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Summary. In this paper, a new class of control systems based on non-equilibrium dynamic
games is introduced. Specifically, we consider optimization and identification problems mod-
eled by an infinitely repeated 2×2 generic games between a human and a machine, where the
machine takes a fixed and k-step-memory strategy while the human is more intelligent in the
sense that she can optimize her strategy. This framework is beyond the frameworks of both
the traditional control theory and game theory. By using the concept of state transfer graphs,
the optimal strategy of the human will be characterized and the win-lose situation will be dis-
cussed. These are carried out for three typical games, i.e., the Prisoner’s Dilemma game, the
Snowdrift game and the Battle-of-sex game, but with different win-loss results. The problem
of strategy identification will also be investigated.

21.1 Introduction

The current theoretical framework for control systems mainly aims at designing con-
trol laws for dynamical systems to achieve a certain prescribed performance (e.g. sta-
bility, optimality and robustness, etc.). In the control process, the systems (or plants)
to be controlled are completely “passive” in an essential way, in the sense that they
have no intension to compete with the controllers to achieve their own objectives or
“payoffs”. This is so even when the structures or parameters of the dynamical sys-
tems under control are uncertain and changing in time, because they are again of
“passive” character. In these cases, the controllers can be made adaptive by incorpo-
rating certain online estimation algorithms, see e.g. [1]-[6].

However, in many practical systems, especially social, economical, biological
and ecological systems, which involve adaptation and evolution, people often en-
counter with the so-called complex adaptive systems (CAS) as described in, e.g. [ 7].
In a CAS, as summarized in [8], a large number of components, called agents, in-
teract with and adapt to (or learn) each other and their environment actively, leading
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to some (possibly unexpected) macro phenomena called emergence. Despite of the
flexibility in modeling a wide class of complex systems by CAS, it brings great chal-
lenge to understand the evolution of a CAS mathematically, since the traditionally
used mathematical tools appear to give limited help in the study of CAS, as pointed
out in [8].

As an attempt towards initiating a theoretical investigation for dynamical sys-
tems when some parts of the plants to be controlled have intentions to gain their own
payoffs, we will, in this paper, consider a dynamic game framework that is somewhat
beyond the current control theoretical framework. Intuitively, we will consider a sim-
ple scenario where we have two heterogeneous agents (players) in a system playing a
repeated noncooperative game [9], where each agent makes its decision based on the
previous actions and payoffs of both agents, but the law for generating the actions of
one agent is assumed to be fixed. Thus, it may still be referred as a “control system”
from the other agent’s standpoint.

We would like to point out that, to the best of the authors’ knowledge, the above
non-equilibrium dynamic game framework seems to be neither contained in the tra-
ditional control theory, nor considered in the classical game theory. In fact, in the
classical framework of game theory, all agents (players) stand in a symmetric po-
sition in rationality, in order to reach some kind of equilibrium; whereas, in our
framework, the agents do not share a similar mechanism for decisions making and
do not have the same level of rationality. This difference is of fundamental impor-
tance, since in many complex systems, such as non-equilibrium economy (e.g. see
[10]), the agents are usually heterogenous, and they may indeed differ in either their
information obtained or their ability in utilizing it.

We would also like to mention that there have been considerable investigations in
game theory in relation to adaptation and learning, which can be roughly divided into
two directions. One is called evolutionary game theory (e.g. see [ 11] and [12] ) in
which all agents in a large population are programmed to use certain actions to play.
An action will spread or diminish according to the value of its corresponding payoff.
The other direction is called learning in game theory, see, e.g. [ 13], [14]], which
considers whether the long-run behaviors of individual agents will arrive at some
equilibrium [15]-[16]. In both the directions, all the agents in the games are equal in
their ability to learn or adapt to the strategies of their opponents. Some recent works
and reviews can be found in [17]-[21]. The dynamic game framework to be studied
in this paper is partly inspired by the evolutionary game framework in [ 22], where
the best strategy is emerged as a result of evolution, while our optimal strategy to be
studied in the next sections will be obtained by optimization and identification.

