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beginning of this section gives the partition ofx = col(x1; x2) with
x1 = col(x1; x2; x4) andx2 = x3 and the following mappings:

x
1 =�(x2; v)

=

v1

v2

�3v2 � v1

K(x; v) =
v2

�

(1+x +x )v �x v

1+v sin(v v )

as well as the zero dynamics of (3.3)

_x3
_v1
_v2

=
x3+(�x3v2�v1)�sin(v1v2)

x (v �v �v )+v �v v

1+sin(v v )v

v2

�v1

:

As a result,x3(v) can be obtained by solving the following center man-
ifold equation:

@x3(v)

@v
a(v) = x3(v) + (�x3(v)v2 � v1)

� sin(v1v2)
x3(v) v2 � v22 � v1 + v2 � v1v2

1 + sin(v1v2)v2
:

Therefore, the solution of the regulator equations is given by

x(v) =

v1

v2

x3(v)

�x3(v)v2 � v1

u(v) =
v2

�

x (v)(v �v �v )+v �v v

1+sin(v v )v

:

IV. CONCLUSION

For a general class of MIMO nonlinear systems, we have shown that
the pertinent regulator equations are solvable if the composite system
has a well defined vector relative degree at the origin, and the equilib-
rium of the zero dynamics of the given plant withv = 0 can be made
hyperbolic. Our approach only involves straightforward algebraic ma-
nipulations, and reduces the solution of the regulator equations into a
set of well defined algebraic equations and a type of center manifold
equation.

The approach and results can be generalized to more general non-
linear systems as described by (1.1). In fact, we can still define the
relative degree for this class of general nonlinear systems [9]. The
only complexity is that the equationEa(x; v) + Da(x; v)u = 0 has
to be replaced by an equation nonlinear inu. Therefore, the function
K(x; v; u2) has to be defined through the Implicit Function Theorem.
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On Quadratic Lyapunov Functions

Daizhan Cheng, Lei Guo, and Jie Huang

Abstract—A topological structure, as a subset of[0 2 ) , is
proposed for the set of quadratic Lyapunov functions (QLFs) of a given
stable linear system. A necessary and sufficient condition for the existence
of a common QLF of a finite set of stable matrices is obtained as the pos-
itivity of a certain integral. The structure and the conditions are consid-
erably simplified for planar systems. It is also proved that a set of block
upper triangular matrices share a common QLF, iff each set of diagonal
blocks share a common QLF.

Index Terms—Common quadratic Lyapunov function (QLF), stabiliza-
tion, switched system.

I. INTRODUCTION

In recent years, the problem of stability and stabilization of
switched systems has attracted a considerable amount of attention
[12]. The stability of a switched system can be assured by a common
Lyapunov function of the different models for arbitrary switching.
Particularly, when the switching models are linear, the problem of
common quadratic Lyapunov functions (QLFs) [8], [11] arises. The
problem for diagonal quadratic Lyapunov functions was solved in [3]
and [9]. When two stable matrices are commutative it was proved in
[14] that they share a common QLF. Some special classes of matrices
sharing a common QLF were investigated in [7], [13]. Certain Lie
algebra structure and matrix inequalities were used to solve the
problem [5], [15]. The problem of constructing Lyapunov functions
has been discussed in [4] for some particular forms ofP . Some
recent results showed that if the Lie algebra generated by the set of
matrices is solvable, then the common QLF exists [11]. In [2], the set
of matrices, which share a given common QLF was investigated. The
first necessary and sufficient condition was given for planar systems
[16]. Numerical solution of common quadratic Lyapunov function has
been discussed in [4], [10].

In this note, we shall give a topological description for the set of
common QLFs of a finite set of stable matrices. Based on it, the exis-
tence of common QLFs depends on whether or not an integral is posi-
tive.
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II. TOPOLOGICAL STRUCTURE OFQLFs

Definition 2.1: A matrix A is said to have a QLF if there exists a
positive–definite matrixP > 0, such that

PA +ATP < 0: (2.1)

P is briefly called a QLF ofA. If in additionP is diagonal,A is said
to have a diagonal QLF.

