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Exploring the maximum capability of adaptive feedback
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SUMMARY

The main purpose of adaptive feedback is to deal with dynamical systems with internal and/or external
uncertainties, by using the on-line observed information. Thus, a fundamental problem in adaptive control
is to understand the maximum capability (and limits) of adaptive feedback. This paper gives a survey of
some basic ideas and results developed recently in this direction, for several typical classes of uncertain
dynamical systems including parametric and non-parametric non-linear systems, sampled-data systems and
time-varying systems. Copyright # 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Feedback is ubiquitous, and exists in almost all goal-directed behaviours [1]. It is indispensible
to the human intelligence, and is important in learning, adaptation, organization and evolution,
etc. In the area of control, feedback is a concept which is as basic as the causal law in physics.

Feedback is necessary in dealing with uncertainties in complex systems whose global
behaviours are the results of complicated interactions of subsystems. The uncertainties are
usually classified into two types: internal (structure) and external (disturbance) uncertainties,
depending on the specific dynamical systems to be controlled. In the ideal case where the
mathematical model can exactly describe the true system, the feedback law that are designed
based on the full knowledge of the model may be referred to as traditional feedback. In the case
where the true system model is not exactly known but lies in a ball centred at a known nominal
model with reliable model error bounds, the feedback laws designed based on the nominal
model (and the prior knowledge) may be called robust feedbacks (cf. e.g. References [2–5]).

By adaptive feedback we mean the (non-linear) feedback which captures the uncertain
(structure or parameter) information of the underlying system by properly utilizing the
measured on-line data. The well-known certainty-equivalence principle in adaptive control is an
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example of such philosophy. Since an on-line learning mechanism is usually embedded in the
structure of adaptive feedback, it is conceivable that adaptive feedback can deal with larger
uncertainties than other forms of feedback can do.

Note that, as mentioned by (AAstr .oom and Wittenmark [6], it is practically difficult, in general,
to distinguish adaptive feedback from ordinary non-linear feedback by looking at either the
software or the hardware of a controller, we will define adaptive feedback as any causal
functions of the observed output process (see, e.g. Definition 1 in the next section). This will
prevent us from restricting the capability of adaptive feedback at the outset by (artificial)
definitions. Thus, the capability of adaptive feedback that we are going to explore is also the
capability of the generally defined feedback.

Over the past several decades, much progress has been made in the area of adaptive control
(cf. e.g. References [6–12]). For linear finite dimensional systems with uncertain parameters, a
well-developed theory of adaptive control exists today, both for stochastic systems (cf.
References [10–13]) and for deterministic systems with small unmodelled dynamics (cf.
Reference [8]). This theory can be generalized to non-linear systems with linear unknown
parameters and with linearly growing non-linearities ([14, 15]). However, fundamental
difficulties may emerge in the design of stabilizing adaptive controls when these structural
conditions are removed. This has motivated a series of studies on the maximum capability (and
limits) of adaptive feedback starting from Reference [16].

To explore the maximum capability of adaptive feedback, we have to place ourselves in a
framework that is somewhat different from the traditional robust control and adaptive control.
First, the system structure uncertainty may be non-linear and/or non-parametric, and a known
or reliable ball containing the true system and centred at a known nominal model may not be
available a priori. Second, we need to study the maximum capability of the whole feedback
mechanism (not only a special class of feedback laws), not only answering what the adaptive
feedback can do, but also answering, the more difficult and important question, what the
adaptive feedback cannot do. We shall also work with discrete-time feedback laws, which can
reflect the basic causal law as well as the limitations of actuator and sensor in a certain sense,
when implemented with digital computers.

In this paper, we will give a survey of some basic results on the maximum capability of
adaptive feedback, which were discovered and established in the recent few years ([15–22]). To
be specific, we will study some basic classes of discrete-time parametric and non-parametric non-
linear control systems in Sections 2 and 3, respectively. Section 4 will turn to sampled-data
systems, and Section 5 will focus on time-varying linear systems with hidden Markovian jumps.
Some conclusions will be given in Section 6.

