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Abstract Multi-agent systems arise from diverse fields in natural and artificial systems, and a basic

problem is to understand how locally interacting agents lead to collective behaviors (e.g., synchroniza-

tion) of the overall system. In this paper, we will consider a basic class of multi-agent systems that are

described by a simplification of the well-known Vicsek model. This model looks simple, but the rig-

orous theoretical analysis is quite complicated, because there are strong nonlinear interactions among

the agents in the model. In fact, most of the existing results on synchronization need to impose a

certain connectivity condition on the global behaviors of the agents’ trajectories (or on the closed-loop

dynamic neighborhood graphs), which are quite hard to verify in general. In this paper, by introducing

a probabilistic framework to this problem, we will provide a complete and rigorous proof for the fact

that the overall multi-agent system will synchronize with large probability as long as the number of

agents is large enough. The proof is based on a detailed analysis of both the dynamical properties of

the nonlinear system evolution and the asymptotic properties of the spectrum of random geometric

graphs.

Key words Connectivity, large deviation, local interaction rules, multi-agent systems, random geo-

metric graph, spectral graph theory, synchronization, Vicsek model.

1 Introduction

In recent years, the collective behaviors of multi-agent systems have drawn much attention
from researchers [1–11]. The most salient characteristic of these systems is that the interactions
among agents are based on local rules, that is, each agent interacts with those agents neighboring
to it in some sense. Amazingly, without central control and global information exchange, the
system as a whole can spontaneously generate various kinds of “macro” behaviors, such as
synchronization, whirlpool, etc., merely based on local interactions.

Typical examples of multi-agent systems include animal aggregations such as flocks, schools
and herds. Biologists have given detailed descriptions and discussions on the mechanisms of
flying, swimming, and migrating in these aggregations. In many cases, agents have the tendency
to move as other agents do in their neighborhood. Inspired more or less by this, Vicsek et al.
proposed a model to simulate and explain the clustering, transportation and phase transition
in nonequilibrium systems[5,6]. The model consists of finite agents (particles, animals, robots,
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etc.) on the plane, each of which moves with the same constant speed. At each time step, a
given agent assumes the average direction of agents’ motions in its neighborhood of radius r.
Through simulation, Vicsek et al. explained the kinetic phase transition exhibited in the model
by the spontaneous symmetry breaking of the rotational symmetry. The Vicsek model can also
be viewed as a special case of the well-known Boid model introduced by Reynolds in 1987[7],
where the purpose was to simulate the behaviors in flocks of flying birds and schools of fishes.
Agents in the Boid model obey three rules in their movement: Collision Avoidance, Velocity
Matching and Flock Centering. All of these three rules are local ones, which means that each
agent adjusts its behavior based on the behaviors of the agents in its neighborhood.

Inspired by both the nature phenomena and the computer simulations, scientists have kept
trying to give rigorous theoretical foundations and explanations. One of the most notable
attempts is made recently by Jadbabaie et al.[8]. In this paper, the motion direction iteration
rule in the Vicsek model is linearilized, and it was shown that the motion directions of all
agents will converge to a common one provided that the closed-loop neighborhood graphs
of the system are jointly connected with sufficient frequency. It was later found that some
related results have been given in an earlier paper[12] in a somewhat different context. These
results provide preliminary theoretical explanations of the phenomena observed in simulations.
However, from a rigorous theoretical perspective, the existing results are far from complete.
The main reason is that all the conditions in the existing theoretical analysis are imposed on
the “closed-loop” graphs, which are resulted from the iteration of the system dynamics, and
should be determined by both the initial states and model parameters. These results do not give
any clue to how the neighboring graphs evolve, and how to verify the connectivity conditions.
It is worth mentioning that if the local rules are modified to be weighted but global ones along
the way, for example, suggested in [11], a complete theoretical analysis can be given with the
convergence conditions imposed on system initial states and model parameters only[11]. The
first complete result which guarantees the synchronization of the Vicsek model by imposing
conditions only on the system initial states and model parameters seems to have been given in
[13], but these conditions are still not satisfactory in the sense that they may not be valid for
large population. Nevertheless, the results in [8,9,11,13] all suggest that the connectivity of the
closed-loop graphs resulted from the system iteration is crucial to synchronization.

In this paper, we will take a somewhat different perspective to introduce a probabilistic
framework for investigating the convergence of a class of multi-agent systems described by the
linearized Vicsek model. We will first give a detailed analysis of both the dynamical properties
of the nonlinear system evolution and the asymptotic properties of the spectrum of random
geometric graphs, and then demonstrate that the linearized Vicsek model will synchronize with
large probability for any given interaction radius r and motion speed v, whenever the population
size is large enough.

The paper is organized as follows: In the next section, we will describe the multi-agent
systems by a simplified Vicsek model and will present the main result (Theorem 1); The analysis
of the system dynamics and the estimation of the characteristics of random geometric graphs
will be given in Sections 3 and 4 respectively, and the proof of the main theorem will be given in
Section 5; Section 6 will give some concluding remarks. The paper also contains two appendices
giving the basic concepts and results in graph theory that are used in the paper.

2 The Main Results

We first introduce the model to be studied in the paper, with the related basic concepts in
Graph Theory given in Appendix A.
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The original Vicsek Model[5] consists of n agents on the plane, which are labelled by
1, 2, · · · , n. At any time t, each agent moves with a constant absolute velocity v, and as-
sumes the average direction of motion of agents in its neighborhood with radius r at time t−1.
Thus at time t, the neighborhood set of any agent k is defined as

Nk(t) = {j : ‖xj(t)− xk(t)‖ < r}, (1)

where xk(t) ∈ R2 denote the location of the kth agent at time t, and r is the interaction
radius. Obviously, if we denote x(t) = (x1(t), x2(t), · · · , xn(t))τ , then the graph induced by the
neighborhood relationship is a geometric graph G(x(t), r), which can be abbreviated as G(t).
Quantities related to G(t) may also be functions of time t.

As far as the original Vicsek Model is concerned, the moving direction of the kth agent
is represented by its angle θk ∈ (−π, π] with the moving direction iteration rule of any agent
k (1 ≤ k ≤ n) given by

θk(t) = arctan

∑
j∈Nk(t−1)

sin θj(t− 1)

∑
j∈Nk(t−1)

cos θj(t− 1)
. (2)

Suppose the moving speed of each agent is denoted by v,then the position iteration rule of any
agent k (1 ≤ k ≤ n) is

xk(t) = xk(t− 1) + vs̃(θk(t)), (3)

where s̃(θ) , (cos θ, sin θ)τ .
Vicsek et al.[5] attribute the kinetic phase transition exhibited in the model by the spon-

taneous symmetry breaking of the rotational symmetry. However, the intrinsic nonlinearity
in the moving direction iteration rule makes the theoretical analysis quite complicated. The
paper [8] proposed the following linearized Vicsek model through linearizing the equation (2)
(1 ≤ k ≤ n),

θk(t) =
1

nk(t− 1)

∑

j∈Nk(t−1)

θj(t− 1). (4)

Although obtained for the sake of mathematical analysis, the linearized Vicsek model has
its own interest because the moving direction iteration rule (4) can be viewed as the solution
to the following optimization problem

min
θ

∑

j∈Nk(t−1)

(
θ − θj(t− 1)

)2
. (5)

Now, let θ(t) = (θ1(t), θ2(t), · · · , θn(t))τ , s(θ(t)) = (s̃(θ1(t)), s̃(θ2(t)), · · · , s̃(θn(t)))τ , then the
iteration rules (3) and (4) of the linearized Vicsek model can be rewritten as

{
θ(t) = P (t− 1)θ(t− 1),
x(t) = x(t− 1) + vs(θ(t)),

(6)

where P (t− 1) is the average matrix of the graph G(t− 1).
It is easy to see that for any fixed model parameters v and r, the graph sequence {G(t), t ≥

0} is totally determined by the initial states θ(0) and x(0). Our main question is: Under
what conditions the angles {θk(t), 1 ≤ k ≤ n} will converge to a common one θ̄, i.e., θ(t) →
θ̄1n (t →∞) with 1n = (1, 1, · · · , 1)τ . When this happens, we call that system (6) converges, or
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synchronizes. However, the “entanglement” between the moving direction iteration and position
iteration makes the analysis of this nonlinear system quite difficult. Recently, Jadbabaie[8]

investigated the first equation of (6) only by viewing it as a switched system to explore what
conditions on the graph sequence {G(t), t ≥ 0} will guarantee {θk(t), 1 ≤ k ≤ n} converge to
a common value. It was shown that if the closed-loop graphs resulted from the iteration of
system (6) satisfy some connectivity property, then the system will converge.

