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Abstract This paper considers the problem of robust consensus for a basic class of multi-agent

systems with bounded disturbances and with directed information flow. A necessary and sufficient

condition on the robust consensus is first presented, which is then applied to the analysis, control

and decision making problems in the noise environments. In particular, the authors show how a soft

control technique will synchronize a group of autonomous mobile agents without changing the existing

local rule of interactions, and without assuming any kind of connectivity conditions on the system

trajectories.
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1 Introduction

The interaction between information flow and system dynamics is an issue of wide inter-
ests. An important problem among these researches is consensus of multi-agent systems, which
arise from many practical problems including unmanned air vehicles, micro-satellites, forma-
tion control of robots, flocks of birds, etc. To the best of our knowledge, almost all the existing
theoretical investigations on the consensus problem have been carried out without considering
the influence of the noise disturbance which is inevitable in the real world[1−5]. One exception
is [6], where the robust consensus of a class of multi-agent systems with noises is studied under
bidirectional information exchange.

However, there are a variety of practical applications where information only flows in one
direction. For example, in soft control[5], the shill agent may be only equipped with a commu-
nication transmitter. For heterogeneous teams, different individuals may have different sensory
abilities, thus individual i may sense the information of individual j while the opposite may
not be valid. Hence, there is a need to extend the result of [6] to interaction topologies with
directed information exchanges.

In this paper, by using the directed graph to represent information exchanges, we will
study a more general class of multi-agent systems with noise. We will show that under certain
assumptions, the robust consensus can be achieved under dynamically changing interaction
topology if and only if the union of the collection of interaction graphs across some time intervals
has a spanning tree frequently enough. Three typical examples, a class of multi-agent model, an
application of soft control, and a decision-making process, are provided to illustrate the result.
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The paper is organized as follows. In Section 2, we formally state the problem. The main
result is established in Section 3, and its applications are given in Section 4. Section 5 gives
some conclusions.

2 Problem Statement

Let xi(t) ∈ R, i = 1, 2, · · · , n, represent the ith agent’s information state at time t. We
consider the following discrete-time update law:

xi(t + 1) =
1

n∑
j=1

Aij(t)

n∑
j=1

Aij(t)xj(t) + wi(t + 1), (1)

where wi(t + 1) ∈ R is the noise influence on agent i, Aij(t) ≥ 0 is the weighting factor that
agent j acts on agent i, and there will be no information flow from j to i if Aij(t) = 0. In this
paper, we assume every agent can sense its own information at any step, that is, Aii(t) > 0.
Thus, each agent updates its own state value by a weighted average of its own state value and
the values received from other agents.

We can use directed graph Dt = (V, Et) to model the interaction topology among these
agents at time t, where V = {1, 2, · · · , n} is the vertex set and Et ⊂ V × V is the arc set.
An arc (i, j) ∈ Et means that agent j can receive information from agent i at time t, that is,
Aji(t) > 0.

For a directed graph (digraph) D, a path from vertex i to j is a sequence of distinct vertexes
i0, i1, i2, · · · im, where i0 = i, im = j and arc (il, il+1) ∈ E, 0 ≤ l ≤ m − 1. A digraph is called
strongly connected if for any ordered pair of distinct vertices, i and j, there is a path in D
connecting i to j. A digraph is said to have a spanning tree if and only if there exists a vertex
i ∈ V , called root, such that there is a path from i to any other vertex. The union of a collection
of digraphs {D1, D2, · · · , Dk} with the same vertex set V , is a digraph D with vertex set V and
arc set equaling the union of the arc sets of all of the digraphs in the collection. The directed
graph of matrix B = [bij ]n×n, denoted by Γ (B), is the directed graph on n nodes 1, 2, · · · , n such
that there is a directed arc in Γ (B) from j to i if and only if bij �= 0[7]. From the description of
Dt, we know the digraph associated with the matrix P (t) .= [Pij(t)] is equivalent to the digraph
Dt defined by the interaction relations of all agents at time t, where

Pij(t) =
Aij(t)

n∑
j=1

Aij(t)
.

Furthermore, (1) can be written in matrix form as

x(t + 1) = P (t)x(t) + w(t + 1), t = 1, 2, · · · , (2)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T, w(t) = [w1(t), w2(t), · · · , wn(t)]T. Obviously, {P (t), t ≥
1} is a sequence of stochastic matrix, where the notion of stochastic matrix is briefly described
as follows. If all entries of a matrix A = [aij ]n×n satisfy aij ≥ 0, then we say that A is
nonnegative. Moreover, a nonnegative matrix A is called stochastic if the sum of each row
satisfies

∑n
j=1 aij = 1, i = 1, 2, · · · , n.