More specifically, we will consider infinitely repeated games between a human
(or “controller”) and a machine (or “plan”) based on a generic 2× 2 game model,
which includes standard games such as Prisoners’ Dilemma, Snowdrift, and Battle
of Sex. The machine’s strategy is assumed to be fixed with k-step memory, which
may be unknown to the human.

To this end, we need to analyze the state transfer graph for machine strategy with
k-memory. We will show that, similar to the Prisoners’ Dilemma game as studied re-
cently in [25], the optimal strategy for the current generic games that maximizes the
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human’s averaged payoff is also periodic after finite steps. However, different from
the result of [25], even for the case of k = 1, the human may lose to the machine while
optimizing his own averaged payoff in the Snowdrift game, and the similar conclu-
sion will depend on more conditions on the parameters of the Battle of Sex game.
When the machine’s strategy is unknown to the human, we will give a necessary and
sufficient condition for identifiability, and will investigate the consequences of iden-
tification in our non-equilibrium dynamic game problem. Finally, we will discuss
possible extensions to games with 2-players but with 3-actions.

The remainder of this paper is organized as follows. In Section 21.2, the main
theorems will be stated following the problem formulation; In Section 21.3, the state
transfer graph (STG) will be described and some useful properties will be studied.
The proofs of some theorems will be given in Section 21.4, and Section 21.5 ex-
tends the modeling to games of 2-players with 3-actions. Finally, Section 21.6 will
conclude the paper with some remarks.

21.2 Problem Statement and Main Results

Consider a generic 2× 2 game with its payoff matrix described in figure 21.1. This
matrix can be used to describe many standard games, either symmetric or asymmet-
ric, when the parameters satisfy certain conditions.In the symmetric case, the payoff
matrix can be specified as in figure 21.2.

(a22, b22)(a21, b21)

(a12, b12)

Player I 

(a11, b11)

B

A

BA

Player II 

Fig. 21.1. The payoff matrix of the generic 2 × 2 game

Player I 

(d, d) (b, c) 

(c, b) (a, a) 

B

A

BA

Player II 

Fig. 21.2. The payoff matrix of the symmetric 2 × 2 game
.
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One well-known example is the Prisoners’ Dilemma game where the parame-
ters satisfy c > a > b > d and 2 · a > b+ c, while the actions “A” and “B” mean
“Cooperate” and “Defect” respectively.

Another typical example is the Snow Drift game. In this game, two players, called
Player 1 and 2, can be two drivers who are on their way home, caught by the snow-
drift and thus must decide whether or not to shovel it. They simultaneously choose
their actions A or B, where “A” means the player will shovel the snow on the road,
and “B” means the player will not. Different action profiles will result in different
payoffs for the players. The parameters in the payoff matrix of this game satisfy
d = 0 < c < a < b.

As for the asymmetric case, the game of Battle of Sex is a typical example (see
figure 21.3). Here, the Player 1 can be assumed to be the wife while the Player
2 be the husband, with the action A may stand for watching the ballet while the
action B may stand for watching the football. The parameters are assumed to satisfy
a21 = b21 = 0, a11 > a12 > 0,a11 > a22 > 0, and b22 > b11 > 0,b22 > b12 > 0. Without
loss of generality, we may specify the matrix as follows where a > b > 0, a > c > 0:

Player I 

(b, a) (0, 0) 

(c, c) (a, b) 

B

A

BA

Player II 

Fig. 21.3. The payoff matrix of the Battle of Sex game

From the parameter inequalities, it is easy to compute the Nash Equilibria of these
games. Our purpose is, however, not to investigate the Nash equilibrium in the game
theory. Instead, we will consider the scenario where Player 1 has the ability to search
for the best strategy so as to optimize his payoff, while Player 2 acts according to
a given strategy. Clearly, this non-equilibrium dynamic game problem is different
from either the standard control problem or the classical game problem, and thus may
be regarded as a new class of “control systems”. A preliminary study was initiated
recently for the Prisoners’ Dilemma game in [25], where some basic notations and
ideas will be adopted in what follows.