In this paper, we will consider the above model in the following probabilistic framework: Let
(Ω ,F ,P) be the underlying probability space, and assume that in the system (6), the initial
positions {xj(0), 1 ≤ j ≤ n} are i.i.d. random vectors uniformly distributed on the unit square
S, that the initial angles {θj(0), 1 ≤ j ≤ n} are i.i.d. random variables uniformly distributed on
the interval (−π, π], and that the initial positions and initial angels are mutually independent.
Under these hypotheses, the initial graph G(x(0), r) is a random geometric graph. The main
result of this paper is as follows:

Theorem 1 Consider the above probabilistic framework for the multi-agent system described
by (6). Then for any given speed v > 0, any radius r > 0 and all large population size n, the
system will synchronize on a set with probability not less than 1−O( 1

ngn ), where gn = n
log6 n

.
The main task of the following three sections is to provide a complete proof of this theorem.

3 Analysis of System Dynamics

In order to prove the main result of this paper, the analysis of the dynamics of system (6)
is necessary. In this section, two lemmas concerning the estimation of convergence rate will be
provided, one applicable to the case with constant closed-loop graphs, and the other holding
true when the closed-loop graphs undergo small changes.

Denote
δ(θ) = max

16j6n
θj − min

16j6n
θj , (7)

then we have δ(θ) 6
√

2‖θ‖, and by (4), δ(θ(t)) is nonincreasing with t.
Lemma 1 For any θ0 ∈ Rn and for any undirected graph G, let P and T be its average

matrix and degree matrix respectively, and let {φ0, φ1, · · · , φn−1} be a system of orthogonal
basis in Rn composed of the unit eigenvectors of the normalized Laplacian of G with φ0 =

1√
Vol(G)

T
1
2 1n. Moreover, let T

1
2 θ0 be expanded as

∑n−1
j=0 ajφj, then

∥∥∥∥∥P tθ0 − a0√
Vol(G)

1n

∥∥∥∥∥ ≤ κλ̄t‖θ0‖, ∀ t ≥ 0, (8)

where λ̄ is the spectral gap of G, and κ denotes the square root of the ratio of the maximum
degree to the minimum degree of G, i.e.,

√
dmax
dmin

.
Proof First we note that by the definition of the Laplacian matrix L, it is known that

L1n = 0, and so

Lφ0 = T−
1
2 LT−

1
2

(
1√

Vol(G)
T

1
2 1n

)
= 0,

i.e., φ0 is indeed the unit eigenvector of the normalized Laplacian matrix L corresponding to
the eigenvalue λ0 = 0. By T

1
2 θ0 =

∑n−1
j=0 ajφj it follows that

θ0 =
n−1∑

j=0

ajT
− 1

2 φj =
n−1∑

j=1

ajT
− 1

2 φj +
a0√

Vol(G)
1n,
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and hence

P tθ0 = T−
1
2 (I − L)tT

1
2 θ0 = T−

1
2 (I − L)t

(
n−1∑

j=0

ajφj

)

=
n−1∑

j=1

(1− λj)tajT
− 1

2 φj +
a0√

Vol(G)
1n.

From this and the fact that {φ0, φ1, · · · , φn−1} is a unit orthogonal basis, we have
∥∥∥∥∥P tθ0 − a0√

Vol(G)
1n

∥∥∥∥∥ =

∥∥∥∥∥
n−1∑

j=1

(1− λj)tajT
− 1

2 φj

∥∥∥∥∥

≤ ‖T− 1
2 ‖

(
n−1∑

j=1

(1− λj)2ta2
j

) 1
2

≤ ‖T− 1
2 ‖λ̄t

(
n−1∑

j=1

a2
j

) 1
2

≤ λ̄t‖T− 1
2 ‖‖T 1

2 θ0‖ ≤ κλ̄t‖θ0‖.
The following lemma plays a key role in the paper whose proof is inspired by the stability

analysis of time-varying linear systems[14].
Lemma 2 Let {G(t), t > t0} be a sequence of time-varying undirected graphs, with the cor-

responding characteristic quantities {L(t), P (t), dmin(t), dmax(t), λ̄(t), t > t0}(see Appendix A),
and let {θ(t), t > t0} be recursively defined by

θ(t + 1) = P (t)θ(t).

If there exists an undirected graph G with the corresponding {L, P, dmin, dmax, λ̄}, such that
‖P (t)− P‖ ≤ ε, for some ε > 0, then

δ(θ(t)) ≤
√

2κ
(
λ̄ + κε

)t−t0‖θ(t0)‖ , t ≥ t0.

Proof Let us denote ∆P (t) = P (t)− P . Then

θ(t + 1) = P (t)θ(t) = Pθ(t) + ∆P (t)θ(t)

= P t+1−t0θ(t0) +
t∑

s=t0

P t−s∆P (s)θ(s).

Similar to Lemma 1, let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 be the eigenvalues of the normalized
Laplacian L of G, with the corresponding unit orthogonal eigenvectors {φj , 0 ≤ j ≤ n− 1}. If
we denote

T
1
2 θ(t0) =

n−1∑

j=0

ajφj , T
1
2 ∆P (s)θ(s) =

n−1∑

j=0

aj(s)φj , s > t0,

and

θ̄(t + 1) , a0√
Vol(G)

1n +
t∑

s=t0

a0(s)√
Vol(G)

1n,

we then have

θ(t + 1)− θ̄(t + 1)

=

(
P t+1−t0θ(t0)− a0√

Vol(G)
1n

)
+

t∑
s=t0

(
P t−s∆P (s)θ(s)− a0(s)√

Vol(G)
1n

)
.
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By Lemma 1 and the fact that ∆P (s)1n = 0, we have

‖θ(t + 1)− θ̄(t + 1)‖

≤ κλ̄t+1−t0‖θ(t0)‖+
t∑

s=t0

κλ̄t−s‖∆P (s)θ(s)‖

= κλ̄t+1−t0‖θ(t0)‖+ κ
t∑

s=t0

λ̄t−s
∥∥∆P (s)

(
θ(s)− θ̄(s)

)∥∥

≤ κλ̄t+1−t0‖θ(t0)‖+ κε
t∑

s=t0

λ̄t−s
∥∥θ(s)− θ̄(s)

∥∥.

Now, denote ξ(t) = ‖θ(t)− θ̄(t)‖, we have

ξ(t + 1) ≤ κλ̄t+1−t0‖θ(t0)‖+ κε
t∑

s=t0

λ̄t−sξ(s) , z(t + 1).

It is easy to see that

z(t + 1) ≤ (λ̄ + εκ)z(t), z(t0) = κ‖θ(t0)‖,

so
ξ(t + 1) ≤ z(t + 1) ≤ κ‖θ(t0)‖(λ̄ + κε)t+1−t0 .

Finally, we get the desired result

δ(θ(t)) = δ
(
θ(t)− θ̄(t)

) ≤
√

2‖ξ(t)‖ ≤
√

2κ
(
λ̄ + κε

)t−t0‖θ(t0)‖.