2. PARAMETRIC NON-LINEAR SYSTEMS

Consider the following basic discrete-time parametric non-linear system:

ytþ1 ¼ yf ðytÞ þ ut þ wtþ1 ð1Þ

where yt; ut and wt are the scalar system output, input and noise processes, respectively. We
assume that

(A1) fwt} is a Gaussian noise process;
(A2) y is an unknown non-degenerate Gaussian random variable;
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(A3) The function f ð�Þ is known and has the following growth rate:

f ðxÞ � Mxb as x ! 1

where b50; M > 0 are constants. Obviously, if b41; then the non-linear function f ð�Þ has a
growth rate which is bounded by linear growth. This case can be easily dealt with by the existing
theory in adaptive control (see, e.g. Reference [15]). Our prime concern here is to know whether
or not the system can be globally stabilized by adaptive feedback for any b > 1? To answer this
question rigorously, let us introduce the precise definition of adaptive feedback first.

Definition 1

An input sequence {ut; t50} is called adaptive feedback, if at each time t50; ut belongs to
sðy0; . . . ; ytÞ; the s-algebra generated by fy0; . . . ; ytg; or, in other words, if there exists a
Lebesgue measurable function ftð�Þ such that ut ¼ ftðy0; y2; . . . ; ytÞ: Furthermore, system (1) is
said to be globally stabilizable if there exists a sequence of adaptive feedback {ut} such that the
output process is bounded in the mean square sense, i.e.

lim
t!1

Ey2
t 51; 8y0 2 R1

The following theorem gives a critical value of b; which characterizes the maximum capability
of adaptive feedback.

Theorem 1

Consider system (1) with Assumptions (A1) to (A3). Then b ¼ 4 is a critical case for adaptive
stabilizability. In other words,

(i) If b54; then for any adaptive feedback {ut}, there always exist a set D (in the basic
probability space) with positive probability such that

jytj ! 1 on D

at a rate faster than exponential.
(ii) If b54; then the least-squares-based adaptive minimum variance control ut ¼ �ytf ðytÞ

where yt is the least-squares estimate for y at time t; can render the system to be globally
stable and optimal, with the best rate of convergence ([13]):XT

t¼1

ðyt � wtÞ
2 ¼ Oðlog T Þ a:s: as T ! 1

Remark 1

This result is somewhat surprising since the assumptions in our problem formulation have no
explicit relationships with the value b ¼ 4: So, a natural question that one may ask is: why b ¼ 4
is a critical value for stabilizability?

Exploring the answer to this question may be interesting, but we remark that many other
phenomena in science and nature are also related to the number 4, e.g. the maximum degree of
algebraic equations whose general solutions can be expressed by explicit formulas (Abel
Theorem), and the dimension of the space–time structure in Einstein’s relativity theory. We
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remark that the related results were first found and established in a somewhat general
framework in Reference [16]. In particular, the first part (i) was contained in Remark 2.2 in
Reference [16], and was later extended to general unknown parameter case in Reference [15] by
using a conditional Cramer–Rao inequality. The second part (ii) is a special case of Theorem 2.2
in Reference [16].

Remark 2

There are many implications of Theorem 1. For example,

(i) The limitation of adaptive feedback given in Theorem 1 (i) is applicable also to general
class of systems of the form

ytþ1 ¼ ftðyt; . . . ; yt�p; ut; . . . ; ut�qÞ þ wtþ1

as long as it contains the basic class (1) as a subclass.
(ii) There are fundamental differences between continuous-time and discrete-time non-linear

adaptive control. To see this, consider the following continuous-time analogue of the
stochastic model (1):

dyt ¼ ½yf ðytÞdt þ ut� dt þ dwt

where y is an unknown parameter, wt is the standard Brownian motion, and f ð�Þ has a
growth rate f ðxÞ ¼ OðxbÞ with b > 0: Then the non-linear damping control

ut ¼ �cyt þ ytjytj2b; c > 0

can globally stabilize the system regardless of the value of b (see Reference [15]). However,
Theorem 1 shows that the value of b plays a crucial role in stabilizability of discrete-time
systems. This fact presages the limitations of sampled-data feedback to be studied in
Section 4.

(iii) There are also fundamental differences between deterministic and stochastic adaptive
control. To see this, consider the following noise-free system:

ytþ1 ¼ yf ðytÞ þ ut

Then, one can identify the unknown parameter y in the first step by y ¼ jy1 �u0j=f ðy0Þ:
Consequently, for t51; if we take ut ¼ �yf ðytÞ; then it is obviously stabilizing, regardless of the
growth rate of the non-linear function f ð�Þ: Hence, by Theorem 1, the fundamental difference
between deterministic and stochastic adaptive control is clearly seen.