The following easily provable lemma is the starting point of our new
approach.

Lemma 2.2: Assume a set of matricesfA� j � 2 �g are stable,
i.e.,Re�(A�) < 0, (where�(A) is the set of eigenvalues ofA) and
there exists a common QLF, then there exists an orthogonal matrixT 2
SO(n;R) such thatf ~A� = T TA�T j� 2 �g have a common diagonal
QLF.

According to Lemma 2.2, instead of searching a common QLF we
can search a common diagonal QLF under a common orthogonal trans-
formation onfA�g.

Let�n be the set ofn�n positive–definite matrices, and�n � �n

be its diagonal subset. Then

�n = fTDTT j T 2 SO(n;R); D 2 �ng:

Now, since in searching a QLF,P � kP , k > 0 (where “�” stands
for equivalence), we need only to consider the quotient set

	n = �n= + = f(1; x1; . . . ; xn�1)jx1 > 0; . . . ; xn�1 > 0g :

Giving	n the conventional topology ofRn�1
+ , the set of QLF has the

structure as

�n= + := fTDTT j T 2 SO(n; ); D 2 	ng (2.2)

and then we define a mapping� : SO(n; )� n�1
+ ! �n= + as

(T; x) 7! Tdiag(1; x1; . . . ; xn�1)T
T

which is obviously a surjective mapping. So we can search the common
QLF overSO(n; ) � n�1

+ .
For later discussion, it is not convenient to use the conventional

topology ofSO(n; ) for searchingP . We turn to its Lie algebra.
Let sij 2 o(n; ) be an element in the orthogonal algebrao(n; ),

defined as

sij(i; j) = �1 sij(j; i) = 1 sij(p; q) = 0

(p; q) 6= (i; j) and(p; q) 6= (j; i):

Note that the connected Lie group generated bysij , denoted bySij , is
a one-dimensional subgroup ofSO(n; ), and

Sij �= SO(2; )

where�= stands for group isomorphism. It is easy to prove the fol-
lowing.

Lemma 2.3: There existL = n(n � 1)=2 one dimensional sub-
groupsSij < SO(n; ); i < j, such that

(S12S13 . . .S1n)(S23S24 . . .S2n) . . . S(n�1)n =SO(n; ):

(2.3)
Lemma 2.3 provides a surjective mapping�: [0; 2�)L ! SO(n;R)

as

�(t1;. . .; tL)=exp(s12t1);. . .; exp(s
1ntn);. . .; exp s(n�1)ntL :

(2.4)
Throughout the rest of this note, we will not distinguish	n with

	n= +, unless elsewhere stated.
Based on Lemmas 2.2 and 2.3 one sees that we can give the topolog-

ical structure of[0; 2�)L� n�1
+ to the set of positive definite matrices

(under equivalence). So, in the sequel, we will search the common QLF
over this set.

III. N ECESSARY ANDSUFFICIENT CONDITION

Definition 3.1: Let x = (x1; . . . ; xn) be a fixed coordinate frame
in n. A set of limits (L;U), with lower limits L and upper limits
U are described asL = fL1; L2(x1); . . . ; Ln(x1; . . . ; xn�1)g,
U = fU1; U2(x1); . . . ; Un(x1; . . . ; xn�1)g. From (L;U), a non-
negative set of limits(~L; ~U) is deduced as~Li = maxfLi; 0g,
~Ui = maxfUi; 0g, i = 1; . . . ; n.

For a given(L;U), the positive cubC(L;U) � n is defined as
x = (x1; . . . ; xn) 2 C(L;U), iff

~L1 < x1 < ~U1
~L2 < x2 < ~U2(x1); . . .

~Ln(x1; . . . ; xn�1) < xn < ~Un(x1; . . . ; xn�1): (3.1)

In fact,C(L;U) is a domain ofn-dimensional integration. It is the
intersection of the domain bounded by(Li,Ui); i = 1; . . . ; n with the
first quadrant.

We need the following lemma, which can be proved by a straight-
forward computation.

Lemma 3.2: Assume a matrix A has a diagonal QLF, then its diag-
onal elements are all negative, i.e.,aii < 0; i = 1; . . . ; n.

