true plant lies in a (small)
ball centered at a known nominal model and often assumes that the
controllers are selected from certain given classes of systems [4]. The
need of a nominal model, with reliable model error bounds in robust
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control methods, motivated the extensive research activities in an area
called control-oriented worst-case identification in the 1990s. During
the same period, significant progress has also been made [8], [9] in
linking the theories of identification, feedback, information and com-
plexity following the framework and philosophy developed by Zames
[3], [5]–[7].

Adaptive control is a nonlinear feedback technique which performs
identification (or learning) and feedback control simultaneously in the
same feedback loop, which is known to be a powerful tool in dealing
with systems with large uncertainties. A well-developed theory is now
available for the adaptive control of both continuous- and discrete-time
linear systems since the end of the 1970s in [10]–[12]. Much progress
has also been made for adaptive control of nonlinear continuous-time
systems with linear unknown parameters [13]. However, essential dif-
ficulties emerge for adaptive control of discrete-time nonlinear systems
when the nonlinearities have a nonlinear growth rate [14], [15].

The above analyzes show that, to study the limits of the feedback
mechanism, we have to place ourselves in a framework that is some-
what beyond those of the classical robust control and adaptive control.
First, the system structural uncertainty may be nonlinear and nonpara-
metric and a useful or reliable ball containing the true plant and cen-
tered at a known nominal model, may not be availablea priori; Second,
we need to study the limits of the full feedback mechanism which in-
cludes all (nonlinear and time-varying) causal mappings, rather than
confined to a fixed feedback law or a set of specific (e.g., linear) feed-
back laws. We shall also work with discrete-time control models, as
they can reflect the limitations of actuator and sensor in a certain sense
when implemented with digital computers. It is fairly well-known that
in the present case, the high gain and nonlinear damping approaches
which are so powerful in the continuous-time case are no longer effec-
tive now.

This note is a continuation of a series of studies on the limits of the
feedback mechanism started in [14], where it was found and rigorously
proved that for a typical class of nonlinear discrete-time systems with
(even) scalar unknown parameters, the design of the globally stabi-
lizing feedback is impossible when the growth rate of the nonlinear-
ities is greater thanO(x4). This result has been extended to a class of
uncertain nonlinear systems with unknown vector parameters in [15].
For the more complicated nonparametric case, a natural way of con-
structing the adaptive control law is to use nonparametric estimation
methods [18] which, however, can only be proven to be able to deal
with open-loop stable nonlinear systems [19]. Recently, [16] made a
significant step in this direction, investigated the capability and limits
of feedback in controlling a class of first-order discrete-time dynam-
ical control systems with nonparametric uncertainties. By introducing
a suitable normk�k (called the generalized Lipschitz norm) in the space
of all nonlinear functions, the authors have given a complete character-
ization of the capability and limits of the feedback mechanism. To be
precise, it was shown in [16] that the maximum uncertainty that can be
dealt with by feedback is a ball with radius3=2 +

p
2 in this normed

function space. Analogously, for sampled-data control systems with
uncertain nonparametric nonlinearities, it has been shown that if the
sampling period is larger than a certain value, then globally stabilizing
sampled-data feedback does not exist in general even if the nonlinearity
has a linear growth rate [17].

The purpose of this note is to generalize some results in [16] to more
general high order nonlinear control systems. We shall show that for
a class ofpth order nonlinear autoregressive control systems with the
size of the uncertainty described by the Lipschitz constant (sayL) of
the uncertain nonlinear function in consideration, ifp andL satisfy the
following relationship:

L+
1

2
� pL 1 +

1

p
; pL > 1

then there exists no globally stabilizing feedback law for the corre-
sponding class of uncertain systems and thus finding a quantitative limit
to the capability of the feedback mechanism in dealing with structural
uncertainties.

The remainder of this note is organized as follows. In Section II,
we will present the main results of the note. Two auxiliary lemmas are
presented in Section III, which will be used in Section IV in the proofs
of the main theorem.