Lemma 3 Let L be the normalized Laplacian matrix of a geometric graph G(x, r)and Ĝ
be another graph formed by changing the neighborhood of G(x, r). If the number of points
changed in the neighborhood of the k-th (1 ≤ k ≤ n) node satisfies Rk ≤ Rmax < dmin, then the
corresponding normalized Laplacian matrix L̂ satisfies

‖L − L̂‖ ≤ 2
Rmax

dmin

(
1 +

dmin(dmax + Rmax)
(dmin −Rmax)2

)
. (9)

Similarly, for the average matrix P and P̂ , we have

‖P − P̂‖ ≤ Rmax

dmin

(
dmax + dmin

dmin −Rmax

)
. (10)

Proof 1) By the definition of the normalized Laplacian, we have

L − L̂ = T−
1
2 LT−

1
2 − T̂−

1
2 L̂T̂−

1
2

= T−
1
2 (L− L̂)T−

1
2 + (T−

1
2 − T̂−

1
2 )L̂T−

1
2 + T̂−

1
2 L̂(T−

1
2 − T̂−

1
2 )

, I + II + III.

We first estimate the term I. Since the diagonal elements of the matrix L− L̂ are bounded
by Rmax, other elements belong to {−1, 1, 0}, and the nonzero elements of each row cannot
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exceeds Rmax, by the Disk Theorem[14,15] it is known that any eigenvalue of L− L̂ is bounded
by |λ(L − L̂)| ≤ 2Rmax. Furthermore, by the symmetry of L − L̂, we know that ‖L − L̂‖ =
max{|λ(L− L̂)|} ≤ 2Rmax. Hence

‖I‖ = ‖T− 1
2 (L− L̂)T−

1
2 ‖ ≤ 2Rmax

dmin
.

Next, we estimate the second term II. First note that d̂j ≥ dmin −Rmax, and so

‖T− 1
2 − T̂−

1
2 ‖ = max

j

∣∣∣∣∣
1√
dj

− 1√
d̂j

∣∣∣∣∣

= max
j

|dj − d̂j |√
dj d̂j

(√
dj +

√
d̂j

) ≤ Rmax

2
√

dmin(dmin −Rmax)
.

By using the Disk Theorem again,

‖L̂‖ = max{|λ(L̂)|} ≤ 2(dmax + Rmax).

Hence

‖II‖ ≤ ‖T− 1
2 − T̂−

1
2 ‖‖L̂‖‖T− 1

2 ‖
≤ Rmax

2(dmin −Rmax)
3
2
· 2(dmax + Rmax) · 1√

dmin

≤ Rmax(dmax + Rmax)
(dmin −Rmax)2

.

Finally, we estimate the last term III.

‖III‖ ≤ ‖T̂− 1
2 ‖‖L̂‖‖T− 1

2 − T̂−
1
2 ‖

≤ 1√
dmin −Rmax

· 2(Rmax + dmax) · Rmax

2(dmin −Rmax)
3
2

≤ Rmax(dmax + Rmax)
(dmin −Rmax)2

.

Therefore, combining all the above analysis, we get

‖L − L̂‖ ≤ 2
Rmax

dmin

(
1 +

dmin(dmax + Rmax)
(dmin −Rmax)2

)
.

2) To prove the second assertion, we first note that

P − P̂

= T−1A− T̂−1Â

= (T−1 − T̂−1)A + T̂−1(A− Â) (11)
, I + II. (12)

For the first term I, by the Disk Theorem[14,15] we have ‖A‖ ≤ |λmax(A)| ≤ dmax. Further-
more,

‖T−1 − T̂−1‖ ≤ max
j

∣∣∣∣
1
dj
− 1

d̂j

∣∣∣∣ = max
j

|dj − d̂j |
dj d̂j

≤ Rmax

dmin(dmin −Rmax)
.



180 GONGGUO TANG · LEI GUO

Hence, we get

‖I‖ ≤ ‖T−1 − T̂−1‖‖A‖ ≤ Rmaxdmax

dmin(dmin −Rmax)
.

Now, we estimate the second term II. By the Disk Theorem again, we have ‖A − Â‖ ≤
λmax(A− Â) ≤ Rmax and so

‖II‖ ≤ ‖T̂−1‖‖A− Â‖ ≤ Rmax

dmin −Rmax
.

Finally, combining the above estimations we obtain

‖P − P̂‖ ≤ Rmax

dmin

(
dmax + dmin

dmin −Rmax

)
.

In the following analysis, the number n which denotes the number of vertexes of a graph or
the number of agents in the model is taken as a variable, and we will analyze the asymptotic
properties of the Laplacian for large n .

Corollary 1 Assume that there exist two positive constants α ∈ (0, 1) and β ≥ 1 such that
for large n, Rmax ≤ αdmin(1 + o(1)) and dmax ≤ βdmin(1 + o(1)), then

‖L − L̂‖ ≤ 2
(

1 +
β + α

(1− α)2

)
Rmax

dmin
(1 + o(1)),

‖P − P̂‖ ≤ 1 + β

1− α
· Rmax

dmin
(1 + o(1)).

Combining the above lemmas we can obtain a sufficient condition guaranteeing the syn-
chronization of the system (6). For simplicity of notations, we will omit the subscript 0 in all
the variables corresponding to the initial graph G(x(0), r). For any node j, we introduce the
following ring,

Rj , {x : (1− η)r ≤ ‖x− xj(0)‖ ≤ (1 + η)r}, (13)

where 0 < η < 1 is any given positive number.
Proposition 1 For the linearized Vicsek model (6), if the number of agents is sufficiently

large and the following three conditions are satisfied, the the systems will synchronize:
i) For any node j, the number of nodes within the ring Rj has an upper bound Rmax, which

satisfies
Rmax ≤ αdmin(1 + o(1)), dmax ≤ βdmin(1 + o(1)), (14)

where 0 < α < 1 and β ≥ 1 are constants.
ii) The spectral gap λ̄ of the initial graph G(x(0), r) satisfies

λ̄ + ε < 1, (15)

where ε , 2(1 + β+α
(1−α)2 )

√
β Rmax

dmin
.

iii) The speed v of each agent satisfies the following inequality

vδ(θ(1))
1− (λ̄ + ε)

(
2 + log

2
√

β‖θ(1)‖
δ(θ(1))

)
≤ ηr, (16)

where δ(·) is defined by (7).
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Proof We only need to prove the following claim: at any time t, for any agent j in the graph
G(t), the number of neighbors of which are different from those in G(0) does not exceed Rmax.
Because if this is true, according to Corollary 1, we get for n large enough

λ1

(L(t)
) ≥ λ1

(L(0)
)− ∥∥L(t)− L(0)

∥∥

≥ λ1

(L(0)
)− 2

(
1 +

β + α

(1− α)2

)
Rmax

dmin
(1 + o(1)) > 0.

Therefore graph G(t) is connected, and Theorem 1 in [8] guarantees the convergence of the
linearized Vicsek’s Model (6).

Next we prove the above claim by induction. At t = 0, the claim is obviously true.
Suppose the claim is valid for s < t. As a result of Corollary 1, we get ‖P (s) − P (0)‖ ≤

ε√
β
, ∀ s < t. Hence, by Lemma 2, when n is large enough it is true that for arbitrary s ≤ t,

δ(θ(s)) ≤ 2
√

β(λ̄+ε)s−1‖θ(1)‖. By this and Condition ii), we can calculate the maximal distance
between any two agents in motion as follows.

First of all, for arbitrary 1 ≤ j 6= k ≤ n,

‖xj(t)− xk(t)‖

≤ ‖xj(t− 1)− xk(t− 1)‖+ v

∣∣∣∣ 2 sin
(

θj(t)− θk(t)
2

)∣∣∣∣
≤ ‖xj(t− 1)− xk(t− 1)‖+ vδ(θ(t))

≤ ‖xj(0)− xk(0)‖+ v
t∑

s=1

δ(θ(s)). (17)

Similarly, we can get

‖xj(0)− xk(0)‖ ≤ ‖xj(t)− xk(t)‖+ v
t∑

s=1

δ(θ(s)). (18)

Now, let us denote s0 = min{s : 2
√

β (λ̄ + ε)s−1‖θ(1)‖ ≤ δ(θ(1))}, then

s0 =

⌈
log δ(θ(1))

2
√

β‖θ(1)‖
log(λ̄ + ε)

+ 1

⌉
≤

log δ(θ(1))

2
√

β‖θ(1)‖
log(λ̄ + ε)

+ 2.