Now, we are ready to give a complete characterization of the set of
QLF for a given stable matrix. LetA be a givenn � n stable matrix.
According to Lemma 2.2,P is a QLF ofA, iff � is a diagonal QLF of
T TAT for someT = �(t). For a fixedt, we denote

A(t) := T (t)TAT (t) =

a11(t) a12(t) . . . a1n(t)

a21(t) a22(t) . . . a2n(t)

. . .

an1(t) an2(t) . . . ann(t)

and � = diag(1; x1; . . . ; xn�1) with xi > 0. Then, it is required
that (3.2), as shown at the bottom of the page, holds true. To make the
Q(t)negative–definite, it is enough to show that the determinants of the
principal minors of odd orders are negative and those of even orders are

Q(t) := �A(t) + AT (t)� =

2a11(t) a12(t) + a21(t)x1 . . . a1n(t) + an1(t)xn�1
a12(t) + a21(t)x1 2a22(t)x1 . . . a2n(t) + an2(t)xn�1

. . .

a1n(t) + an1(t)xn�1 a2n(t) + an2(t)xn�1 . . . 2ann(t)xn�1

< 0: (3.2)
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positive. We show that these requirements lead to the required boundary
functions.

According to Lemma 3.2,aii(t), i = 1; . . . ; n should be negative.
Denote thekth principal minor byDk. Whenk = 2, we have

D2(t; x1) =
2a11(t) a12(t) + a21(t)x1

a12(t) + a21(t)x1 2a22(t)x1
:

Let det(D2) > 0, we get a quadratic inequality aboutx1. It is easy to
see that the solution of the inequality can be expressed as

L1(t) < x1 < U1(t):

Denote� = (2a11(t)a22(t)� a12(t)a21(t))
2
� (a12(t)a21(t))

2, the
boundary can be calculated as

U1(t)=+1
L1(t)=

a (t)

4a (t)a (t)
; a21(t)=0

U1(t)=0

L1(t)=0 a21(t) 6=0; ��0

U1(t)=
(2a (t)a (t)�a (t)a (t))+

p
�

(a (t))

L1(t)=
(2a (t)a (t)�a (t)a (t))�

p
�

(a (t))
; a21(t)6=0; �>0.

(3.3)
Using mathematical induction, we assume there exists, for
s � k � 1; Us(t; x1; . . . ; xs�1) and Ls(t; x1; . . . ; xs�1), such
thatdet(Ds+1) > 0 for odds or det(Ds+1) < 0 for eves, iff

Ls(t; x1; . . . ; xs�1) < xs < Us(t; x1; . . . ; xs�1):

If there is some� � k � 1, such that

fxaj La(t; x1; . . . ; xa�1) < xa < Ua(t; x1; . . . ; xa�1)g

is an empty set, then we setUs = 0 andVs = 0,s � �. Otherwise, we
considerdet(Dk+1) and denote

Ek = (a1;k+1(t); a2;k+1(t); . . . ; ak;k+1(t))
T

Fk = (ak+1;1(t); ak+1;2(t); . . . ; ak+1;k(t))
T
:

Then

Dk+1(t;x1;. . .;xk)=
Dk(t;x1;. . .;xk�1) Ek+Fkxk

ET
k +F

T
k xk 2ak+1;k+1(t)xk

:

A computation with some skill shows that

det (Dk+1(t; x1; . . . ; xk))=det
Dk Ek

ET
k 0

+2det
Dk Fk

ET
k ak+1;k+1(t)

xk

+det
Dk Fk

F T
k 0

x
2
k: (3.4)

Denote (3.4) simply by

det(Dk+1)=ak(t; x1; . . . ; xk�1)x
2
k+2bk(t; x1; . . . ; xk�1)xk

+ck(t; x1; . . . ; xk�1): (3.5)

We also denote�k = b2k � akck. To get the coefficients of (3.4) we
use the following simple fact. LetA be ann � n nonsingular matrix
andb,c 2 Rn. Then

det
A b

cT e
= �det(A)(cTA�1b) + edet(A):