II. M AIN RESULTS

Consider the followingpth-order discrete-time nonlinear autoregres-
sive control model:

yt+1 = g (yt; yt�1; . . . ; yt�p+1) + ut + wt+1; t � 0 (1)

wherefytg, futg andfwtg are the system output, input and noise
sequences, respectively,p � 1 is an integer and the functiong(�) :
IRp ! IR1 is assumed to be completely unknown, but belongs to the
following class of functions:

G(L) g(�) : IRp ! IR1 jg (X1)� g (X2)j
� L kX1 �X2k ; 8X1;X2 2 IRp (2)

wherekXk p

i=1
jxij; 8X = (x1; x2; . . . ; xp) 2 IRp andL > 0

is a constant. Obviously, the larger the constantL, the larger the un-
certainty of the classG(L) is. Hence,L may be regarded as a mea-
sure of the “size” of uncertainty for classG(L). It is well known that
many “common” practical nonlinear phenomena, e.g., saturation and
dead-zone etc., are included in the class of functions satisfying the Lip-
schitz condition.

In this note, we are primarily interested in the following question:
What are the limits of feedback in dealing with uncertain systems (1)
for anyg(�) 2 G(L)?

In order to give a rigorous answer to the above question, we need to
give a precise definition of feedback first.

Definition: A sequencefutg is called a feedback control law if at
each stept � 0, ut is a causal function of the observationsfytg, i.e.,

ut = ht (yi; i � t) (3)

whereht(�) : IRt+p ! IR1 can be an arbitrary(nonlinear and time-
varying) mapping at each stept.

The main result of this note is stated in the following theorem, which
provides a limit to the capability of feedback in terms of the Lipschitz
constantL and the system orderp.

Theorem 1: IfL > 0 andp � 1 satisfy

L+
1

2
� pL 1 +

1

p
; pL > 1 (4)

then there exists an unbounded domainD � IRp such that for any
initial values (y0; y�1; . . . ; y�p+1) 2 D and any feedback control
law fht(�); t � 0g in (3), there always exists someg 2 G(L) such
that the corresponding closed-loop system (1) with (3) is unstable, i.e.,
supt�0 jytj = 1.

Remark 1: Obviously, the “negative” result established in the above
theorem holds also true for any model classes, as long as the model
class (1) is included as a subclass. We remark that for the case where
p = 1, the inequality (4) becomesL � 3=2 +

p
2, which has been

shown to be a critical case for feedback stabilization [16], i.e., it is also
a necessary condition for nonstabilizability. However, in the case where
p > 1, whether or not the condition (4) is necessary for nonstabiliz-
ability is still an open question.
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III. T WO AUXILIARY LEMMAS

In this section, we present two auxiliary lemmas which will be
needed in the proofs of the main theorem stated in the last section.

Lemma 1: IfL > 0, then the inequality (4) is the necessary and
sufficient condition for the following equation to have a real root in (1,
+1):

xp+1 � L+
1

2
xp + L = 0: (5)

Proof: Sufficiency:
By (4), we have

L+
1

2
� pL 1 +

1

p
> 1 +

1

p
(6)

and

L+
1

2

p+1

�
L(p+ 1)p+1

pp
: (7)

Now, denote

b(x) xp+1 � L+
1

2
xp + L (8)

then

b0(x) =(p+ 1)xp � P L+
1

2
xp�1

=(p+ 1)xp�1 x� L+
1

2

p

p+ 1
: (9)

Let xp (L+ 1=2)p=p+ 1, then from (6) and (7) we have

xp > 1 and b (xp) � 0: (10)

Then from the fact thatb(1) = 1=2 > 0 and thatb(x) is continuous,
we know that there must existx0 2 (1; xp] which satisfiesb(x0) = 0.
Hence, the sufficiency of Lemma 1 is true.

Necessity: Suppose that (5) has a real root in (1;+1), then
minx�1 b(x) � 0. By (9), We know thatb(x) must reach the
minimum in (1;+1) at the pointxp. Hence, (10) holds. Substituting
the value ofxp into (10), we have (4).