Hence, we have

v
t∑

s=1

δ(θ(s))

= v

(
s0−1∑
s=1

δ(θ(s)) +
t∑

s=s0

δ(θ(s))

)

< v(s0 − 1)δ(θ(1)) + 2v
√

β(λ̄ + ε)s0−1‖θ(1)‖
t∑

s=s0

(λ̄ + ε)s−s0

≤ vδ(θ(1))

(
log δ(θ(1))

2
√

β‖θ(1)‖
log(λ̄ + ε)

+ 1 +
1

1− (λ̄ + ε)

)

≤ vδ(θ(1))
1− (λ̄ + ε)

(
2 + log

2
√

β‖θ(1)‖
δ(θ(1))

)

≤ ηr,
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where for the last but one inequality we have used the following simple facts: log δ(θ(1))

2
√

β‖θ(1)‖ < 0
and log x ≤ x− 1, ∀ 0 < x < 1.

According to this and the inequality (17), we conclude that if ‖xj(0)−xk(0)‖ ≤ (1−η)r, then
‖xj(t)− xk(t)‖ < r; Otherwise if ‖xj(0)− xk(0)‖ ≥ (1 + η)r, then by (18), ‖xj(t)− xk(t)‖ ≥ r.
Hence at time t the variation of the neighbors for any agent j cannot exceed the number of
agents in the ring Rj = {x : (1− η)r ≤ ‖x− xj(0)‖ ≤ (1 + η)r} at time 0, hence cannot exceed
Rmax. This completes the induction arguments, and the proof of the proposition is complete.

It is worth noting that all the conditions in the above proposition are imposed on the
model parameters and the initial conditions. The task of the next section is to show how these
conditions can be satisfied by analyzing random geometric graphes.

4 Estimation for the Characteristics of Random Geometric Graph

Throughout the sequel, we denote {an, gn, n ∈ N} as positive sequences satisfying
√

log n

n
¿ an ¿ 1 ¿ gn ¿ nan

2

log n
,

where by definition an ¿ bn means that lim
n→∞

an

bn
= 0 for any positive sequences {an, bn, n ∈ N}.

Let us partition the unit square S into Mn = d 1
an
e2 equal size small squares with the

length of each sides equal to an(1 + o(1)), where dxe is the smallest integer not less than x.
Furthermore, we label these small squares as Sj , j = 1, 2, · · · ,Mn, from left to right, and from
top to bottom. This idea of tessellation and the following lemma is inspired by [16].

Now, we place n agents independently on S according to the uniform distribution with their
positions denoted by X = (X1, X2, · · · , Xn)τ . Denote by Nj the number of agents that fall into
the small square Sj . The following lemma gives a uniform estimation for Nj .

Lemma 4
Pr

{
Nj = na2

n(1 + o(1)), 1 ≤ j ≤ Mn

}
= 1−O

( 1
ngn

)
. (19)

Proof First consider the small square S1. Denote Xj as the indicator function of the event
where the jth agent falls into S1. Then {Xj , 1 ≤ j ≤ n} are i.i.d. Bernoulli random variables
with success probability p = a2

n(1+o(1)) and N1 =
∑n

j=1 Xj . According to Chernoff Bound[17],
for arbitrarily given ε ∈ (0, 1), it is true that

Pr{|N1 − np| > εnp} ≤ 2 exp
(
− ε2np

3

)
.

Obviously {Nj , 1 ≤ j ≤ Mn} are identically distributed (but not independent) random vari-
ables, hence

Pr
{

max
1≤j≤Mn

|Nj − np| ≤ εnp
}

≥ 1−
Mn∑

j=1

Pr{|Nj − np| > εnp}

≥ 1− 2
a2

n

(1 + o(1)) exp
(
− ε2np

3

)
.

Take

ε = εn =

√
3(gn log n− log a2

n)
na2

n

= o(1),
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then when n is sufficiently large

Pr
{

max
1≤j≤Mn

|Nj − np| ≤ εnnp
}

≥ 1− 2 exp

{
− 1

3

(√
3(gn log n− log a2

n)
na2

n

)2

na2
n(1 + o(1))− log a2

n

}
(1 + o(1))

= 1−O
( 1

ngn

)
.

Denote the set

B(an) =
{
ω ∈ Ω : Nj = na2

n(1 + o(1)), 1 ≤ j ≤ Mn

}
.

The following analysis is carried out on this set. By Lemma 4, it is easy to prove the following
lemma.

Lemma 5 For random geometric graph G(X, r) in R2, given ω ∈ B(an), suppose that one
of the following three figures intersects with the unit square S with an area A of the intersecting
part and a length L of the arc in S:

i) Rectangle {x = (x1, x2) ∈ R2 : |x1 − x1
0| < a, |x2 − x0| < b};

ii) Disk {x ∈ R2 : ‖ x−Xj‖ < r};
iii) Ring {x ∈ R2 : (1− η)r ≤ ‖ x−Xj‖ ≤ (1 + η)r},

where x0 = (x1
0, x

2
0) is a fixed point on the plane, and a, b and 0 < η < 1 are positive constants,

j is an arbitrary vertex in G(X, r) with Xj as its position (random vector), then the number of
vertexes in the intersection part is Md = nA(1 + o(1)).

Proof Given ω ∈ B(an), denote by N−
s and N+

s the number of small squares lying in the
interior of the intersection part and intersecting with the intersection part respectively, then

N−
s ≥ A−√2Lan(1 + o(1))

a2
n(1 + o(1))

=
A

a2
n

(1 + o(1))−
√

2L

an
(1 + o(1)).

On the other hand

N+
s ≤ A +

√
2Lan(1 + o(1))

a2
n(1 + o(1))

=
A

a2
n

(1 + o(1)) +
√

2L

an
(1 + o(1)).

Hence, by

na2
nN−

s (1 + o(1)) ≤ Md ≤ na2
nN+

s (1 + o(1)),

we get

|Md − nA(1 + o(1))| ≤
√

2Lnan(1 + o(1)).

Notice that Lan

A = o(1), therefore

Md = nA(1 + o(1)).

Theorem 2 For random geometric graph G(X, r), on the set B(an), we have for n suffi-
ciently large,

i) for 0 < r < 1
2

dmin =
nπr2

4
(1 + o(1)), dmax = nπr2(1 + o(1)); (20)
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ii) for r ≥ 1
2

π

64
n(1 + o(1)) ≤ dmin ≤ dmax ≤ n; (21)

iii) denote by Rj the number of vertexes in the intersection part of the ring Rj = {x :
(1− η)r ≤ ‖x−Xj‖ ≤ (1 + η)r} with the unit square S, where Rmax = max

j
Rj, then

Rmax ≤ 4nπηr2(1 + o(1)). (22)

Proof i) Given ω ∈ B(an), when n is sufficiently large, it is always possible to find a vertex
j in the small square nearest to the center of S, whose neighborhood disk is entirely contained
in the interior of S, making the area A = πr2 in Lemma 5. Hence

dj = nπr2(1 + o(1)),

which in conjunction with the obvious fact that dmax ≤ nπr2(1 + o(1)) gives

dmax = nπr2(1 + o(1)).