From the above analyses, it is seen that the noise effect in (1) plays an essential role
in the non-stabilizability result of Theorem 1(i): the noise effect gives estimation errors to even
the best estimates, which are then amplified step by step by the non-linearity of the system,
leading to the final instability of the closed-loop systems, despite of the strong consistency of the
estimates [16].

Theorem 1 concerns with the case where the unknown parameter y is a scalar. To see what
happens when the number of the unknown parameters increases, let us consider the following
polynomial non-linear regression:

ytþ1 ¼ y1yb1
t þ y2yb2

t þ � � � þ ypy
bp
t þ ut þ wtþ1 ð2Þ
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Assume that

(A1)0 b1 > b2 > � � � > bp > 0;
(A2)0 {wt} is a sequence of independent random variable with a common distribution N ð0; 1Þ;
(A3)0 y¼4 ½y1 � � � yp�T is a random parameter with distribution N ð%yy; IpÞ (extensions to non-

Gaussian parameter case can be found in Reference [15]).

Denote

f ðxÞ ¼ ½xb1 ; xb2 ; . . . ; xbp �T

Then (2) can be written as

ytþ1 ¼ yTf ðytÞ þ ut þ wtþ1

Note that

kf ðxÞk � xb1 ; x ! 1

we see that b1 may be regarded as the degree of non-linearity of the non-linear function f ð�Þ: As
explained before, we only consider the non-trivial case b1 > 1 here.

Now, introduce a characteristic polynomial

P ðzÞ ¼ zpþ1 � b1zp þ ðb1 � b2Þzp�1 þ � � � þ ðbp�1 � bpÞzþ bp

which plays a crucial role in characterizing the limitations of adaptive feedback as shown in the
following theorem.

Theorem 2

If there exists a real number z 2 ð1; b1Þ such that P ðzÞ50; then the above system (2) is not
stabilizable by adaptive feedback. In fact, for any adaptive feedback {ut} and any initial
condition y0 2 R1; it is always true that

Ejytj2 ! 1 as t ! 1

at a rate faster than exponential.

Remark 3

The proof the Theorem 2 can be found in References [15, 17]. An important consequence of this
theorem is that the following system:

ytþ1 ¼ y1yb1
t þ y2yb2

t þ � � � þ ypy
bp
t þ ut þ wtþ1

is not stabilizable by adaptive feedback in general, whenever b1 > 1 and the number of unknown
parameters p is large (see Reference [17] for details). This fact implies that the non-linear system

ytþ1 ¼ f ðytÞ þ ut þ wt

with f ð�Þ unknown and satisfying

kf ðxÞk4c1 þ c2kxkb; b > 1

may not be stabilizable by adaptive feedback in general. This may further imply that the linear
growth condition on f ð�Þ cannot be essentially relaxed in a certain sense. This gives us another
fundamental limitation on adaptive feedback in the presence of parametric uncertainties in
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non-linear systems, and motivates the study of non-parametric control systems with linear
growth conditions in the next section.

3. NON-PARAMETRIC NON-LINEAR SYSTEMS

Consider the following first-order non-parametric control system:

ytþ1 ¼ f ðytÞ þ ut þ wtþ1; t50; y0 2 R1 ð3Þ

where {yt} and {ut} are the output and input, and {wt} is an ‘unknown but bounded’ noise
sequence, i.e. jwtj4w; 8t; for some constant w > 0: The non-linear function f ð�Þ : R1 ! R1 is
completely unknown. We are interested in understanding how much uncertainty in f ð�Þ can be
dealt with by adaptive feedback? In order to do this, we need to introduce a proper measure of
uncertainty first.

Now, define

F¼4 ff : R1 ! R1g

and introduce a quasi-norm on F as follows:

kfk¼4 lim
a!1

sup
ðx;yÞ2R2

jf ðxÞ � f ðyÞj
jx� yj þ a

; 8f 2 F

where the limit exists by the monotonicity of the function concerned.
It is not difficult to see [19] that this norm is closely related to the following generalized

Lipschitz condition:

jf ðxÞ � f ðyÞj4Ljx� yj þ c

In fact, kfk is the infimum of all possible Lipschitz constants L for f ð�Þ:
Having introduced the norm k � k; we can then define a ball in the space (F; k � k) centred at

its: ‘zero’ yF with radius L:

FðLÞ ¼4 ff 2 F : kfk4Lg

where yF ¼
4 ff 2 F : kfk ¼ 0g: It is obvious that the size of FðLÞ depends on the radius L;

which will be regarded as the measure of the size of uncertainty in our study to follow.
The following theorem establishes a quantitative relationship between the capability of

feedback and the size of uncertainty.