Applying it to (3.4), a straightforward computation shows that

ak(t; x1; . . . ; xk�1) = �det(Dk) F T
k D

�1
k Fk

bk(t; x1; . . . ; xk�1) = �det(Dk)E
T
k D

�1
k Fk

+det(Dk)ak+1;k+1(t)

ck(t; x1; . . . ; xk�1) = �det(Dk)E
T
k D

�1
k Ek:

(3.6)

Assumek is odd. Thendet(Dk) < 0 and sinceDk is neg-
ative definite, thenak � 0 and ak = 0 iff Fk = 0. Note
that ck = �det(Dk)E

T
k D

�1
k Ek � 0, and whenFk = 0,

bk = det(Dk)ak+1;k+1(t) > 0. Since we requiredet(Dk+1) > 0,
then the boundary functions can be expressed as

Uk(t; x1; . . . ; xk�1) = +1
Lk(t; x1; . . . ; xk�1) =

�c
2b

; Fk = 0

Uk(t; x1; . . . ; xk�1) = 0

Lk(t; x1; . . . ; xk�1) = 0; Fk 6= 0; �k � 0

Uk(t; x1; . . . ; xk�1) =
�b �

p
�

a

Lk(t; x1; . . . ; xk�1) =
�b +

p
�

a
; Fk 6= 0; �k > 0:

(3.7)
Assumek is even. Thendet(Dk) > 0 and sinceDk is negative

definite, thenak � 0 andak = 0 iff Fk = 0. Note that nowck �
0, and whenFk = 0, bk < 0. Now, we requiredet(Dk+1) < 0.
Taking this into consideration, a formula can be obtained, which is very
similar to (3.7), but with an opposite sign before the square roots. Then
a general formula, which covers (3.3), (3.7), and the case of evenk,
can be expressed in a unified form as

Uk(t; x1; . . . ; xk�1)=+1
Lk(t; x1; . . . ; xk�1)=

�c
2b

; Fk=0

Uk(t; x1; . . . ; xk�1)=0

Lk(t; x1; . . . ; xk�1)=0; Fk 6=0; �k�0

Uk(t; x1; . . . ; xk�1)=
�b +(�1)

p
�

a

Lk(t; x1; . . . ; xk�1)=
�b �(�1)

p
�

a
; Fk 6=0; �k>0;

k=1; 2; . . . ; n�1:
(3.8)

To assurexi > 0 we need only to show that(Lk; Uk) is a positive
interval. We need only to prove it for the case�k > 0. Observe that
for either oddk or evenk we always have: 1).�bk = ak > 0 and 2).
akck � 0. It follows that(Lk; Uk) � +.

Summarizing the aforementioned argument, we have the following.
Theorem 3.3:Let A be a givenn � n stable matrix. Then,P is a

QLF ofA iff there exists a sett = (t1; . . . ; tL) 2 [0; 2�)L, a positive
cubeCt(L;U) � �n such that

P = T�T
T (3.9)

where � = diag(1; x1; . . . ; xn�1), with (x1; . . . ; xn�1) 2
Ct(L;U); T = �(t), which is defined by (2.4). The bounds (L(t; x),
U(t; x)) are determined by (3.8).



888 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 5, MAY 2003

Now, for a set of matricesfA1; . . . ; ANg, say the boundary func-
tions are obtained asU i

k(t; x1; . . . ; xk�1) andLik(t; x1; . . . ; xk�1),
for i = 1; . . . ; N , respectively, then we can define

Uk(t;x1;. . . ;xk�1)=min1�i�NU
i
k(t;xi;. . . ;xk�1)

Lk(t;x1;. . . ;xk�1)=max1�i�NL
i
k(t;xi;. . . ;xk�1): (3.10)

Summarizing the aforementioned argument, one sees easily that a
set of matricesfA1; . . . ; ANg have a common QLF, iff there exists a
t 2 [0; 2�)L such that

Uk(t;x1;. . . ;xk�1)>xk>Lk(t;x1;. . . ;xk�1); k=1;. . .;n�1
(3.11)

have a solutionx = (x1; . . . ; xn�1). As a consequence, we have the
following.