As far as vertexes in the margin of S are concerned, their neighborhood disks intersect with S
with a minimal area πr2

4 (that of vertexes in the four corners is most close to this value). When
n is sufficiently large, it is always possible to find vertexes in the corners, thus

dmin =
nπr2

4
(1 + o(1)), dmax = nπr2(1 + o(1)) .

ii) When r ≥ 1
2 , the area of the intersection part between the neighborhood disk and S

satisfies A ≥ 1
4π( 1

4 )2, hence

dmin ≥ π

64
n(1 + o(1)) .

iii) Given ω ∈ B(an), since the maximal area of the intersection part between Rj and S is
not greater than 4πηr2(1 + o(1)), hence

Rmax ≤ 4nπηr2(1 + o(1)).

Remark 1 i) In Proposition 1, when 0 < r < 1
2 , β can take the value 4, and when r > 1

2 ,
β can take the value 64

π .
ii) When 0 < r < 1

2 , Rmax
dmin

= 16η(1 + o(1)); when r ≥ 1
2 , Rmax

dmin
≤ 256r2η(1 + o(1)). No

matter in which case, we can always pick η so small that α = 3
4 in Proposition 1, hence

ε =





308
Rmax

dmin
, 0 < r < 1

2 ;
(

208√
π

+
214

π
3
2

)
Rmax

dmin
, r ≥ 1

2
.

≤





308× 16η(1 + o(1)), 0 < r <
1
2
,(

208√
π

+
214

π
3
2

)
× 256r2η(1 + o(1)), r ≥ 1

2
.

Due to the importance of λ̄ in Proposition 1, we will give an estimation for it, part of which
is to calculate λn−1 which in turn depends on the following lemma whose proof is given by Prof.
Feng TIAN and Dr. Mei LU, see Appendix B.
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Lemma 6 Let triangles be extracted from a complete graph Kn in such a way that every
time one triangle is extracted with its three edges deleted while the three vertexes remain. Then
there exists an algorithm such that the number of residual edges at each vertex is no more than
three.

Proposition 2 For random geometric graph G(X, r), on the set B(an), we have for n
sufficiently large

λn−1 ≤ 2
(

1− 1
4(1 + 2

√
3)2

(1 + o(1))
)

. (23)

Proof Given ω ∈ B(an), firstly we split S equally into M( r√
3
) = d

√
3

r e2 small squares
labelled by Sk(1 ≤ k ≤ M( r√

3
)) with side length b satisfying

r

r +
√

3
≤ b =

√
1

M( r√
3
)
≤
√

3
3

r <

√
2

2
r

(when n is sufficiently large), thus any two vertexes in each small square have a distance
less than r, making them linked by an edge, which implies that all the vertexes in the small
square and edges among them form a clique. Since the area of each small square satisfies

r2

(
√

3+r)2
≤ A = b2 ≤ r2

3 , according to Lemma 5 we know the number of vertexes Md in the
small square satisfying

nr2

(
√

3 + r)2
(1 + o(1)) ≤ Md = nb2(1 + o(1)) ≤ nr2

3
(1 + o(1)).

Suppose the triangles extracted from the clique in Sk according to the algorithm in Lemma
6 form a set ∆k, the elements of which take the form G∆k

= {(x, y), (y, z), (z, x)}, where x, y, z
lie in Sj . Let

∆ =

M( r√
3
)⋃

k=1

∆k, ∆e = {(x, y) ∈ G∆ : G∆ ∈ ∆}, and ∆c
e = E{G(X, r)} −∆e.

For each vertex j which lies in Sk and thus the neighborhood disk entirely contains Sk, there
are dj − 1 edges linking to it except the self-loop one, hence at least Md edges among them
belong to ∆e. Therefore for vertex j, the ratio of the number of edges in ∆e to the total number
of edges linking to j except the self-loop one satisfies

Md

dj − 1
≥ nb2

dmax
(1 + o(1))

≥





1
π(r +

√
3)2

(1 + o(1)), 0 < r <
1
2

r2

(r +
√

3)2
(1 + o(1)), r ≥ 1

2

≥





1
π( 1

2 +
√

3)2
(1 + o(1)), 0 < r <

1
2

1
(1 + 2

√
3)2

(1 + o(1)), r ≥ 1
2
.
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Hence for any vector z ∈ Rn, when n is sufficiently large, we have
∑

j∼k

(zj − zk)2

=
∑

{(j, k), (k, l), (l, j)}∈∆

[(zj − zk)2 + (zk − zl)2 + (zl − zj)2] +
∑

(j, k)∈∆c
e

(zj − zk)2

≤
∑

{(j, k), (k, l), (l, j)}∈∆

3(z2
j + z2

k + z2
l ) +

∑

(j, k)∈∆c
e

2(z2
j + z2

k)

=
∑

j

( ∑

k: (j, k)∈∆e

3
2
z2
j

)
+

∑

j

( ∑

k: (j, k)∈∆c
e

2z2
j

)

=
∑

j

(
Md

3
2
z2
j

)
+

∑

j

((dj − 1−Md)2z2
j )

=
∑

j

(dj − 1)
(

Md

dj − 1
3
2
z2
j

)
+

∑

j

(dj − 1)
((

1− Md

dj − 1

)
2z2

j

)

≤
∑

j

dj

((
1− Md

4(dj − 1)

)
2z2

j

)

≤ 2
(

1− nb2

4dmax
(1 + o(1))

) ∑

j

djz
2
j ,

where we have employed the elementary inequality:

(a− b)2 + (b− c)2 + (c− a)2 6 3(a2 + b2 + c2).

Therefore, according to equation (31), we get

λn−1 = sup
z

∑
j∼k (zj − zk)2∑

j z2
j dj

≤ 2
(

1− nb2

4dmax
(1 + o(1))

)

≤





2
(

1− 1
π(1 + 2

√
3)2

(1 + o(1))
)

, 0 < r <
1
2

2
(

1− 1
4(1 + 2

√
3)2

(1 + o(1))
)

, r ≥ 1
2

≤ 2
(

1− 1
4(1 + 2

√
3)2

(1 + o(1))
)

.

In the following, we will estimate λ1. First of all, we need the following lemma which is a
slight improvement of a Lemma in [18].

Lemma 7[18] Let G = (V, E) be an undirected graph with n vertexes and suppose that
there exists a set P of

(
n
2

)
pathes joining all pairs of vertexes such that each path in P has a

length at most l and each edge of G is contained in at most m paths in P. Then the eigenvalue
λ1 satisfies

λ1 ≥ ndmin

d2
maxml

.
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Proposition 3 For random geometric graph G(X, r), on the set B(an), we have for n
sufficiently large

λ1 ≥ πr2

512(r +
√

6)4
(1 + o(1)). (24)

Figure 1 Virtual graph G′

k

j

j

I

II

III

IV

V

VI

k

Figure 2 Construction of PS Figure 3 Path usage frequency

Proof Given ω ∈ B(an), we first split S equally into M( r√
6
) = d

√
6

r e2 small squares

labelled by Sj(1 ≤ j ≤ M( r√
6
)) with side length b satisfying r

r+
√

6
≤ b ≤

√
6

6 r <
√

5
5 r (when

n is sufficiently large), thus for any small square, any vertex in it has a distance less than r
with any vertex in those small squares vertically or horizontally adjacent to it, making the two
vertices linked by an edge. Similar to Proposition 2, we could calculate the number of vertices
in each small square to be Md = nb2(1 + o(1)).

As illustrated in Figure 1, suppose that there is a virtual vertex in the center of each small
square and every virtual vertex is jointed by virtual edges with at most 4 other virtual vertices
surrounding it. These virtual vertices together with virtual edges form a grid graph G′ with
M( r√

6
) vertices.

We will construct a set PS of
(M( r√

6
)

2

)
virtual pathes joining all pairs of virtual vertices in

G′ as follows: for any two virtual vertices j and k as illustrated in Figure 2, without lose of
generality, we assume that j lies on the left of k. First we begin from j and select virtual edges
on the straight line from left to right until we arrive the right above or below the virtual vertex
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k, then we select virtual edges on the straight line from top to bottom or bottom to top. With
such a method we have constructed a virtual path from j to k, the length of which is not larger
than lv = 2

b .
We can now compute how many times at most a virtual edge is used in pathes of PS .