It is worth mentioning that almost all the existing analysis related with Vicsek model and
consensus algorithm[1−4] would fall into the research of system (2) with w(t + 1) = 0. The
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purpose of this paper is to study the noise effect as in [6]. To proceed, we need a few notions
and concepts from [6]. The distance between a vector x and a subspace X ⊂ Rn is defined by

d(x,X) = inf
y∈X

d(x, y) = inf
y∈X

‖x − y‖, (3)

where ‖ · ‖ is the standard Euclidean norm. Moreover, we take X as the space spanned by the
vector [1, 1, · · · , 1]T, i.e., X = span{[1, 1, · · · , 1]T}, and denote the orthogonal subspace of X as
M . Now, we define a function set and a noise set, respectively, as follows[6]:

K0 =
{
f(·)|f : R+ → R+, f(0) = 0, f(δ) decreases to 0 as δ → 0

}
;

B(δ) =
{
{w(t)}| sup

t≥0
d(w(t), X) ≤ δ

}
.

Definition 1 The system (2) is said to be robust consensus with respect to noise, if for
any δ > 0, x(0) ∈ Rn, and any sequence {w(t)} ∈ B(δ), there always exist a function f(·) ∈ K0

and a constant T > 0 such that

d(x(t), X) ≤ f(δ), ∀t ≥ T. (4)

In this paper, we shall generalize the results of [6] to the case of directed information flow.

3 Main Result

Suppose that the matrix sequence {P (t)}∞t=1 satisfies the following assumption.
Assumption 1
1) For each t, P (t) is a stochastic matrix with positive diagonal entries;
2) The non-zero entries of P (t) have the following unanimous low bound:

min
(i,j):Pij(t)>0

Pij(t) ≥ α > 0, ∀t ≥ 1. (5)

Intuitively, whenever Pij(t) > 0, agent j communicates its current value xj(t) to agent i
with a weighting factor larger than α. The following theorem is our main result.

Theorem 1 Consider the system (2) under Assumption 1. Then, it is robust consensus
if and only if there exists a constant q > 0 such that for any t ≥ 0 the union of digraphs
{Dt+1, Dt+2, · · · , Dt+q} associated with matrices {P (t+1), P (t+2), · · · , P (t+q)} has a spanning
tree.

To prove the main result, we will need some ideas. As in [6], we introduce a suitable
projection operator, which can translate the distance between a vector and a subspace X to
the norm of the projected vector. Thus, the problem of robust consensus can be transformed
to a certain robust stability in the subspace. We decompose the space Rn into two orthogonal
subspaces X and M = X⊥. For any x ∈ Rn, there exist a unique pair of vectors x0 ∈ M, x1 ∈ X
such that x = x0 + x1. Furthermore, according to the property of projection, we have

‖x0‖ = ‖x − x1‖ = inf
y∈X

‖x − y‖ = d(x,X).

Denote PM as the projector onto M , then PMx = x if and only if x ∈ M , PMx = 0 if and only
if x ∈ X, and

‖PMx‖ = d(x,X). (6)
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Take a standard orthogonal base e1, e2, · · ·,en in the space Rn, where en =( 1√
n
, 1√

n
, · · · , 1√

n
)T,

then X = span{en} and M = span{e1, e2, · · · , en−1}. We can get a detailed form of the
projector PM as follows:

PM = Q

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠QT

= I − 1
n

⎛
⎜⎝

1
...
1

⎞
⎟⎠ (1 · · · 1) = I − 1

n
1 · 1T, (7)

where Q
.= [e1, e2, · · · , en], 1 .= [1, 1, · · · , 1]Tn×1. If P1, P2 are stochastic matrices, we have

PMP1PMP2 = PMP1

(
I − 1

n
1 · 1T

)
P2 = PM

(
P1 − 1

n
1 · 1T

)
P2

= PMP1P2.

Thus, for stochastic matrices {Pi, i = 1, 2, · · ·}, the projector PM has the following property
n∏

i=1

PMPi = PM

n∏
i=1

Pi. (8)

Let the projector PM act on both sides of the system (2), we have

PMx(t + 1) = PMP (t)x(t) + PMw(t + 1). (9)

As in [6], set η(t) = PMx(t), ν(t) = PMw(t), then η(t), ν(t) ∈ M , and

PMP (t)η(t) = PMP (t)x(t).