Theorem 3

Consider the non-parametric control system (3). Then the maximum uncertainty that can be
dealt with by adaptive feedback is a ball with radius L ¼ 3

2
þ

ffiffiffi
2

p
in the normed function space

(F; k � k), centred at the zero yF : To be precise,

(i) If L53
2
þ

ffiffiffi
2

p
; then there exists an adaptive feedback {ut} such that for any f 2 FðLÞ; the

corresponding closed-loop control system (3) is globally stable in the sense that

sup
t50

jytj þ jutj51; 8y0 2 R1
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(ii) If L53
2
þ

ffiffiffi
2

p
; then for any adaptive feedback {ut} and any y0 2 R1; there always exists

some f 2 FðLÞ such that the corresponding closed-loop system (3) is unstable, i.e.

sup
t50

jytj ¼ 1

Remark 4

The proof of the above theorem is given in Reference [19], where it is also shown that once the
stability of the closed-loop system is established, it is a relatively easy task to evaluate the
control performance.

Similar to Theorem 1, a natural question that one may ask for Theorem 3 is why L ¼ 3
2
þ

ffiffiffi
2

p
is a critical value? Analytically, what we can say is that this result has some connections with
oscillation theory. In fact, it can be seen from [19] that the adaptive stabilizability of system (3) is
closely related to the behaviour of the trajectory of the following difference equation:

anþ1 ¼ ðLþ 1
2
Þan � Lan�1

It can be shown that the necessary and sufficient condition for any solution of this equation
either converges to zero or oscillates about zero is that L53

2
þ

ffiffiffi
2

p
: Geometrically, Theorem 3

also has connections with the following ‘geometric inequality’:

jatþ1 � ðcentreÞtj4Ljat � ðneighbourÞtj þ 1

where (centre)t is the centre of the data observed up to t; defined by 1
2
ðmin05i4t ai þmax04i4t aiÞ;

while the (neighbour)t is defined as the point in fai; 04i4t � 1g which is closest to at: It can be
shown that the necessary and sufficient condition for the boundedness of any non-negative
sequence {at} satisfying the above inequality is L53

2
þ

ffiffiffi
2

p
:

Remark 5

The adaptive feedback used in Theorem 3 (i) is constructive, it is constructed as follows (see
Reference [19]):

Step 1: Define the nearest neighbour (NN) estimator by

#ff tðytÞ ¼
4 yitþ1 � uit

where

it ¼
4
arg min
04i4t�1

jyt � yij

which means that

jyt � yit j ¼ min
05i4t�1

jyt � yij

Step 2: Define ut as a switching feedback based on a stabilizing feedback u0t and a tracking
feedback u00t ; i.e.

ut ¼
u0t if jyt � yit j > e

u00t if jyt � yit j4e

(
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where e > 0 is any given threshhold, and

u0t ¼ � #ff tðytÞ þ
1
2
ð
%
bt þ %bbtÞ

where

%
bt ¼ min

04i4t
yi; %bbt ¼ max

04i4t
yi

and

u00t ¼ � #ff tðytÞ þ y�
tþ1

where fy�
t g is a bounded reference sequence. It is obvious that ut depends only on the

observations fy0; y1; . . . ; ytg:

Remark 6

One may try to generalize Theorem 3 to the following high-order non-linear systems (p51):

ytþ1 ¼ f ðyt; yt�1; . . . ; yt�pþ1Þ þ ut þ wtþ1 ð4Þ

where f ð�Þ : Rp ! R1 is assumed to be completely unknown, but belongs to the following class
of Lipschitz functions:

FðLÞ ¼ ff ð�Þ : jf ðxÞ � f ðyÞj4Lkx� yk; 8x; y 2 Rpg

where L > 0; kxk ¼
Pp

i¼1 jxij; x ¼ ða1; . . . ; xpÞ
t 2 Rp: Again, fwtg is a sequence of ‘unknown but

bounded’ noises. It can be shown that (see Reference [22]) if L and p satisfy

Lþ
1

2
5 1þ

1

p

� �
ðpLÞ1=ðpþ1Þ ð5Þ

then there does not exist any globally stabilizing adaptive feedback for the class of uncertain
systems (4) with all f 2 FðLÞ:

It is easy to see that if p ¼ 1 then the above inequality (5) reduces to L53
2
þ

ffiffiffi
2

p
; which we

know to be the critical case for feedback capability by Theorem 3.
However, when p > 1 and (5) does not hold, whether or not there exists a stabilizing adaptive

feedback for (4) with f 2 FðLÞ still remains as an open question.