Without lose of generality we pick a virtual edge, for example edge (j, k) from left to right.
Divide S into six parts as illustrated in Figure 3, then one virtual path in PS uses edge (j, k)
if and only if the starting virtual vertex lies in II and the ending virtual vertex lies in IV, V,
or VI. According to this, we can compute that each virtual edge of G′ is contained in at most
mv = 1

4b3 virtual pathes.
Next, let us construct the path set P in Lemma 7 for graph G(X, r): for any vertices j, k

in G(X, r), if they lie in the same small square, then select the edge joining them into P;
Otherwise, the virtual vertices in the two small squares, say Sµ, Sν , in which the vertices j, k
lie, must have a virtual path in PS joining them. Now the problem has been reduced to how
to replace these virtual edges in the virtual path by edges in G(X, r) to form a path in P. On
the one hand, both Sµ and Sν have Md vertices in them, thus a virtual path joining the virtual
vertices centered in them will be used for Md ×Md times; On the other hand, for each virtual
edge in the virtual path, we have Md × Md real edges of G(X, r) to substitute it. A careful
allocation of these real edges will make them contained in at most 4 paths in P joining the real
vertices in Sµ and Sν . For P constructed with this method, any edge in G(X, r) is contained in
at most m = 4×mv = 1

b3 pathes in P, and the length of each path is not larger than l = lv = 2
b .

Hence according to Lemma 7 with n sufficiently large, we get for 0 < r < 1
2

λ1 ≥ ndmin

d2
maxml

≥ nnπr2

4 (1 + o(1))
(nπr2)2 × 1

b3 × 2
b (1 + o(1))

=
b4

8πr2
(1 + o(1)) ≥ r2

8π(r +
√

6)4
(1 + o(1))

≥ πr2

512(r +
√

6)4
(1 + o(1)).

Similarly, for r ≥ 1
2 ,

λ1 ≥ ndmin

d2
maxml

≥ nπn
64 (1 + o(1))

n2 × 1
b3 × 2

b (1 + o(1))

=
πb4

128
(1 + o(1)) ≥ πr4

128(r +
√

6)4
(1 + o(1))

≥ πr2

512(r +
√

6)4
(1 + o(1)).

Hence, we get

λ1 ≥ πr2

512(r +
√

6)4
(1 + o(1)).

Combining the above propositions, we get an estimation for the spectral gap λ̄:
Theorem 3 For the random geometric graph G(X, r) with n sufficiently large, we have on

the set B(an),

λ̄ ≤ 1− πr2

512(r +
√

6)4
(1 + o(1)). (25)
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Proof We have

nλn−1 ≥
n−1∑

j=0

λj = trace{L} =
n∑

k=1

(
1− 1

dk

)
≥ n

(
1− 1

dmin

)

thus λn−1 ≥ 1− 1
dmin

. Combining Theorem 5, Propositions 2 and 3, we get

2
(

1− 1
4(1 + 2

√
3)2

(1 + o(1))
)
≥ λn−1 ≥ 1− 1

dmin
, (26)

λ1 ≥ πr2

512(r +
√

6)4
(1 + o(1)). (27)

When n is sufficiently large,

|1− λn−1|
≤ max

{
1

dmin
, 1− 1

2(1 + 2
√

3)2
(1 + o(1))

}

≤ 1− 1
2(1 + 2

√
3)2

(1 + o(1))

and

|1− λ1| =
{

1− λ1, λ1 ≤ 1
λ1 − 1, λ1 > 1

≤




1− πr2

512(r +
√

6)4
(1 + o(1)), λ1 ≤ 1

λn−1 − 1, λ1 > 1

≤





1− πr2

512(r +
√

6)4
(1 + o(1)), λ1 ≤ 1

1− 1
2(1 + 2

√
3)2

(1 + o(1)), λ1 > 1.

Therefore
λ̄ = max

1≤j≤n−1
{|1− λj |}

= max{|1− λ1|, |1− λn−1|}

≤ 1− πr2

512(r +
√

6)4
(1 + o(1)).

Remark 2 According to Theorem 3 and Remark 1, we can always take η so small that

λ̄ + ε ≤ 1− πr2

1024(r +
√

6)4
(1 + o(1)) = 1− Cr,

where

Cr =
πr2

1024(r +
√

6)4
(1 + o(1)). (28)

Next, we will deal with ‖θ(1)‖ and δ(θ(1)). For that we need the following lemma. Through-
out the sequel, we denote hn = na2

n

gnlogn , which satisfies lim
n→∞

hn = ∞ by the choice of an and
gn.
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Lemma 8 Let S̃j =
∑

k∈Sj
θk(0), j = 1, 2, · · · ,Mn(an), then

Pr

{
max

1≤j≤Mn(an)
|S̃j | ≤ na2

nπ

√
2
hn

(1 + o(1))

∣∣∣∣∣B(an)

}
= 1−O

( 1
ngn

)
. (29)

Proof Let Bn = B(an),Mn = Mn(an). First decompose Bn as a finite union, i.e., Bn =⋃
α

Bnα
, where Bnα

, {Fixed Nj out of n agents lie in Sj , j = 1, 2, · · · ,Mn}
⋂

Bn. Hence under

the condition of Bnα , {S̃j , j = 1, 2, · · · ,Mn(an)} are independent random variables. Let

εn =

√
2π2(gn log n− log a2

n)
na2

n

=

√
2π2gn log n

na2
n

(1 + o(1)) = π

√
2
hn

(1 + o(1)),

then

Pr

{ ⋂

1≤j≤Mn

|S̃j | ≤ εnNj

∣∣∣Bnα

}

=
Mn∏

j=1

Pr
{
|S̃j | ≤ εnNj

∣∣∣Bnα

}
=

Mn∏

j=1

(
1− Pr

{
|S̃j | > εnNj

∣∣∣Bnα

})

=
Mn∏

j=1

exp
{

log
(
1− Pr

{
|S̃j | > εnNj

∣∣∣Bnα

})}
.

For arbitrarily given j,

Pr
{
|S̃j | > εnNj

∣∣∣Bnα

}
≤ V ar(S̃j |Bnα

)
(εnNj)2

=
π2

3ε2
nNj

= O

(
hn

na2
n

)
→ 0.

Thus, by the Hoeffding inequality[17],

Pr

{ ⋂

1≤j≤Mn

|S̃j | ≤ εnNj

∣∣∣Bnα

}

=
Mn∏

j=1

exp
{
− Pr

{
|S̃j | > εnNj

∣∣∣Bnα

}
(1 + o(1))

}

≥
Mn∏

j=1

exp
{
− 2 exp

(
− ε2

nna2
n

2π2
(1 + o(1))

)}

= exp
{
− 2

1
a2

n

exp
(
− ε2

nna2
n

2π2

)
(1 + o(1))

}

≥ 1− 2
a2

n

exp
(
− ε2

nna2
n

2π2

)
(1 + o(1))

= 1−O

(
1

ngn

)
.
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Therefore,

Pr

{ ⋂

1≤j≤Mn

|S̃j | ≤ εnNj

∣∣∣Bn

}

=
Pr

{ ⋂
1≤j≤Mn

|S̃j | ≤ εnNj , Bn

}

Pr{Bn}

=

∑
α

Pr

{ ⋂
1≤j≤Mn

|S̃j | ≤ εnNj , Bnα

}

Pr{Bn}

=

∑
α

Pr

{ ⋂
1≤j≤Mn

|S̃j | ≤ εnNj

∣∣∣∣Bnα

}
Pr{Bnα}

Pr{Bn}

=

∑
α

(1−O( 1
ngn )Pr{Bnα

}
Pr{Bn}

= 1−O

(
1

ngn

)
.