Theorem 3.4: A set of stable matricesfA1; . . . ; ANg have a
common QLF, iff

2�

0

dt1 . . .

2�

0

dtL

V (t)

L (t)

dx1

V (t;x )

L (t;x )

dx2 . . .

. . .

V (t;x ;...;x )

L (t;x ;...;x )

dxn�2

V (t;x ;...;x )

L (t;x ;...;x )

dxn�1 > 0 (3.12)

where

Vk(t; x1; . . . ; xk�1)=max fUk(t; x1; . . . ; xk�1);

Lk(t; x1; . . . ; xk�1)g ; k=1; . . . ; n� 1:

It is well known that [11], all the leading principal minors of a Her-
mitian matrix are real. A Hermitian matrixH is positive definite if and
only if all its leading principal minors are positive. Using this fact, we
can prove that Theorem 3.3 remains true for the set of complex ma-
trices. It will be used in Section V.

Corollary 3.5: Theorem 3.3 remains true when the set of matrices
are complex matrices.

IV. ON PLANAR SYSTEMS

For the planar case, the orthogonal transformationsT 2 SO(2; )
can be expressed as

Tt =
cos(t) � sin(t)

sin(t) cos(t)
; 0 � t < 2�: (4.1)

Consider a stable matrixA =
� �

 �
. According to Lemma 2.2,

we first consider when

A(t) = T
T
t ATt; 0 � t < �

has negative diagonal elements. Set

a=
�+ �

2
; b=

�� �

2
; c=

� + 

2
; d=

� � 

2
; r=

p
b2 + c2:

(4.2)
Whenr 6= 0, we define� 2 [0; 2�) by

cos(�) =
c

�
sin(�) =

b

�
; 0 � � < 2�:

Then, we have the following. (Since space is limited, we refer to [6]
for some missed less important proofs hereafter).

Proposition 4.1: Given a stable matrixA =
� �

 �
. Whenr �

�a, the diagonal elements of

A(t) = T
T
t ATt; 0 � t < �

are negative, ifft satisfies

r jsin(2t+ �)j < �a: (4.3)

Equivalently

k� � sin�1 jaj
r

� �

2
< t <

k� + sin�1 jaj
r

� �

2
; k 2 Z:

(4.4)
Whenr < �a, the diagonal elements are always negative.

Remark: From the structure ofA(t), one sees easily that we do not
need to consider whole0 � t < 2�. It is enough to consider the
problem only for0 � t < �.

Denote by

� = ftj0 � t < �; r jsin(2t+ �)j < �ag :

Note that Proposition 4.1 provides the set oft, which assures that the
rotated matrix,A(t), has negative diagonal elements. Later on, we will
prove that it is exactly the set for the corresponding rotated matrix to
have diagonal QLFs.

Now, we can start to search the diagonal QLFsP (x) = diag(1; x),
wherex > 0. For notational ease, letRS = r sin(2t+ �) andRC =
r cos(2t + �). Then

P (x)A(t)+AT (t)P (x)

=
2(a+RS) (�d+RC)x+(d+RC)

(�d+RC)x+(d+RC) 2(a�RS)x
: (4.5)

DefineD(t; x) = det[P (x)A(t) + AT (t)P (x)]. Now, finding a
QLFP is equivalent to findingt 2 � andx > 0 such thatD(t; x) > 0.
It is equivalent to

�D(t; x) = E(t)x2 + 2F (t)x+G(t) < 0 (4.6)

whereE(t) = (RC � d)2, F (t) = (RC)2 � d2 + 2(RS)2 � 2a2,
G(t) = (RC + d)2.

Sincet 2 �, (4.5) is negative definite, iff there existsx > 0 such
that (4.6) is satisfied.

Observing (4.6), it is obvious thatF (t) < 0 is a necessary condition
for the existence ofx > 0. Fortunately, fort 2 � this condition can
be satisfied automatically.

Lemma 4.2: Whent satisfies (4.3), thenF (t) = (RC)2 � d2 +
2(RS)2 � 2a2 < 0.