Vividly, let Player 1 be a human (we say it is a “he” henceforth) while his oppo-
nent Player 2 is a machine. Assume they both know the payoff matrix. The action set
of both players is denoted as A = {A,B}, and the time set is discrete, t = 0,1,2, ....
At time t, both players will choose their actions and get their payoffs simultaneously.
Let h(t) denote the human’s action at t and m(t) the machine’s.

Define the history of time t, Ht , as the sequence of two players’ action profiles
before time t i.e.
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Ht � (m(0),h(0);m(1),h(1); ...;m(t− 1),h(t− 1)).

Denote the set of all histories for all time t as H =
⋃

t Ht .
As a start, we consider the case of pure strategy and define the strategy of either

player as a function f : H →A . In this paper, we will further confine the machine’s
strategy with finite k-memory as follows:

m(t + 1) = f (m(t− k+ 1),h(t− k+ 1); ...;m(t),h(t)) (21.1)

which, obviously, is a discrete function from {0,1} 2k to {0,1}, where and hereafter,
0 and 1 stands for A and B respectively. Moreover, the following mapping can estab-
lish a one-to-one correspondence between the vector set {0,1} 2k and the integer set
{1,2, ......22k}:

s(t) =
k−1

∑
l=0

{22l+1 ·m(t− l)+ 22l ·h(t− l)}+ 1 (21.2)

For convenience, in what follows we will denote s i = i and call it a state of the game
under the given strategies.

In the simplest case where k = 1, the above mapping reduces to

s(t) = 2 ·m(t)+ h(t)+ 1, (21.3)

which establishes a one-to-one correspondence between the value set s(t) ∈ {
s1,s2,

s3,s4
}

with si = i and (m(t),h(t)):

s(t)  (m(t),h(t)) 

S1    (0,0)

S2  (0,1) 

S3    (1,0)

S4  (1,1) 

and the machine strategy (21.1) can be written as

m(t + 1) = f (m(t),h(t))

= a1I{s(t)=s1}+ ...+ a4I{s(t)=s4}

=
4

∑
i=1

aiI{s(t)=si} (21.4)

which can be simply denoted as a vector A = (a1,a2,a3,a4) with ai being 0 or 1.
Given any strategies of both players together with any initial state, the game will

be carried on and a unique sequence of states {s(1),s(2), ...} will be produced. Such
a sequence will be called a realization [15].
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Obviously, each state s(t) corresponds to a pair (m(t),h(t)), and so by the def-
inition of the payoff matrix, the human and the machine will obtain their payoffs,
denoted by p(s(t)) and pm(s(t)), respectively. Let us further define the extended
payoff vector for the human as P(s(t)) � (p(s(t)),w(s(t))), where w(s(t)) indicates
the relative payoff to the machine at t, i.e.,

w(s(t)) = sgn{p(s(t))− pm(s(t))} � w(t), (21.5)

where sgn(·) is the sign function and sgn{0}= 0.
For the above infinitely repeated games, the human may only observe the pay-

off vector P(s(t)), but since there is an obvious one-to-one correspondence between
P(s(t)) and s(t), we will assume that s(t) is observable to the human at each time t
throughout the paper.

Now, for any given human and machine strategies with their corresponding real-
ization, the averaged payoff (or ergodic payoff) [23] of the human can be defined
as

P+
∞ = lim

T→∞

1
T

T

∑
t=1

p(t). (21.6)

In the case where the limit actually exists, we may simply write P+
∞ = P∞. Similarly,

W+
∞ can be defined.

The basic questions that we are going to address are as follows:

1. How can the human choose his strategy g so as to obtain an optimal averaged
payoff?

2. Is the human’s optimal strategy necessarily gives a payoff that is better than the
machine’s?

3. Can the human still obtain an optimal payoff when the machine’s strategy is
unknown to him?

The following theorems and proposition will give some answers to these questions.

Theorem 21.2.1. Consider the generic 2× 2 game described in Fig 1, and any ma-
chine strategy with finite k-memory. Then, there always exists a human strategy also
with k-memory, such that the human’s payoff is maximized and the resulting system
state sequence {s(t)} will become periodic after some finite time.