Finally, by noticing εnNj = na2
nπ

√
2

hn
(1 + o(1)), we get

Pr

{
max

1≤j≤Mn(an)
|S̃j | ≤ na2

nπ

√
2
hn

(1 + o(1))

∣∣∣∣∣B(an)

}
= 1−O

(
1

ngn

)
.

Now, let us denote

D(an, gn, hn) =

{
ω : max

1≤j≤Mn(an)
|S̃j | ≤ na2

nπ

√
2
hn

(1 + o(1))

}
.

Then, it is obvious that

Pr{D(an, gn, hn) ∩B(an)} = Pr{D(an, gn, hn)|B(an)}Pr{B(an)} = 1−O

(
1

ngn

)
.

Theorem 4 On the set B(an)
⋂

D(an, gn, hn), we have for n sufficiently large

‖θ(1)‖ ≤ √
nπ

√
2
hn

(1 + o(1)), δ(θ(1)) ≤ 2π

√
2
hn

(1 + o(1)).

Proof Given ω ∈ B(an)
⋂

D(an, gn, hn), for any agent k, denote by Jk the index set of
those small squares intersecting with the neighborhood disk of agent k, and A the area of the
intersection part between the neighborhood disk and the unit square S, then

∣∣∣∣∣
∑

j∈Nk(0)

θj(0)

∣∣∣∣∣ ≤
∑

j∈Jk

|S̃j | ≤
∑

j∈Jk

na2
nπ

√
2
hn

(1 + o(1))

=
A

a2
n

(1 + o(1))× na2
nπ

√
2
hn

(1 + o(1))

= πnA

√
2
hn

(1 + o(1)),
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hence

| θk(1)| = 1
nk(0)

∣∣∣∣∣
∑

j∈Nk(0)

θj(0)

∣∣∣∣∣ ≤
1

nk(0)
× πnA

√
2
hn

(1 + o(1)) = π

√
2
hn

(1 + o(1)),

therefore

‖θ(1)‖ ≤
√√√√

n∑

j=1

θ2
j (1) ≤ √

nπ

√
2
hn

(1 + o(1))

δ(θ(1)) ≤ 2π

√
2
hn

(1 + o(1)).

5 The Proof of Theorem 1

Let us take the positive sequences {an, gn, hn, n ∈ N} as

an =
1

log n
, hn = log3 n, gn =

n

log6 n
.

Then, on the set B(an)
⋂

D(an, gn, hn) with n sufficiently large, we have by Theorem 4 and
Remark 2,

vδ(θ(1))
1− (λ̄ + ε)

(
2 + log

2
√

β ‖ θ(1) ‖
δθ(1)

)

≤
2vπ

√
2

hn

Cr

(
2 + log

2
√

2βπ
√

n
hn

2π
√

2
hn

)
=

vπ

Cr

√
2
hn

log n(1 + o(1)).

Thus in order to satisfy condition iii) in Proposition 1, it is sufficient to take n large enough so
that

vπ

√
2
hn

log n

Cr
(1 + o(1)) 6 ηr,

which is obviously true by the choice of the sequences {an, gn, hn, n ∈ N} above. Thus
when n is sufficiently large, the probability for convergence will be greater than or equal to
Pr{B(an)D(an, gn, hn)} = 1−O( 1

ngn ). This completes the proof.

6 Conclusions

By working in a probabilistic framework, we are able to show that the multi-agent sys-
tems described by a simplified Vicsek model will synchronize with large probability for large
population and for any model parameters. In another paper [19], we also considered the case
where both the radius r and the speed v may depend on the population size n. If we denote
them by rn and vn respectively, then under the parameter conditions that vn

r5
n

= O( 1
log n ), and

(
log n

n

) 1
6 = o(rn), rn = o(1), similar synchronization result can also be established[19]. To the

best of our knowledge, this kind of synchronization results for multi-agent systems are estab-
lished for the first time. Of course, many interesting problems still remain open, for example,
the robustness to noises, the phase transition, and the analysis of the more complicated Boid
model, etc., and all of these belong to future investigation.
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Appendix A: Some Preliminaries in Graph Theory

The problem formulation and analysis in this paper relies on some basic concepts in graph
theory, algebraic graph theory, spectral graph theory and random graph theory which are
collected in the following and may be found in [18, 20–27].

A graph (undirected) is an ordered pair G = (V, E) that consists of a set of vertexes
V = V (G) = {1, 2, · · · , n} and a set of edges E = E(G) ⊆ {

(i, j) : (i, j) is an unordered
pair of vertexes

}
, where self-loop is allowed. Two vertexes are called adjacent, or neighboring

with each other, if (i, j) ∈ E, denoted by i ∼ j. If all vertexes of a graphG are adjacent,
the graph G is called complete; a complete graph with n vertexes is denoted by Kn. The
neighborhood set of all the vertexes that are adjacent to vertex i in graph G is denoted by
Ni = Ni(G) = {j ∈ V : (i, j) ∈ E}; denote ni = |Ni|. A vertex with empty neighborhood set
Ni is called isolate.

The intersection G ∩ G′ of two graphs G = (V, E) and G′ = (V ′, E′) is also a graph
(V ∩ V ′, E ∩ E′), and the union G ∪ G′ of them is (V ∪ V ′, E ∪ E′). If V ′ ⊆ V and E′ ⊆ E,
then we call G′ a subgraph of G; a complete subgraph is called a clique.

A path of a graph G is a subgraph P = (W,H), where W = {i1, i2, · · · , ik} ⊆ V (G),
H = {(i1, i2), (i2, i3), · · · , (ik−1, ik)} ⊆ E(G), and ij are mutually different; The number of
edges in a path is called the length of the path. Usually a path is denoted by the natural
sequence of vertexes in it, for example, a path from i1 to ik, P = i1i2 · · · ik. A graph G is
connected if for any two vertexes of it, there exists a path connecting them. A set of graphs
{G1, G2, · · · , Gm} is jointly connected if the union of them is connected.

If P = i1i2 · · · ik is a path with k ≥ 3, then the graph C = P ∪ iki1 is called a loop, denoted
by i1i2 · · · iki1. The number of edges or vertexes in a loop is called its length. A loop with
length k is called a k-loop, denoted by Ck; A C3 is called a triangle.

The adjacency matrix A = A(G) = (aij)n×n of a graph G with n vertexes is a symmetric
matrix with nonnegative elements satisfying aij 6= 0 ⇔ (i, j) ∈ E(G). The graph is called
weighted whenever the elements of its adjacency matrix are other than just 0-1 elements. aij > 0
is called the weight of edge (i, j); di = di(G) =

∑
j∈V

aij is called the degree of vertex i, which

satisfies di = |Ni| in the case of non-weighted graph; T = diag(d1, d2, · · · , dn) is called degree
matrix; dmax = max{di : i ∈ V } and dmin = min{di : i ∈ V } are, respectively, called the
maximum degree and the minimum degree; Vol(G) =

∑n
i=1 di is called the volume of graph G.

The Laplacian of a graph G is the matrix L = T−A. However, in discrete time problems, the
so called normalized Laplacian is used more frequently. In a graph without isolated vertexes,
the degree matrix T is invertible; on the other hand, in a graph with isolated vertexes,we
follow the convention that the diagonal elements in T−1, T−

1
2 corresponding to isolated vertexes

take value 0. Thus, the normalized Laplacian of graph G is defined as L = T−
1
2 LT−

1
2 , and

P = T−1A = T−
1
2 (I − L)T

1
2 as the average matrix of graph G. In the following we will see

that each vertex in the neighborhood graph of the Linearized Vicsek model has a loop to itself,
making the degree matrix T always invertible.