Lemma 2: Under the assumption of (4), if a sequencefxkg satisfies

x�p+1 =x�p+2 = � � � = x0 = 0; x1 > 0 (11)

and

xk+1 � L+
1

2
xk � Lxk�p; k � 1 (12)

then

xk+1 � xk >0; 8k � 0 and lim
k!1

xk =1 (13)

Moreover;

L�
1

2
xk � Lxk�p > 0; 8k � 1: (14)

Proof: We can rewrite (12) as

xk+1 � �0xk � �1 (xk � �0xk�1) + � � �+ �p (xk�p+1 � �0xk�p)
(15)

where�0; �1; . . . ; �p satisfy the following equations:

�0 + �1 = L+ 1

2

�2 = �1�0
...
�p = �p�1�0
�p�0 = L

: (16)

Substitute the firstp equations into the last one, we then have

�p+10 � L+
1

2
�p0 + L = 0: (17)

By Lemma 1, we know that the above equation has a real root in (1,
+1). Let�0 be the smallest root of (17) in (1,+1), then by (16), we
have

�0 > 1 and �i > 0; i = 1; 2; . . . ; p: (18)

Denotezk xk � �0xk�1; 8k � �p+ 2. By (11), we have

z�p+2 =z�p+3 = � � � = z0 = 0; z1 = x1 > 0 (19)

zk+1 ��1zk + �2zk�1 + � � �+ �pzk�p+1; 8k � 1: (20)

By (18)–(20), it is easy to see thatzk > 0; 8k � 1. Hence

xk+1 > �0xk > �20xk�1 > � � � > �k0x1 > 0: (21)

So, by�0 > 1 andx1 > 0, we have

xk+1 � xk > 0; 8k � 0 and lim
k!1

xk =1:

Hence, (13) holds. Moreover, from (12) and (15), it follows that:

L�
1

2
xk � Lxk�p = (�0 � 1)xk

+�1zk + �2zk�1 + � � �+ �pzk�p+1: (22)

From this, (14) holds.

IV. THE PROOF OF THEMAIN THEOREM

Proof of Theorem 1:We first introduce some notations. Note that
y0; y�1; . . . ; y�p+1 are initial values andyt is the output at stept.
Define

bt max
�p+1�i�t

yi; bt min
�p+1�i�t

yi (23)

and

Bt bt; bt ; t � �p+ 1 and 4B�p+1 B�p+1;

4Bt Bt �Bt�1; t � �p+ 2; (24)

and

jBtj bt � bt t � �p+ 1 and j4B�p+1j 0;

j4Btj jBtj � jBt�1j ; t � �p+ 2: (25)

By (23)

bt � bt�1; bt � bt�1 and bt � bt�1 bt � bt�1 = 0

we know that the interval sequencefBt; t � �p+1g is nondecreasing
and that4Bt is also an interval (can be a null set;). Note that

Bt =

t

i=�p+1

4Bi; and 4Bi 4Bj = ;; i 6= j: (26)

For any pointa 2 IR1 and any setB � IR1, define a distance
functiond(�; �) as

d(a;B) inf
b2B

ja� bj (27)

and ifB = fbg, we rewrited(a;B) asd(a; b) ja � bj.
Then, it is clear thatj4Btj = d(yt; Bt�1), t � �p+ 2.
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According to the above notations, we now introduce the domainD
for the value of the initial conditions, shown in (28) at the bottom of
the page. It is easy to see thatD is an unbounded domain ofIRp. Now,
we will introduce a class of functions onIR1. For a givenL, define

F(L) f : IR1 ! IR1 jf (x1)� f (x2)j

� L jx1 � x2j ; 8x1; x2 2 IR1 : (29)

It is obvious that iffi 2 F(L), i = 1; 2; . . . ; p and

g (x1; x2; . . . ; xp) = f1 (x1) + f2 (x2) + � � �+ fp (xp)

theng 2 G(L), whereG(L) is defined by (2).
In the following, we will constructfi 2 F(L), i = 1; 2; . . . ; p, such

that for any initial value(y0; y�1; . . . ; y�p+1) 2 D and any feedback
law ut = ht(yi; i � t), the following closed-loop system:

yt+1 = f1 (yt) + f2 (yt�1) + � � �+ fp (yt�p+1) + ut +wt+1; t � 0

is unstable.
We divide our analysis into three steps.

