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Abstract

In this note we show that for a given controllable pair (A,B) and any λ > 0, a gain matrix K can be chosen so that the

transition matrix e(A+BK)t of the system ẋ = (A + BK)x decays at the exponential rate e−λt and the overshoot of the
transition matrix can be bounded by MλL for some constants M and L that are independent of λ. As a consequence, for any
h > 0, a gain matrix K can be chosen so that the magnitude of the transition matrix e(A+BK)t can be reduced by 1

2
(or by

any given portion) over [0, h]. An interesting application of the result is in the stabilization of switched linear systems with
any given switching rate (see [1]).
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1 Introduction

Consider a linear system

ẋ = Ax+Bu, (1)

where x(·) takes values in R
n, u(·) takes values in R

m,
and where A and B are matrices of appropriate dimen-
sions. Suppose (A,B) is a controllable pair. It is a well
known fact that for any λ > 0, a gain matrix K can
be chosen so that the transition matrix of the system
ẋ = (A+BK)x decays exponentially at the rate of e−λt,
that is, for some R > 0,

∥

∥

∥e(A+BK)t
∥

∥

∥ ≤ Re−λt,

where and hereafter ‖ · ‖ denotes the operator norm in-
duced by the Euclidean norm on R

n. To get a faster de-
cay rate, it is natural to consider a “higher gain” matrix
K1. However, such a gain matrix in general results in a
bigger overshoot for the transition matrix e(A+BK1)t. In
this note, we show that in the pole placement practice,
a gain matrix K can be chosen so that the overshoot of
the transition matrix e(A+BK)t can be bounded byMλL
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for some constantsM and L independent of λ. As a con-
sequence, one sees that for any h > 0, a gain matrix K
can be chosen so that the magnitude of the transition
matrix e(A+BK)t can be reduced by 1

2 (or by any given
portion) over [0, h]. Note that this is a stronger require-
ment than merely requiring e(A+BK)t to decay at an ex-
ponential rate. An interesting application of the result
is in the stabilization of switched linear systems with a
given switching rate (see [1]).

The estimate of the overshoots of transition matri-
ces in the practice of pole assignments has been studied
widely (see e.g. [5], [9] and [7]). Our main result in this
note can be considered an enhancement of the Squash-
ing Lemma (see [7], [6] and [4]) which says the following:
for any τ0 > 0, δ > 0, any λ > 0, it is possible to find K
such that

∥

∥

∥e(A+BK)t
∥

∥

∥ ≤ δe−λ(t−τ0). (2)

In the current note, we show that K can be chosen so
that the estimate in (2) can be strengthened to

∥

∥

∥e(A+BK)t
∥

∥

∥ ≤ MλLe−λt

for some constants M and L which are independent of
λ. Our proof is constructive that shows explicitly how
M and L are chosen.
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2 Main Result

In this section we present our main result.

Proposition 2.1 Let A ∈ R
n×n and B ∈ R

n×m be two
matrices such that the pair (A,B) is controllable. Then
for any λ > 0, there exists a matrixK ∈ R

m×n such that

∥

∥

∥e(A+BK)t
∥

∥

∥ ≤ MλLe−λt, ∀ t ≥ 0, (3)

where L = (n − 1)(n + 2)/2 and M > 0 is a constant,
which is independent of λ and can be estimated precisely
in terms of A,B and n.

Comparing with the Squashing Lemma obtained in
[7], Proposition 2.1 has two improvements: (i). In (2),
the estimate on the transient overshoot is exponentially
proportional to the decay rate λ, which resulted in an
estimation of the transition matrix in terms of e−λ(t−τ0)

instead of e−λt. In (3), the estimate on the transient over-
shoot is proportional to λL instead of eλτ0 as in (2). This
distinction between the two types of estimations may be
significant for some possible extensions of our results to
systems with external inputs. (ii). The value of the con-
stant M in estimate (3) can be precisely calculated by
using our constructive proof (see equation (10) in the se-
quel). This is certainly a very desirable feature for prac-
tical purposes. See Example 3.1 for some illustrations.

Proposition 2.1 was primarily presented and applied
to a stabilization problem of switched linear systems in
[2]. It was found later that a recent paper [3] also provides
a similar result with similar proofs. The difference is that
[3] only considered the single input case and the upper
bound MλL in (3) was found to be a polynomial p(λ) in
[3] without an explicit expression. Hence, our result has
obvious merits in control design.

Proof of Proposition 2.1. First we consider a linear
system (A, b) of a single input. Without loss of general-
ity, we assume that (A, b) is in the Brunovsky canonical
form:

A =















0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

a1 a2 a3 · · · an















, b =















0

0
...

1















.