Thus, the system (9) is equivalent to

η(t + 1) = PMP (t)η(t) + ν(t + 1). (10)

Set ν = {ν(t)}∞t=1, UM (δ) = {ν : ‖ν(t)‖ ≤ δ, ν(t) ∈ M, ∀t ≥ 1}. Here, the system (10) is
said to be robust stable on the subspace M , if for any η(0) ∈ M and any ε > 0, there exist
constants δ

.= δ(ε, η(0)) > 0, T = T (ε, η(0)) > 0, such that

sup
ν∈UM (δ)

sup
t≥T

‖η(t)‖ ≤ ε.

Thus, the robust consensus of system (2) has been transformed to the robust stability of system
(10) on the subspace M .

We define Φ(k, i) as the state transition matrix, that is,

Φ(k + 1, i) = PMP (k)Φ(k, i), Φ(i, i) = I, ∀k ≥ i ≥ 0.

Then by (10), we have

η(t + 1) = Φ(t + 1, 0)η(0) +
t+1∑
i=1

Φ(t + 1, i)ν(i). (11)
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To motivate further study, we need the following exponential stability result whose proof is
similar to Lemma 2.1.2 in [8], and is given in [9] for details.

Lemma 1 Consider the system (10) under Assumption 1. If the system (10) is robust
stable on the subspace M , then we have

‖ Φ(t + h, t) ‖≤ Nλh, ∀t ≥ 0, ∀h ≥ 1 (12)

for some constants N > 0 and λ ∈ (0, 1).
We also need the following lemma which is about the algebraic multiplicity of eigenvalue 1

of stochastic matrix.
Lemma 2 Let P be a stochastic matrix with PM being its projector onto M . If ρ(PMP ) < 1,

then 1 is a simple eigenvalue of P , where ρ(A) is the spectral radius of a matrix A.
Proof From the theorem of finite dimensional Markov chain[10], we know that there exists

a matrix K such that

lim
n→∞

1
n

n∑
i=1

P i = K.

Thus,

lim
n→∞PM

1
n

n∑
i=1

P i = PMK.

On account of ρ(PMP ) < 1, there exists a matrix norm ‖ · ‖l such that

‖PMP‖l
.= μ < 1.

By (8), ∥∥∥∥PM
1
n

n∑
i=1

P i

∥∥∥∥
l

=
∥∥∥∥ 1

n

n∑
i=1

(PMP )i

∥∥∥∥
l

≤ 1
n

n∑
i=1

‖PMP‖i
l

≤ 1
n

n∑
i=1

μi.

Thus,

lim
n→∞

∥∥∥∥ 1
n

n∑
i=1

(PMP )i

∥∥∥∥
l

= 0,

PMK = lim
n→∞

1
n

n∑
i=1

(PMP )i = 0.

Because the rank of PM is n − 1, the rank of K is not greater than 1.
Obviously, 1 is an eigenvalue of P and ρ(P ) ≤ 1 for P is a stochastic matrix. Now, we prove

1 is simple. If not, from the Jordan canonical form, we have nonsingular matrix T such that

P = T

⎛
⎜⎜⎜⎜⎜⎝

λ1 0 0 · · · 0
∗ λ2 0 · · · 0
0 ∗ λ3 · · · 0
...

...
. . . . . .

...
0 0 · · · ∗ λn

⎞
⎟⎟⎟⎟⎟⎠ T−1,
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where |λi| ≤ 1 and λ1 = λ2 = · · · = λk = 1 with k ≥ 2. Thus,

lim
n→∞

1
n

n∑
i=1

P i = T

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
∗ 1 0 · · · 0
∗ ∗ ∗ · · · 0
...

...
. . . . . .

...
∗ ∗ · · · ∗ ∗

⎞
⎟⎟⎟⎟⎟⎠T−1,

which implies that the rank of K is larger than 1. Obviously it is a contradiction, so 1 is a
simple eigenvalue of P .