Step 1) For any(y0; y�1; . . . ; y�p+1) 2 D, we can chooseaij 2
IR to define the values offi(yj); i = 1; 2; . . . ; p � 1; j =
�i;�i � 1; . . . ;�p + 1, under the condition offi 2 F(L),
i.e.,

fi (yj) =aij ; i = 1; 2; . . . ; p� 1;

j =� i; . . . ;�p+ 1; fp (y�p+1) = ap;�p+1: (30)

Also, define

F
�1 (f1; . . . ; fp) fi 2 F(L);

i = 1; 2; . . . ; p; and satisfies(30) : (31)

Obviously,F
�1 6= ;, where; denote the null set.

In the following, we will determine:

fy1; f1 (y0) ; . . . ; fp�1 (y�p+2)g

fy2; f1 (y1) ; . . . ; fp (y�p+2)g ; . . . ;

fyn; f1 (yn�1) ; . . . ; fp (yn�p)g . . .

successively.

By (26), we know thatjBtj = t

i=�p+1
j4Bij. Since

(y0; y�1; . . . ; y�p+1) 2 D, by the definition ofD and the
above equality, we have

j4B
�p+ij � L�

1

2
jB
�p+i�1j ; i = 3; 4; . . . ; p: (32)

From (4), we know thatL > 1=2, so j4B
�p+ij > 0, i.e.,

y
�p+i 62 B

�p+i�1, i = 2; 3; . . . ; p. Define

b
�p+i�1

b
�p+i�1; if y

�p+i > b
�p+i�1

b
�p+i�1; if y

�p+i < b
�p+i�1

(33)

wherei = 2; 3; . . . ; p. By the definition ofF
�1, we know

that fi(b�i), i = 1; 2; . . . ; p � 1 are constants for all
(f1; f2; . . . ; fp) 2 F

�1.
Sincefi 2 F(L), fi(y�i+1) can be any value in the in-

terval

[fi (b�i)� L j4B
�i+1j ; fi (b�i) + L j4B

�i+1j] ;

i = 1; 2; . . . ; p� 1:

Define (34) and (35) as shown at the bottom of the page. Then,
for any (f 01; f

0

2; . . . ; f
0

p) 2 F 0

0;(f
00

1 ; f
00

2 ; . . . ; f
00

p ) 2 F 00

0 and
anyu0 = h0(y0; y�1; . . . ; y�p+1), w1 2 IR, we have

f 01 (y0) + f 02 (y�1) + � � �+ f 0p (y�p+1) + u0 + w1

� f 001 (y0) + f 002 (y�1) + � � �

+f 00p (y�p+1) + u0 + w1

=2L (j4B0j + j4B�1j + � � �+ j4B�p+2j)

=2L jB0j : (36)

From this, it is obvious that

max d f 01 (y0) + � � �+ f 0p (yp+1) + u0 + w1;
b0 + b0

2
;

d f 001 (y0) + � � �+ f 00p (yp+1) + u0 + w1;
b0 + b0

2

�L jB0j : (37)

D (y0; y�1; . . . ; y�p+1) 2 IRp

j4B�p+2j > 0

j4B�p+3j � L j4B�p+2j �
1

2
jB�p+2j

...
j4B0j � L j4B�1j + � � �+ L j4B�p+2j �

1

2
jB�1j

: (28)