Let λ1, . . . , λn be n distinct, negative real numbers.
There exists some k ∈ R

1×n such that the charac-
teristic equation of the closed-loop system A + bk is
p(λ) = (λ − λ1)(λ − λ2) · · · (λ − λn). Note that the
closed-loop system is given by

ẋ1 = x2, ẋ2 = x3, . . . , ẋn−1 = xn,

ẋn = β1x1 + β2x2 + · · ·βnxn

for some β1, β2, . . . , βn ∈ R. Hence, x1 satisfies the equa-

tion

x
(n)
1 = β1x1 + β2ẋ1 + · · ·+ βnx

(n−1)
1 , (4)

whose characteristic equation is the same as p(λ). Hence,
the general solution of (4) is

x1(t) = c1e
λ1t + c2e

λ2t + · · ·+ cne
λnt,

where c1, c2, . . . , cn are constants. From the equations
x2 = ẋ1, x3 = ẋ2, . . . , xn = ẋn−1, we have x(t) =
Λ0e

Dtc, where

Λ0 =















1 1 · · · 1

λ1 λ2 · · · λn

...
...

. . .

λn−1
1 λn−1

2 · · · λn−1
n















,

D=















λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn















,

and where c =
(

c1 c2 · · · cn

)T

. Now, observe that

x(0) = Λ0c, that is, c = Λ−1
0 x(0) (note that Λ0 is an

invertible Vandermonde matrix). Comparing this with
the transition matrix of the system, one sees that

e(A+bk)t = Λ0 e
Dt Λ−1

0 . (5)

Let λmax = max{|λ1| , . . . , |λn|}. Without loss of gen-
erality, assume that λmax ≥ 1. To get an estimate on
‖Λ0‖ and

∥

∥Λ−1
0

∥

∥, we need the following simple fact: for
an n× n matrix C, let cmax = max1≤i,j≤n |cij |. It is not
hard to see that

‖C‖ ≤ ncmax.

Hence, we have

‖Λ0‖ ≤ nλn−1
max . (6)

To get an estimate on Λ−1
0 , first note that

Λ−1
0 =

1

detΛ0
adjΛ0, (7)

where adjΛ0 denotes the adjoint matrix of Λ0, and that

detΛ0 =
∏

j>i

(λj − λi).

Hence, if we choose λ1, . . . λn in such a way that λi+1 ≤
λi − 1 with λ1 < 0, we get |detΛ0| ≥ 1.
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Taking the structure of adjΛ0 into account, it is easy
to see that for C = adjΛ0,

cmax ≤ (n− 1)!λmax
1+2+···+(n−1)

= (n− 1)!λmax

n(n−1)
2 .

Hence, by (7), we have

∥

∥Λ−1
0

∥

∥ ≤ ‖adjΛ0‖ ≤ n(n− 1)!λmax

n(n−1)
2 . (8)

Consequently, (6) and (8) yield that

∥

∥Λ0 e
DtΛ−1

0

∥

∥≤ nλn−1
max

∥

∥eDt
∥

∥ n(n− 1)!λn(n−1)/2
max

≤ nn!λ(n−1)(n+2)/2
max e−λmint,

where λmin = min{|λ1| , . . . , |λn|}.

Suppose for some ρ > 1, λmax ≤ ρλmin. Then, it fol-
lows that

∥

∥Λ0e
DtΛ−1

0

∥

∥ ≤ Mλ
(n−1)(n+2)/2
min e−λmint, (9)

where
M = nn! ρ(n−1)(n+2)/2. (10)

In summary, we need the following conditions on the λi’s:

• λ1, λ2, · · · , λn are distinct, real, and negative;
• λi+1 ≤ λi−1 for 1 ≤ i ≤ n−1, and hence, λmax = |λn|,
λmin = |λ1|;

• |λn| ≤ ρ |λ1|, for some constant ρ > 1.

Obviously, for any given λ > 0, it is easy to choose
λ1, · · · , λn to satisfy all the above conditions together
with the condition that λ1 ≤ −λ. For example, one can
choose λ1 < min{−1,−λ}, and let λi+1 = λi − 1 for
1 ≤ i ≤ n − 1. Since |λn| = |λ1 − (n− 1)| ≤ n |λ1|, we
see that ρ can be set as ρ = n.

With such choices of λ1, λ2, . . . , λn, we see from (5)
and (9) that the desired result hold.

Now we consider the case when (A, b) is not in the
Brunovsky canonical form. In this case, find an invertible
T ∈ R

n×n such that (T−1AT, T−1b) is in the Brunovsky
canonical form.

For any given λ > 0, the above proof has shown that
for A1 = T−1AT , b1 = T−1b, one can find k0 ∈ R

1×n

such that
e(A1+b1k0)t ≤ MλLe−λt,

where M is given by (10) for some chosen ρ, and L =
(n− 1)(n+ 1)/2. Clearly, with k = k0T

−1, one has

e(A+bk)t = T (e(A1+b1k0)t)T−1 ≤ M1λ
Le−λt, (11)

where M1 = M ‖T ‖
∥

∥T−1
∥

∥.