Then, we can prove the following.
Theorem 4.3: For eacht 2 �, there exists an open nonempty in-

terval It = (L(t);U(t)) � (0;+1) such thatP = diag(1; x) is a



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 5, MAY 2003 889

diagonal QLF ofAt, iff, x 2 It. Here,L(t) andU(t) are determined
by

L(t)=

1 + 2 a

d

2

� 2jaj
jdj

a

d

2

1 + 1; r = 0

(RC+d)
�2F

; r > 0; RC = d

�F� F ((RC) �d )
(RC�d)

; r > 0; RC 6= d

U(t)=

1 + 2 a

d

2
+ 2jaj

jdj
a

d

2
+ 1; r = 0

+1; r > 0; RC = d
�F+ F �((RC) �d )

(RC�d)
; r>0; RC 6=d t2�:

(4.7)
We can also prove the following.
Proposition 4.4: If (t; x) is a feasible QLF witht < �=2, then

(t+�=2, 1=x) is also a feasible QLF. Conversely, if(t; x) is a feasible
QLF with t � �=2, then (t� �=2,1=x) is also a feasible QLF.

This proposition tells us that to search the common QLFs we have
only to search over[0; �=2). Usinga, b, c, d, andr as in above, the set
� can be precisely described as the follows.

Assumer < jaj, then� = [0; �=2). Otherwise, we first calculate
� as

� =

sin�1 jbj
r

; b � 0; c � 0

� � sin�1 jbj
r

; b � 0; c < 0

� + sin�1 jbj
r

; b < 0; c < 0

2� � sin�1 jbj
r

; b < 0; c � 0:

(4.8)

Then, we can get the feasible region of the rotations, which assure
that the rotatedA(t) has diagonal QLFs. Set

�1=sin�1
jaj

r
; �2=� � �1; �3=� + �1; �4=2� � �1:

Then

�=

0; � ��
2

[ � ��
2

; �
2

; � < �1
� ��
2

; � ��
2

; �1 � � < �2
0; � ��

2
[ � ��

2
; �
2

; �2� < �3
� ��
2

; 2�+� ��
2

; �3 � � < �4
0; 2�+� ��

2
[ 2�+� ��

2
; �
2

; �4��<2�:

(4.9)

Using (4.9), we can construct the feasible set oft for each matrix, as
�k. Moreover, over each�k the boundary functionsLk(t) andUk(t)
as in (4.7) are defined. Then, we construct the common feasible set as

� = \Nk=1�k � 0;
�

2
:

We know that it consists of only finite intervals. Then, define

L(t) = max
1�k�N

Lk(t) U(t) = min
1�k�N

Uk(t)

V (t) = max fU(t); L(t)g ; t 2 �:

Summarizing the previous argument, we have the following.
Theorem 4.5:The set of stable 2� 2 matricesfA1; A2; . . . ; ANg

share a common QLF, iff

t2�

(V (t)� L(t))dt > 0: (4.10)

Fig. 1. Set of common QLF forA, B, andC.

Example 4.6: Consider three matrices

A=
�4 �1

2 0:1
B=

�2 3

1 �2
C=

�5 2

3 �2
:

(4.11)
We skip the tedious elementary computation and give the domains

of A(t), B(t), andC(t), respectively, as

�A =(0:0764; 1:2552) �B = [0; �=2) �C = [0; �=2):

So

� =�A \�B \�C = (0:0764;1:2552):

It is easy to calculate the integration as

t2�

(V (t)� L(t))dt = 0:2524 > 0:

SoA,B, andC share a common QLF. Fig. 1 showsV (t) (above curve),
L(t) (below curve), and the set of common QLFs.

From Fig. 1, it is easy to find out a common QLF. Say,(t; x) =
(0:3�;0:5) is obviously in the feasible region. Hence, we can choose

P =
cos(0:3�) � sin(0:3�)

sin(0:3� cos(0:3�)

1 0

0 0:5

�
cos(0:3�) sin(0:3�)

� sin(0:3� cos(0:3�)

=
0:6727 0:2378

0:2378 0:8273
:

V. SYSTEMS OFSAME BLOCK UPPERTRIANGULAR FORM

In this section, we show that when a set of matrices have the same
block upper-triangular form, the complexity of the searching common
QLF will be reduced tremendously. The main result is the following.