F 0

0 (f1; f2; . . . ; fp) 2 F�1

f1 (y0) = f1 (b�1) + L j4B0j

f2 (y�1) = f2 (b�2) + L j4B�1j
...
fp�1 (y�p+2) = fp�1 (b�p+1) + L j4B�p+2j

6= ; (34)

and

F 00

0 (f1; f2; . . . ; fp) 2 F�1

f1 (y0) = f1 (b�1)� L j4B0j

f2 (y�1) = f2 (b�2)� L j4B�1j
...
fp�1 (y�p+2) = fp�1 (b�p+1)� L j4B�p+2j

6= ;: (35)
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Thus

max d f
0

1 (y0) + � � � + f
0

p (yp+1) + u0 + w1; B0 ;

d f
00

1 (y0) + � � � + f
00

p (yp+1) + u0 + w1; B0

� L�
1

2
jB0j : (38)

Define (39) as shown at the bottom of the page. Ob-
viously, F0 6= ; and for any (f1; f2; . . . ; fp) 2
F0; y1; f1(y0); . . . ; fp(y�p+1) are all uniquely deter-
mined values. Moreover

jB1j =d (y1; B0)

=d (f1 (y0) + � � �+ fp (y�p+1) + u0 + w1; B0)

� L�
1

2
jB0j > 0: (40)

Hence,y1 62 B0. Define

b0
b0; if y1 > b0

b0; if y1 < b0
: (41)

By now we can seef1(b0); f2(b�1); . . . ; fp(b�p+1) are all
constants for all(f1; f2; . . . ; fp) 2 F0.

Step 2) Suppose thatfyj ; f1(yj�1); . . . ; fp(yj�p); j � k; k � 1g
has been determined, thenfi(bk�i), i = 1; 2; . . . ; p are all
constants for any(f1; f2; . . . ; fp) 2 Fk�1. Now, we will de-
terminefyk+1; f1(yk); f2(yk�1); . . . ; fp(yk�p+1)g. Define
(42) and (43) as shown at the bottom of the page.

Then, similar to Step 1), for any(f 01; f
0

2; . . . ; f
0

p) 2 F 0k,
(f 001 ; f

00

2 ; . . . ; f
00

p ) 2 F 00k , we can obtain

max d f
0

1 (yk) + � � �+ f
0

p (yk�p+1) + uk + wk+1; Bk ;

d f
00

1 (yk) + � � �+ f
00

p (yk�p+1) + uk + wk+1; Bk

�L (j4Bkj+ j4Bk�1j+ � � �+ j4Bk�p+1j)�
1

2
jBkj

= L�
1

2
jBkj � L jBk�pj : (44)

Define (45) as shown at the bottom of the page. Then,
for any (f1; f2; . . . ; fp) 2 Fk, the valuesyk+1; f1(yk);
f2(yk�1); . . . ; fp(yk�p+1) have all been determined. More-
over,j4Bk+1j is constant and

j4Bk+1j =d (f1 (yk) + � � �+ fp (yk�p+1) + uk + wk+1; Bk)

� L�
1

2
jBkj � L jBk�pj > 0 (46)

where the last inequality follows from Lemma 2. Hence,
yk+1 62 Bk, and we can define

bk
bk; if yk+1 > bk

bk; if yk+1 < bk
: (47)

Step 3) Finally, we prove thatlimt!1jytj = 1. Since
(y0; y�1; . . . ; y�p+1) 2 D, by the definition ofD, we
have

jB�p+2j = j4B�p+2j > 0

jB�p+3j � L+ 1

2
jB�p+2j

...
jB0j � L+ 1

2
jB�1j

: (48)

From Steps 1) and 2), we have

jB1j � L+ 1

2
jB0j

...
jBk+1j � L+ 1

2
jBkj � L jBk�pj ; k � 1

: (49)

For convenience of analysis, we denoteB�2p+2 =
B�2p+3 = � � � = B�p = B�p+1 = 0, so that (48)
and (49) can be rewritten as

jBk+1j � L+
1

2
jBkj � L jBk�pj ; k � �p+ 2: (50)

Then, by Lemma 2, we have

jBk+1j > jBkj ; k � �p+ 1 and lim
k!1

jBkj =1: (51)