The following two lemmas will also be used in the proof of Theorem 1.
Lemma 3[3] The eigenvalue 1 is simple for a stochastic matrix if and only if its associated

digraph has a spanning tree.
Lemma 4[3] Let {P (t)} be a sequence of stochastic matrix with positive diagonal entries,

and with associated digraphs denoted by Gt. If for any sequence {i1, i2, · · · , im}, the union of
the directed graphs {Gi1 , Gi2 , · · · , Gim} has a spanning tree, then the matrix product P (im) · · ·
P (i2)P (i1) is SIA.†

Proof of Theorem 1
By using Lemma 4, and following the same analysis in the proof of iii)⇒ i) of Theorem 3.1

in [6], one can get the desired conclusion directly.
As we have seen in the above, the robust consensus of the system (2) can be transformed

to the stability of the system (10) on the subspace M . Define

P (t,r) = P (t + r − 1) · · ·P (t + 1)P (t),

and from Lemma 1, we know that for any t ≥ 0, there exists a constant integer q such that

‖PMP (t,q)‖ < 1. (13)

Let P (t) denote P (t,q), D(t) denote the associated directed graph of P (t), Gk denote the asso-
ciated digraph of P (k), and G(t) denote the union of digraphs {Gt, Gt+1, · · · , Gt+q}.

From Lemma 2 and (13), we know that 1 is a simple eigenvalue of P (t). Furthermore, the
digraph D(t) has a spanning tree according to Lemma 3. To complete the proof of the sufficiency
part of Theorem 1, we need to show that G(t) has a spanning tree.

Now, let vertex r be the root of the graph D(t), then for any other vertex j ∈ V , there
is a r → j path in digraph D(t), i.e., there is a sequence of arcs (r, i1), (i1, i2), (i2, i3), · · · ,
(im−2, im−1), (im−1, j) in D(t) connecting r to j. By the relations between D(t) and P (t), we
know that the following elements of P (t) : P

(t)
i1,r, P

(t)
i2,i1

, · · · , P (t)
im−1,im−2

, P
(t)
j,im−1

are all nonzero.

Now, let us consider each nonzero entry P
(t)
is+1,is

, s = 0, 1, · · · ,m−1 (i0 denotes r, im denotes j).
By using the property of matrix product, we know that there exists a nonzero item Pis+1,kq−1(t+
q−1)Pkq−1,kq−2(t+q−2) · · ·Pk1,is(t) for some k1, k2, · · · , kq−1. Note that Pi,j(k) �= 0 means there
is an arc (j, i) in digraph Gk, thus, the item Pis+1,kq−1(t+q−1)Pkq−1,kq−2(t+q−2) · · ·Pk1,is(t) �= 0
means there is a path in the union digraph G(t) connecting is with is+1. Hence, for each nonzero
entry P

(t)
is+1,is

, s = 0, 1, · · · ,m−1, there is a path is → is+1 in digraph G(t), and so it is obvious
that there is a path in digraph G(t) connecting r with j. According to the arbitrariness of
vertex j, we know that the digraph G(t) has a spanning tree rooted at r, i.e., the union of

†Stochastic matrix P is called indecomposable and aperiodic (SIA) if B = lim
n→∞

P n exists and all the rows

of B are the same.
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digraphs {Gt, Gt+1, · · · , Gt+q−1} associated with matrices {P (t), P (t+1), · · · , P (t+ q−1)} has
a spanning tree.

Hence, the proof of Theorem 1 is complete.

4 Applications

4.1 Analysis of a Class of Multi-Agent Model with Noises

A typical multi-agent model that was studied by Vicsek et al.[11] contains the noise effects,
and it was demonstrated by simulation that the system will synchronize if the population density
is large and the noise is small. This paper intrigued a series of theoretical investigations initiated
by Jadbabaie et al.[1]. However, to the best of our knowledge, all the existing theoretical
researches do not consider the nonlinear Vicsek model with noises, mainly due to difficulties in
the theoretical analysis.

Let us now consider a class of multi-agent systems with additive noise, which is a variation
of the well-known Vicsek et al.[11] model: There are n autonomous agents moving in the plane
with the same speed but with different headings. Each agent’s heading is updated using a local
rule based on the average of its own heading plus the heading of its neighbors with additive
noise. Denote xi(t) as the position of agent i at time t, then the neighbor of agent i is defined
as Ni(t) = {j| ‖xj(t) − xi(t)‖ ≤ ri, }, where ri ≥ 0 is the sensing radius of each agent. At each
time step, the position xi(t) and heading θi(t) of the ith agent are updated according to

xi(t + 1) = xi(t) + vi(t), (14)

where the velocity vi(t) is constructed to have an absolute value v and a direction given by the
angle θi(t), which is updated according to the following equations:

θi(t + 1) = πD

{
θ̂i(t + 1)

}
, (15)

θ̂i(t + 1) = arctan

⎛
⎜⎝

∑
j∈Ni(t)

sin(θj(t))∑
j∈Ni(t)

cos(θj(t))

⎞
⎟⎠ + wi(t + 1), t = 0, 1, · · · , (16)

where πD{·} is the projection operator onto the bounded interval [−π
2 + b, π

2 − b] with a given
small number b > 0.