Theorem 5.1: Assume a finite set of block triangular (complex) ma-
trices with same diagonal block structure as

Ai =

Ai
11 Ai

12 . . . Ai
1n

0 Ai
22 . . . Ai

2n

. . .

0 0 . . . Ann

; i = 1; . . . ; N (5.1)
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where the samekth diagonal blocksAi
kk have same dimensions for all

i. Then,Ai share a common QLF, iff for everyk the diagonal blocks
fAi

kk j i = 1; . . . ; N) share a common QLF.
Proof: Without loss of generality, we have only to prove it for

n = 2. Then, by mathematical induction we can prove it for anyn for
both necessity and sufficiency.

(Sufficiency) Denote by

Ai =
Xi Yi

0 Zi
; i = 1; . . . ; N: (5.2)

Assumedim(Xi) = p anddim(Zi) = q. LetP andQ be the common
QLF offXig andfZig, respectively. SinceUi := �(PXi+X

T
i P ) >

0, i = 1; . . . ; N . There exists a positive real number� > 0, such
that all the eigenvalues ofUi are greater then�. Similarly, letVi :=
�(QXi+XT

i Q) > 0, i = 1; . . . ; N , and all the eigenvalues ofVi are
greater then some positive� > 0.

We claim that for large enough� > 0, W = diag(P; �Q) is a
common QLF ofAi. Calculate

Hi := WAi + A
T
i W =

�Ui PYi

Y �

i P ��Vi
:

To showHi < 0, choose� 2 p and� 2 q. Then

(��; ��)Hi

�

�
=� �

�

Ui� + �
�

PYi� + �
�

Y
�

i P� � ��
�

Vi�

�� �
�

Ui� + �k�k2 +
1

�
�
�

Y
�

i P
2
Yi �

� ��
�

Vi�

= �
�(�Ui + �Ip)� + �

�

� ��Vi +
1

�
Y
�

i P
2
Yi �: (5.3)

Choosing

� >
1

��
max
1�i�N

Y
�
i P

2
Yi

then it is obvious that (5.3) is less than or equal to zero, and it equals
zero, iff, � = 0 and� = 0.

(Necessity) AssumeAi, i = 1; . . . ; t share a common QLF,P . Ac-

cording to the structure ofAi, we splitP as
P11 P12

P21 P22
. Then

PAi +A
�
iP =

P11Xi +X�
i P11 �

� �
< 0

where X stands for some uncertain elements. Then,P11Xi +
XT
i P11 < 0, which meansP11 is the common QLF ofXi.

LetH =
H11 H12

H21 H22

= P�1 > 0. Then

H(PAi + A
�
iP )H < 0

which leads to

AiH +HA
�
i =

� �

� H22Z
�
i + ZiH22

< 0:

It is easy to see than

H
�1
22 Zi + Z

�
i H

�1
22 < 0:

That is,H�1
22 is a common QLF ofZi.

So, ifAi, i = 1; . . . ; N can be converted into a same block upper tri-
angular form, verifying the existence of common QLF becomes much
easier.

VI. CONCLUSION

In this note, we considered the common QLF of a set of matrices.
[0; 2�)L � n�1

+ , was proposed as the topological space of the set of
QLFs for a set of stable matrices. Based on this structure, a necessary
and sufficient condition for the existence of a common QLF was pre-
sented. The condition is described by the positivity of an integral. In
fact, it provides a region because the integrand is 1. Comparing with
other numerical methods, this condition provides a precise description
for the set of all QLF.

As for planar systems the structure of the set of common QLFs and
the necessary and sufficient conditions become very simple. We may
compare it with [16]. The result in [16] says that the existence of a
common QLF iff every three-tuple of systems have a common QLF.
So if the number of matrices is 100, by [16] about 160 700 three-tuples
have to be verified. But according to ours, only two curves need to be
considered.

For a set of same structure of block upper triangular matrices, it was
proved that they share a common QLF iff each set of same position
diagonal blocks share a common QLF.
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