4. SAMPLED-DATA SYSTEMS

Consider the following basic control system:

’xxt ¼ f ðxtÞ þ ut; t50; x0 2 R1 ð6Þ

The system signals are assumed to be sampled at a constant rate h > 0; and the input is
assumed to be implemented via the familiar zero-order hold device (i.e. piecewise constant
functions):

ut ¼ ukh; kh4t5ðk þ 1Þh ð7Þ

where ukh depends on fx0; xh; . . . ; xkhg:
Similar to Definition 1, we need a precise definition for sampled-data feedback.
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Definition 2

fut; t50g is called a sampled-data feedback control if at each step k; ukh is a causal function of the
past and present sampled data fx0; xh; . . . ; xkhg; i.e. for any k50 there exists a function
gkð�Þ : Rkþ1 ! R1 such that ukh ¼ gkðx0; xh; . . . ; xkhÞ:

The non-linear function f in (6) is assumed to be unknown but belongs to the following class
of local Lipschiz (LL) functions:

GL
c ¼ ff jf is LL and satifies jf ðxÞj4Ljxj þ c; 8x 2 R1g ð8Þ

where c > 0 and L > 0 are constants. A function f is called LL if, for any R > 0; there exists a
constant L such that jf ðxÞ � f ðyÞj4Ljx� yj; 8ðx; yÞ : jxj4R; jyj4R:

According to the definition, L upper bounds the ‘slope’ of the unknown non-linear function
f 2 GL

c ; which may be regarded as a measure of the size of the uncertainty. Similar to the
discrete-time case in Theorem 3, L plays a crucial role in the determination of the capability and
limits of the sample-data feedback.

Theorem 4

Consider the sampled-data control system (6) and (7). If Lh > 7:53; then for any c > 0 and any
sampled-data control {ukh; k50} there always exists a function f � 2 GL

c ; such that the state
signal of (6) and (7) corresponding to f � with initial point x0 ¼ 0 satisfies (k51)

jxkhj5
Lh
2

� �k�1

ch !
k!1

1

Remark 7

It is easy to show (see Reference [18]) that if Lh5log 4; then a globally stabilizing sampled-data
feedback control can be constructed. Theorem 7 shows that if Lh is larger than a certain value,
then there will exist no stabilizing sampled-data feedback. As obvious open question here is how
to bridge the gap between log 4 and 7.53. Needless to say, Theorem 4 gives us some useful
quantitative guidelines in properly choosing the sampling rate in practical applications.

Next, we consider the following stochastic control system:

dxt ¼ f ðxtÞ dt þ ut dt þ s dwt ð9Þ

where f is a non-linear function, and where {wt} is the standard Brownian motion, and s > 0:
As in the deterministic case, if f 2 GL

c and if Lh is suitably small, then a stabilizing sampled-
data feedback can be constructed (see Reference [18]). A natural question is: Can we find a
stabilizing sampled-data control for (9) when the unknown non-linear function has a non-linear
growth rate? The following theorem in Reference [18] gives us a negative answer for a class of
non-linear stochastic systems, even in the case where the sampling rate is arbitrarily high and
where the non-linear function is known a priori.

Theorem 5

Consider the stochastic control system (9). Assume that the function f ðxÞ is locally Lipschitz
and there exist two positive constants R0 and d such that

xf ðxÞ5jxj2þd; 8x : jxj5R0
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Then for any h > 0 and any sampled-data feedback, the closed-loop system is unstable in the
sense that:

Ex2T ¼ 1; 8T > 0:

Remark 8

This theorem can be used to demonstrate the fundamental differences between continuous-time
control and sampled-data control. For example, if we take f ðxÞ ¼ jxj1þd sgnðxÞ then the
condition on f in Theorem 5 is obviously satisfied, and so, there is no stabilizing sampled-data
feedback for any h > 0: However, if we simply take the continuous-time state feedback control
ut ¼ �jxtj1þd sgnðxtÞ � xt; it is then easy to show that this continuous-time feedback will globally
stabilize the system in the sense that supT>0 Ex2T51; 8x0: In Theorem 5, the random noise
described by the Brownian motion {wt} plays an essential role. In the noise free case, it can be
shown by examples that some standard continuous-time stabilizing feedback laws may indeed
lose their stabilizability if their corresponding sampled-data versions are implemented (see
Reference [15]).