Remark 1 To analyze the synchronization property of the above model by using the
stochastic matrix theory as in Theorem 1, we need the nonnegative property of the correspond-
ing weighted average matrix, i.e., we need cos(θi(t)) ≥ 0, or θi(t) ∈ (−π

2 , π
2 ). To guarantee this

and to facilitate the analysis, a natural way is to introduce the above projection mechanism.
Now, to rewrite the above equation in the form of (2), we introduce a transformation:

βi(t) = tan θi(t). Then, by using the following inequality

|θi(t + 1) − θ̂i(t + 1)| ≤ |wi(t + 1)|, (17)

it is easy to obtain

βi(t + 1) =
∑

j∈Ni(t)

cos(θj(t))∑
m∈Ni(t)

cos(θm(t))
βj(t) + δi(t + 1), t = 0, 1, 2, · · · , (18)

where δi(t + 1) is a “residual” process which is bounded by a constant times tan |wi(t + 1)| for
small |wi(t + 1)|.
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Next, we use digraph Gt = (V, Et) to express the neighbor relationships of agents at time
t. In Gt, the ith node represents the ith agent, and a directed edge from i to j denoted as
(i, j) ∈ Et represents i ∈ Nj(t). Note that (i, i) ∈ Et for any t. Using digraph Gt, define
P (t) = [Pij(t)] as follows:

Pij(t) =

⎧⎪⎨
⎪⎩

cos(θj(t))∑
m∈Ni(t)

cos(θm(t))
, (j, i) ∈ Et,

0, (j, i) /∈ Et,

(19)

then (18) can be written in the form of (2):

β(t + 1) = P (t)β(t) + δ(t), t = 0, 1, 2, · · · , (20)

where β(t) = [β1(t), β2(t), · · · , βn(t)]T, δ(t) = [δ1(t), δ2(t), · · · , δn(t)]T. It is easy to see that
P (t) satisfies Assumption 1. Thus, we can use Theorem 1 to get the following result.

Theorem 2 For the multi-agent model (15) and (16), if there exists an integer q > 0 such
that for any t ≥ 0, the union of the neighbor digraphs {Gt+1, Gt+2, · · · , Gt+q} has a spanning
tree, then the headings of the group have robust consensus property.

4.2 Application of Soft Control

In this subsection, we consider the intervention in the collective behavior of multi-agent
systems. In many real applications, it is rather difficult or even impossible to change the
existing local rules of agents, such as the flying strategies of birds. If we need to have such
system to avoid danger or improve efficiency, we should resort to a new mechanism-soft control,
which was introduced by J. Han et al. in [5]. The key idea of soft control is to intervene the
global behavior of the system while keeping the basic local rule of the existing agents in the
systems. This can be realized, for example, by adding one (or a few) special agent called shill[5]

which can be controlled, with the expectation that the collective behavior will emerge from the
system. Here, we try to design a soft control law which will synchronize the class of multi-agent
systems as discussed in the last subsection. The key point is to use soft control to guarantee
the required joint connectivity of the underlying multi-agent systems.

To be precise, we consider the flocking for the same group of n agents as in the last subsec-
tion, with an added member (say agent 0) acting as the group’s shill. The shill will move with
a constant heading θ0(0) ∈ [−π

2 + b, π
2 − b], and will not be influenced by other agents. Thus,

θ0(t + 1) = θ0(t), t = 0, 1, 2, · · · . (21)

On the other hand, the other agents labeled as 1 to n, will treat this shill as an ordinary agent.
In other words, they will continue to use the same heading update rule (15), (16) as before.