From now on we will consider only non-weighted graph G with a self-loop in each vertex. The
normalized Laplacian L is semi-definite, and thus the n eigenvalues of L are all nonnegative real
numbers, which are denoted by 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 with the corresponding orthogonal
unit vector bundle {φj , 0 ≤ j ≤ n − 1}, where λ1 is usually called the normalized algebraic
connectivity. The number defined by λ̄ = max

1≤j≤n−1
|1 − λj | = max{|1 − λ1|, |1 − λn−1|} is

called the spectral gap. The eigenvalues λ1 and λn−1 have the following Rayleigh quotient
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representations[18]

λ1 = inf
z⊥ T1n

∑
i∼j

(zi − zj)2

∑
j∈V (G)

z2
j dj

, λn−1 = sup
z

∑
i∼j(zi − zj)2∑
j∈V (G)

z2
j dj

. (30)

Suppose {xi ∈ Rm, 1 ≤ i ≤ n} are n points in the m dimensional Euclidean space, and
let x = (x1, x2, · · · , xn)τ ∈ Rmn, and r > 0 be the interaction radius. The Geometric Graph
G(x, r) is an undirected graph (V, E) with a self-loop in each vertex, where V = {1, 2, · · · , n}
and E = {(i, j) : ‖xi − xj‖ < r, i ∈ V, j ∈ V }.

The geometric graph of n points in Euclidean space contains the distance information of
those points. Because of the finiteness of the interaction radius r, the distance information is in
some sense local and thus the random geometric graph is particularly useful in modeling systems
with local interaction rules, such as Vicsek’s model, Boid model, wireless sensor network, ad
hoc network etc.

Suppose that {Xi ∈ Rm, 1 ≤ i ≤ n} are i.i.d. random vectors uniformly distributed in the
unit cube Sm = {z ∈ Rm : 0 ≤ zj ≤ 1, 1 ≤ j ≤ m}. Let X = (X1, X2, · · · , Xn)τ ∈ Rmn, and
r > 0 be the interaction radius. The geometric graph G(X, r) is called a Random Geometric
Graph.

Random geometric graph is a newly proposed random graph model. In the modeling of some
problems, it is practically much better than traditional random graphs, and thus has drawn
more and more attention. The interested readers can refer to [16,26,27].

Appendix B: The Proof of Lemma 6

In this appendix, we will elaborate the detailed proof of Lemma 6, which is given by Prof.
Feng TIAN and Dr. Mei LU.

In the following, all the graphs are non-weighted simple ones without self-loops. Suppose
that G is a graph with n vertices and C3 a subgraph of it. We use G = &C3 + H to denote
that after deleting the three edges of any triangle in G with a certain algorithm, the residual
graph (with n vertices) is denoted by H.

Definition B.1 A graph G is called odd if the degree of each vertex is an odd number;
Similarly, if the degree of each vertex is an even number, it is called an even graph.

It is quite obvious that some graphs are neither odd nor even. However, a complete graph
Kn is odd when n is an odd number and is even n is an even number. We also have the following
conclusion:

i) If G = &C3 + H, then graph G and H are both odd or even;
ii) If G = &C3 + ∅, then G is even and the number of edges satisfying |E(G)| ≡ 0 (mod 3).
Lemma B.1 If Kn = &C3 + H, then

dmax(H) ≥





0, n = 6k + 1, 6k + 3;
1, n = 6k, 6k + 2;
2, n = 6k + 5;
3, n = 6k + 4.

(31)

Proof When n = 6k + 1 or 6k + 3, the conclusion is obvious.
If K6k = &C3 + H, since K6k is odd, and H is also odd, we have dmax(H) ≥ 1. The same

argument applies when n = 6k + 2.
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If K6k+5 = &C3 + H, since

E(K6k+5) =
(6k + 5)(6k + 4)

2
= (6k + 5)(3k + 2) ≡ 1 ( mod 3)

we have |E(H)| ≥ 1. K6k+5 is even, hence dmax(H) ≥ 2.

Figure 4

If K6k+4 = &C3 + H, then K6k+4 is odd; consequently H is odd; hence dmax(H) ≥
1, dmin(H) ≥ 1. We only have to prove dmax(H) 6= 1. If this is not true, we have dmax(H) =
dmin(H) = 1, hence H could only be a graph as illustrated in Figure 4, and thus |E(H)| = 3k+2.
However,

|E(K6k+4)| − |E(H)| = (6k + 4)(6k + 3)
2

− (3k + 2) = (3k + 2)(6k + 2) ≡ 1 ( mod 3),

we get a contradiction. Therefore dmax(H) ≥ 3.
A subset of p elements of a nonempty set is called a p-subset. We have the following

definition:
Definition B.2[28,29] Suppose S = {1, 2, · · · , v}, then a Balanced Incomplete Block Design

(BIBD) of S is a family of b k-subsets denoted by {B1, B2, · · · , Bb} satisfying the following
constraints:

i) Each element of S is contained exactly in r out of the b k-subsets;
ii) Any two elements of S is contained at the same time exactly in λ out of the b k-subsets;
iii) k < v.
The BIBD is also called (b, v, r, k, λ)-Design. But, only three of the five parameters of

(b, v, r, k, λ)-Design are independent[28,29], which have the following relationships

bk = vr, r(k − 1) = λ(v − 1). (32)

When k = 3, λ = 1, (b, v, r, k, λ)-Design is called the Steiner Triple System. According to
equation (32), we have

r =
v − 1

2
, b =

v(v − 1)
6

. (33)

We have the following proposition for the existence of the Steiner Triple System:
Proposition B.1[28,29] The Steiner Triple System exists if and only if v = 1, 3 (mod 6).
Let f(n) = min{dmax(H) : Kn = &C3 + H}. Then the following corollary is equivalence

to the above proposition.
Corollary B.1

f(6k + 1) = f(6k + 3) = 0. (34)

Lemma B.2 When n is an even number,

f(n) = 1 ⇐⇒ f(n + 1) = 0. (35)
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Proof Sufficiency: If f(n) = 1, then there exists an algorithm such that Kn = &C3 + H
with dmax(H) = 1. Since Kn is odd, H is also odd, which means that the degree of any
vertex in H satisfies d(H) = 1, and the structure of H is illustrated in Figure 4. We carry
on the operations on a subgraph Kn of Kn+1 directed by the algorithm to make edges of the
residual graph H ′ pairwise match. Since each edge in H ′ is adjacent to the remaining vertex,
all the edges together form n

2 triangles as illustrated in Figure 5. Deleting all of them, we get
f(n + 1) = 0.

j

i1

i2

i3

Figure 5 Figure 6

Necessity: If f(n + 1) = 0, then for S = {1, 2, · · · , n + 1}, there exists a Steiner Triple
System, i.e., a 3-subset family {B1, B2, · · · , Bn(n+1)

6
} of S. Deleting all subsets with the form

Si = {i, j, n + 1} from the family gives a deleting algorithm for Kn, which then gives Kn =
&C3 + H with the structure of H as illustrated in Figure 4. Hence f(n) = 1.

Combining Corollary B.1 and Lemma B.2, we get:
Corollary B.2

f(6k) = f(6k + 2) = 1. (36)

Lemma B.3
f(6k + 4) = 3. (37)

Proof Because f(6k + 7) = f(6(k + 1) + 1) = 0, there exits a deleting algorithm such
that K6k+7 = &C3 + H and dmax(H) = 0. Denote by D the set of triangles deleted by the
algorithm. Pick C3

0 = i1i2i3 ∈ D, and delete triangles C3 ∈ D which contain i1 or i2 or i3, then
the residual set D′ corresponds to a deleting algorithm for K6k+4 = K6k+7

C3
0

. For any vertex j

in K6k+4 = K6k+7

C3
0

, the deleting algorithm will delete all edges linking to it, and those can’t be

deleted are indicated by dash lines in Figure 6. Thus each vertex of K6k+4 has at most 3 edges
left, that is f(6k + 4) = 3.

Finally, combining all the above results, we have

f(n) =





0, n = 6k + 1, 6k + 3;
1, n = 6k, 6k + 2;
2, n = 6k + 5;
3, n = 6k + 4

(38)

This completes the proof of Lemma 6.
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