5. TIME-VARYING STOCHASTIC SYSTEMS

Consider the following linear time-varying stochastic model:

xtþ1 ¼ AðytÞxt þ BðytÞut þ wtþ1; t51 ð10Þ

where xt 2 Rn; ut 2 Rm and wtþ1 2 Rn are the state, input and noise vectors respectively. We
assume that

(H1) fyt} is an unobservable Markov chain which is homogeneous, inreducible and aperiodic,
and which takes values in a finite set {1; 2; . . . ;N} with transition matrix denoted by
P ¼ ðpijÞNN; where by definition pij ¼ Pfyt ¼ jjyt�1 ¼ ig:

(H2) There exists some mn matrix L such that

det½ðAi � AjÞ � ðBi � BjÞL�=0; 8i=j

where 14i; j4N ; and Ai ¼
4 AðiÞ 2 Rnn; Bi ¼

4 BðiÞ 2 Rnm are the system matrices.
(H3) fwt} is a martingale difference sequence which is independent of {yt}, and satisfies

sI4Ewtw0
t; Ew0

twt4sw; 8t

where s and sw are two positive constants, and the prime superscript represents matrix
transpose.

We remark that Condition (H1) implies that each state in f1; 2; . . . ;Ng can be visited by fytg
with positive probability when t is suitably large (this is what we really need in Theorem 6
below), while Condition (H2) is a sort of identifiability condition useful in the construction of
stabilizing feedback laws (it may be further weakened). Moreover, the lower bound to the noise
covariance in Condition (H3) is assumed for simplicity of derivations, and the case where
wt ¼ 0; 8t can be treated analogously.
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For simplicity of presentation, we will denote S¼4 f1; 2; . . . ;Ng throughout the sequel. We will
continue to adopt the general definition for adaptive feedback as in Definition 1, but with yt
replaced by xt for the current model (10). The following theorem gives a complete
characterization of adaptive stabilizability for the hidden Markovian model (10).

Theorem 6

Let the above Assumptions (H1)–(H3) hold for the control system (10). Then the system is
stabilizable by adaptive feedback if and only if the following coupled algebraic Riccati-like
equations have a solution consisting of N positive definite matrices {Mi > 0; i 2 S}:

X
j

A0
jpijMjAj �

X
j

A0
jpijMjBj

 ! X
j

B0
jpijMjBj

 !þ X
j

B0
jpijMjAj

 !
�Mi ¼ �I ð11Þ

where i 2 S and ( � )+ denotes the Moore–Penrose generalized-inverse of the corresponding
matrix.

Remark 9

In contrast to most of the previous publications in the literature of adaptive control, we have
neither restricted ourselves to the class of linear feedback laws, nor imposed any conditions on
the rate of parameter changes. Hence, Theorem 6 enables us to explore the full capability and
limitations of the adaptive feedback mechanism.

Also, as shown in Reference [21], the stabilizing feedback in Theorem 6 can be adaptively
constructed, and three other conditions equivalent to (11) can be found.

Remark 10

It was shown in Reference [23] that for the case where the Markov chain fytg is observable,
System (9) is stabilizable by linear feedback if the following Lyapunov-like equation has a
solution fMi; i 2 Sg:

ðAi � BiLiÞ
0
XN
j¼1

pijMj

" #
ðAi � BiLiÞ �Mi ¼ �I ; i 2 S ð12Þ

Obviously, the existence of the solution of Equation (11) derived in the present (adaptive) case
should imply the existence of the solution of (12), but the converse assertion is not true. (see
Reference [21] for detailed analyses).

To given an explicit comparison between (11) and (12), we denote

L�i ¼
4 L�ðMÞ ¼4

XN
j¼1

B0
jpijMjBj

 !þ XN
j¼1

B0
jpijMjAj

 !
; i 2 S

whereM ¼4 ½M1; . . . ;MN �i: Then by properties of generalized-inverse, it is easy to see that (11) can
be written in the following form:

XN
j¼1

ðAj � BjL�i ÞpijMjðAj � BjL�i Þ �Mi ¼ �I ; i 2 S ð13Þ
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Remark 11

Theorem 6 shows that the capability of adaptive feedback depends on both the structure
complexity measured by {Aj;Bj; 14j4N} and the information uncertainty measured by
{pij; 14i; j4N}. To make it more clear in understanding how the capability of adaptive
feedback depends on both the complexity and uncertainty of the system, we consider the
following example.