F0

F 00; if d f 01 (y0) + � � �+ f 0p (y�p+1) + u0 + w1; B0 � L� 1

2
jB0j

F 000 ; otherwise.
(39)

F 0k (f1; f2; . . . ; fp) 2 Fk�1

f1 (yk) = f1 (bk�1) + L j4Bkj

f2 (yk�1) = f2 (bk�2) + L j4Bk�1j
...
fp (yk�p+1) = fp (bk�p) + L j4Bk�p+1j

6= ; (42)

and

F 00k (f1; f2; . . . ; fp) 2 Fk�1

f1 (yk) = f1 (bk�1)� L j4Bkj

f2 (yk�1) = f2 (bk�2)� L j4Bk�1j
...
fp (yk�p+1) = fp (bk�p)� L j4Bk�p+1j

6= ;: (43)

Fk
F 0k; if d f 01 (yk) + � � �+ f 0p (yk�p+1) + uk + wk+1; Bk � L� 1

2
jBkj � L jBk�pj

F 00k ; otherwise
: (45)
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f
1

i (x)
linear interpolation ofyk; fk+i�1i (yk) ; x < b1

x1i ; x � b1
: (57)

f
1

i (x)
x1i ; x � b

1

linear interpolation ofyk; fk+i�1i (yk) ; x > b
1

: (58)

So, by the definition ofjBkj, we havelimt!1jytj = 1.
Define

F1 (f1; f2; . . . ; fp) 2 F�1 fi (yk�i+1)

= f
k
i (yk�i+1) ; f

k
1 ; f

k
2 ; . . . ; f

k
p 2 Fk; k � 0 (52)

which is well defined sinceyk+1 62 Bk, 8k � �p + 1 and
(fk1 (yk); f

k
2 (yk�1); . . . ; f

k
p (yk�p+1)) is independent of the

particular choice of(fk1 ; f
k
2 ; . . . ; f

k
p ) 2 Fk.

Denote

b1 lim
k!1

bk b
1

lim
k!1

bk: (53)

Then, from (51), we know there are three possible cases.

Case 1)b
1

= �1, b1 < 1. First, if there existsR > 0
such thatyR = b1, then denotex1i f

R+i�1
i (yR),

the value of which is given inFR+i�1 orF�1.
Otherwise, there must exist a subsequencefyj g

of fyjg such that

4Bj = yj � yj ; and lim
k!1

yj = b1: (54)

Hence,fyj g is a Cauchy sequence.8m > n, we
have

f
j +i�1
i (yj )� f

j +i�1
i (yj ) = f

j +i�1
i (yj )

� f
j +i�1
i (yj )

�L jyj � yj j (55)

where the value off j +i�1

i (yj ) is given in

Fj +i�1. Hence, the sequencef j +i�1

i (yj ) is
also a Cauchy sequence. Denote

x
1

i lim
k!1

f
j +i�1

i (yj ): (56)

Then, fori = 1; 2; . . . ; p, define (57) as shown at the
top of the page.

Case 2)b
1

> �1; b1 = 1. Similar to Case 1), we can
definexi

1
and (58) shown at the top of the page.

Case 3)b
1

= �1 b1 = 1. Define

f
1

i (x) linear interpolation of yk; f
k+i�1
i (yk) ;

b
1
<x < b1: (59)

Obviously, f11 ; f12 ; . . . ; f1p 2 F1 for any case.
Hence,F1 6= ;. 8 f11 ; f12 ; . . . ; f1p 2 F1 de-
fine

g (x1; x2; . . . ; xp) f
1

1 (x1) + f
1

2 (x2) + � � �+ f
1

p (xp) (60)

theng 2 G(L). So, there actually exists someg 2
G(L) such that the following closed-loop system:

yt+1 = g (yt; yt�1; . . . ; yt�p+1) + ut + wt+1 (61)

is unstable. Hence, the proof of the theorem is com-
pleted.
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