Finally, we consider the multi-input system

ẋ = Ax+Bu, (12)

where A ∈ R
n×n, B ∈ R

n×m. Suppose that the system
is controllable. By Heymann’s Lemma (c.f., e.g., page
187 of [8]), one sees that for any v ∈ R

m such that
b := Bv 6= 0, there exists some K0 ∈ R

m×n such that
(A+BK0, b) is itself controllable. Hence, the conclusion
of single-input case that has just been proved above is
applicable to the controllable pair (A + BK0, b), and
one then sees that there exists some k ∈ R

1×n such that
∥

∥e(A+BK0+bk)t
∥

∥ ≤ MλLe−λt for all t ≥ 0. Hence, with
K = K0 + vk, it holds that

∥

∥

∥e(A+BK)t
∥

∥

∥ ≤ MλLe−λt ∀ t ≥ 0. (13)

This completes the proof. ✷

Remark 2.2 In the above proof, we have used the fact
that for a single input system (A, b) which is controllable,
when it is not in the Brunovsky canonical form, one can
find an invertible matrix T such that (T−1AT, T−1b) is
in the canonical form. To be more precise, the matrix T
can be chosen as (see e.g., [8]):

T =
(

b Ab · · · An−1b
)















an−1 · · · a1 1
...

... 1 0

a1 1 · · · 0

1 0 · · · 0















,

where a1, . . . , an−1 are as in the characteristic polyno-
mial of A given by

det(sI −A) = sn + a1s
n−1 + · · ·+ an−2s+ an−1.

From this one can find an estimate of ‖T ‖ and
∥

∥T−1
∥

∥,
which in turn will lead to an estimate of M1 in (11).

3 An Example

The design technique is demonstrated in the following
example.

Example 3.1 Consider the following controllable linear
system:

A1 =









1 0 1

0 1 −1

2 1 0









, B1 =









1

0

1









,

With the help of MATLAB, we first calculate the trans-
fer matrix

T1 =









0 0 1

−1 −1 0

−1 0 1









.
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With the transfer matrix T1, one has

T−1
1 A1T1 =









0 1 0

0 0 1

−1 0 2









, T−1
1 B1 =









0

0

1









Calculation shows that ‖T1‖ = 1.80193754431757 and
‖T−1

1 ‖ = 2.24697960199992. Taking ρ = n(= 3), we
have

L =
(n− 1)(n+ 2)

2
= 5, (14)

M = ‖T1‖‖T
−1
1 ‖nn!n(n−1)(n−2)/2 ≈ 218.642. (15)

Suppose for some design purpose, a decay constant
λ = 49.894 is given. Choosing λ1 = −λ, λ2 = λ1 − 1,
λ3 = λ2 − 1, the feedback K1 can be easily calculated
(under the normal form) as

K̃1 ≈
(

−151.681 −7769.474 −131773.562
)

.

Back to the original coordinate frame, we have

K1 = K̃1T
−1
1 ≈

(

−124155.769 7769.474 −7617.793
)

.

With such a choice of K1, we get the desired decay esti-
mate

∥

∥

∥e(A+BK)t
∥

∥

∥ ≤ MλLe−λt ∀ t ≥ 0,

for the given decay constant λ = 49.894 with L and M
given as in (14)–(15). ✷

4 Conclusion

In this note we show that if (A,B) is controllable,
then for any λ > 0, a gain matrix K can be chosen such
that the transition matrix e(A+BK)t decays at the ex-
ponential rate e−λt and the overshoot of e(A+BK)t can
be bounded by MλL for some constants M and L that
are independent of the decay constant λ. The result pro-
vides a convenient tool for control design, particularly
for switched systems, see [1].
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Erratum

There is a mild flaw in the statement of Proposition
2.1 in the above paper (cf. [1]). We restate it as follows.

Proposition Let A ∈ R
n×n and B ∈ R

n×m be two
matrices such that the pair (A,B) is controllable. Then
for any λ ≥ 1, there exists a matrixK ∈ R

m×n such that

∥

∥

∥e(A+BK)t
∥

∥

∥ ≤ MλLe−λt, ∀ t ≥ 0, (16)

where L = (n − 1)(n + 2)/2 and M > 0 is a constant,
which is independent of λ and can be estimated precisely
in terms of A,B and n.

The proof of Proposition 2.1 in [1] is only valid for
the case when λ ≥ 1 (instead of the original version of
λ > 0), because the eigenvalues λ1, . . . , λn were chosen
to satisfy λ1 ≤ −1, and λk ≤ λ1 for k ≥ 1. For more de-
tails, we refer the reader to the discussions that followed
formula (10) in [1].

A main motivation of the work in [1] was for us to
develop the results in [2]. As in most applications of
overshoot estimation for pole placements, the parameter
λ in [2] was chosen as a number of large value. Hence,
the correction does not affect our results in [2].
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