Example 1

Consider the following simple scalar model

xtþ1 ¼ aðytÞxt þ ut þ wtþ1 ð14Þ

Assume that the Markov chain {yt} have two states {1, 2} only and let p12 ¼ p21: Now by the
fact that N ¼ 2; p12 ¼ p21; and pi1 þ pi2 ¼ 1; i ¼ 1; 2; it can be shown by Theorem 6 and (13)
that the system is stabilizable if and only if

ða1 � a2Þ
2ð1� p12Þp1251

(see, also Reference [20]). Let us denote Iðp12Þ as

Iðp12Þ ¼
4
1� ða2 � a1Þ

2ð1� p12Þp12

which may be regarded as a measure of the capability of adaptive feedback and may be further
represented by

Iðp12Þ ¼ 1� CU ð15Þ

where C¼4 ða2 � a1Þ
2 and U ¼4 ð1� p12Þp12 can be interpreted as measures of the structure

complexity (degree of dispersion) and the information uncertainty of the system, respectively.
Obviously, the system is stabilizable , Iðp12Þ > 0: We now have the following interesting
observations (cf. Reference [20]):

(i) The capability of adaptive feedback defined by Iðp12Þ is a monotonic function of the
uncertainty U but is not monotonic in the rate of transition p12: Furthermore, there does
not exist a critical rate of transitionp�

12 2 ð0; 1Þ such that the system is stabilizable or
Iðp12Þ > 0 , p12 2 ½0;p�

12Þ: Moreover, the capability of adaptation Iðp12Þ achieves its
maximum when the uncertainty U reaches its minimum.

(ii) The uncertainty measure U is closely related to the well-known Shannon information
entropy, which is a measure of information uncertainty defined by

H ¼ �
X2
i¼1

p1i log p1i

in the current case (see, e.g. Reference [24]). Note that H can be rewritten as

H ¼ �ð1� p12Þ logð1� p12Þ � p12 log p12

It is not difficult to see that there exists a monotonically increasing function mð�Þ such that
U ¼ mðH Þ: This fact justifies why we refer to U as the measure of information uncertainty here.
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Now, by (15) we have

Iðp12Þ ¼ 1� CmðH Þ

which implies that the capability of adaptive feedback is also a monotonically decreasing
function of the Shannon information entropy H :

6. CONCLUSIONS

Adaptive feedback is essential in dealing with uncertainties that always exist in the modelling
of complex systems. In this paper, we have presented a survey of some basic ideas and results
towards understanding the maximum capability (and limits) of the discrete-time (or sampled-
data) adaptive feedback in dealing with both structure and disturbance uncertainties. In
particular, we have presented several critical values or equations characterizing the maximum
capability of the adaptive feedback. The basic findings may be briefly summarized as follows:

(i) For non-linear systems with parametric uncertainties, the capability of adaptive feedback
depends on both the growth rate of the non-linear functions and the number of unknown
parameters. In the scalar parameter case, the growth rate Oðx4Þ is a critical case for adaptive
stabilizability.

(ii) For non-linear systems with non-parametric uncertainties, the capability of feedback
depends on the minimum Lipschitz constant L of the non-parametric function and on the
order of the systems. In the first-order case, the value L ¼ 3

2
þ

ffiffiffi
2

p
is a critical case for

adaptive stabilizability.
(iii) For continuous-time non-linear systems with non-parametric uncertainties, the capability

of the sampled-data feedback depends both on the Lipschitz constant (or the slope) L of the
non-parametric function and on the sampling period h of the feedback. If Lh is not suitably
small, then no stabilizing sampled-data feedback exists.

(iv) For time-varying linear systems with hidden Markovian jump parametres, the capability of
adaptive feedback is characterized by the existence of the solution of a set of coupled
Riccati-like equations. Roughly speaking, the capability of adaptive feedback depends on
both the structure complexity determined by the state matrices (Ai;Bi), 14i4N ; and the
information uncertainty described by the transition probability {pij; 14i4N}. The rate of
parameter changes is not a proper measure for characterizing the feedback capability.

It is obvious that many important problems still remain open, and more research efforts are
called for in this new and challenging direction.
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