Let

P ∗(t) .=
[

1 0
γ(t) P (t)

]
, (22)

where γ(t) = [γ1(t), γ2(t), · · · , γn(t)]T with

γi(t) =

⎧⎪⎨
⎪⎩

cos(θ0(t))∑
m∈Ni(t)

cos(θm(t))
, (0, i) ∈ Et,

0, (0, i) /∈ Et,
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and the (i, j)-th element of the matrix P (t) is defined the same as (19).
Thus, the update law about the heading of all the agents can be written in the following

form:

β∗(t + 1) = P ∗(t)β∗(t) + δ∗(t), t = 0, 1, 2, · · · , (23)

where β∗(t) = [β0(t), βT(t)]T with β0(t) = tan θ0(t), δ∗(t) = [0, δT(t)]T. Here β(t), δ(t) are the
same as in (20).

Next, we proceed to design a simple control law to guarantee the topological condition
required for the dynamical graphs associated with the multi-agent systems. Suppose that the
position x0(t) of the shill can be controlled at any time step t, in the following way:

‖x0(t) − xi(t)‖ ≤ ri, t = kn + i, i = 1, 2, · · · , n, k = 0, 1, 2, · · · . (24)

It is easy to check that for any t ≥ 0, the union of the neighbor graphs {Gt+1, Gt+2,
· · · , Gt+n} has a spanning tree which is rooted at the shill vertex 0. Thus, according to Theorem
1, we know that the headings of all agents are robust consensus around the desired heading
θ0(0). To conclude this subsection, we remark that a more “intelligent” shill can be designed
based on the neighbor information of the ordinary agents[12].

4.3 The Decision-Making Process

When a committee make a decision, an assembly of persons is usually called together for
discussion. Each individual is aware of other’s opinions, and may modify its own attitude by
taking into account of other opinions. There have been a range of articles[13−14] analyzing the
conditions under which a consensus can be obtained for such a decision-making process.

Following [14], we consider a collective decision-making model as follows. Let the initial
opinion of n individuals be denoted as x0 = [x1(0), x2(0), · · · , xn(0)]T, and let Pij(0) ≥ 0 be the
initial weight of the influence of the jth individual to the ith individual. After the first round
of information interchanges, the ith individual’s opinion becomes

xi(1) =
∑

j

Pij(0)xj(0),

where the Pij(0)′s can be normalized so that∑
j

Pij(0) = 1, i = 1, 2, · · · , n.

Similarly, we may denote P (t) = [Pij(t)], i, j = 1, 2, · · · , n, as the weight matrix at time t ≥ 1,
which is a stochastic matrix after proper normalization.

Let x(t) = [x1(t), x2(t), · · · , xn(t)]T be the opinion vector after t interchanges, it follows that

x(t) = P (t − 1)x(t − 1), t = 1, 2, · · · . (25)

This model is closely related to inhomogeneous Markov chain, see [13–15], and most analyt-
ical results provide only sufficient conditions for the consensus by conditions on the properties
of {P (t)}.

In the present paper, we consider the noise effects on the consensus property of this group
of individuals, whose opinions are updated by

x(t + 1) = P (t)x(t) + w(t), t = 0, 1, 2, · · · , (26)

where w(t) is the noise process.
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The weight may reflect the individual’s trust when the opinions are diverse, and we can use
digraph to represent the trust relationships among all individuals. For convenience, we say i
has trust in j at time t if and only if Pij(t) > 0, and in this case we may draw an arc in digraph
Gt = (V, Et) describing the trust relationships, where V = {1, 2, · · · , n}.

By using Theorem 1, we have the following theorem.
Theorem 3 Consider the decision-making model (26), suppose that at each time step, every

individual trusts himself and gives a trust weight no less than α > 0 to anyone he trusts. Then
the opinions of all individuals will be robust consensus if and only if there exists a constant inte-
ger q > 0 such that for any t ≥ 0 the union of trust relationship digraphs {Gt+1, Gt+2, · · · , Gt+q}
has a spanning tree.

This theorem shows that if all individuals have a positive trust level α in at least one common
individual at any round of discussion, then their opinions will converge to a range bounded by
the level of the disturbance.

5 Conclusions

This paper studies the robust consensus problem for a class of multi-agent systems with
noises. We have used directed graphs to represent information exchanges among the agents,
and generalized the results of [6] to the case of directed graphs, with applications to a class
of soft control systems and a decision-making processes. An interesting point is that both the
troublesome connectivity condition and the noise influence can be treated easily by resorting to
a soft control. Of course, many interesting problems still remain open, which belong to further
investigation.
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