The proof of Theorem 21.2.1 is just the same as that in [25] for the case of the
Prisoners’ Dilemma game, so we refer the readers to [25] for the proof details. Also,
One can see from the proof that the optimal payoff values will remain the same for
different initial values of the state transfer graph (STG), as long as they share the
same reachable set. In particular, this observation is true when the STG is strongly
connected, see Section 21.3 for the definition of STG.

Moreover, as will be illustrated by Example 21.3.1, Theorem 21.2.1 will enable
us to find the optimal human strategy by searching on the STG with considerably re-
duced computational complexity. Furthermore, since Theorem 21.2.1 only concerns
with the properties of the optimal human trajectory, a natural question is: whether or
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not the human’s optimal averaged payoff value is better than that of the machine’s.
This is a subtle question, and will be addressed in the following theorem.

Theorem 21.2.2.

1. For the standard Prisoners’ Dilemma game, the optimal strategy of the human
will not lose to any machine whose strategy is of 1-memory. However, when
k > 1, there exists such machine strategies, that the human’s optimal strategy
will lose to them.

2. For the Snowdrift game, there exists such a machine strategy with 1-memory,
that the optimal strategy of the human will lose to the machine.

3. For the game of Battle of Sex, whether or not the human will always win the
machine with 1-memory is indefinite, i.e., it depends on more conditions on the
payoff parameters.

Remark 21.2.1.

(1) For the Prisoners’ Dilemma game, when k ≥ 2, the game becomes more com-
plicated and subtle. As demonstrated in Section 21.4 of [25], whether the hu-
man can win while getting his optimal payoff depends on delicate relationships
among s, p,r, t.

(2) Theorem 21.2.2 (2) will remain valid for the machine strategy with k-memory in
general, since k = 1 is a special case.

Remark 21.2.2. As has been noted in [25], it is the game structure that brings about a
somewhat unexpected win-loss phenomenon: such an one-sided optimization prob-
lem (for the human) may not always win even if the opponent has a fixed strategy.
Similar phenomena do exist practically, but, of course, cannot be observed in the tra-
ditional framework of optimal control. We would also like to note that the differences
among the results of the three games can be attributed to the differences in the game
structures.

As will be shown in Section 21.3, when the machine strategy is known to the human,
the human can find the optimal strategy with the best payoff. A natural question is:
What if the machine strategy is unknown to the human?

One may hope to identify the machine strategy within finite steps before making
optimal decision. A machine strategy which is parameterized by a vector A (like in
(21.4) for the case of k = 1), is called identifiable if there exists a human strategy
such that the vector A can be constructed from the corresponding realization and the
initial state.

Proposition 21.2.1. A machine strategy with k-memory is identifiable if and only if
its corresponding STG is strongly connected.

Proposition 21.2.1 is somewhat intuitive, which can be used to identify non-identifi-
able machine strategies. Consider the simple case where k = 1. Then it is easy to see
that the STG corresponding to the machine strategy A = (0,0,∗,∗) or A = (∗,∗,1,1)
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will not be strongly connected, and so will not be identifiable by Proposition 21.2.1.
In fact, as can be easily seen, only part of the entries of such A = (a 1,a2,a3,a4) can
be identified from any given initial state.

If the machine makes mistakes with a tiny possibility, however, the machine strat-
egy may become identifiable. For example, if it changes its planed decision with a
small positive probability to any other decisions, then the corresponding STG will
be a Markovian transfer graph which is strongly connected. Hence, all strategies will
be identifiable.

To illustrate how to identify the machine strategy, let us again consider the case of
k = 1. In this case, one effective way for the human to identify the machine strategy
is to randomly choose his action at each time. One can also use the following method
to identify the parameters:

h(t + 1) =

⎧
⎪⎨

⎪⎩

0 as(t) is not known at time t,

or as(t) is known,but a2·as(t)+1 is not;

1 otherwise.

(21.7)

Theorem 21.2.3. For any identifiable machine strategy with k = 1, it can be identi-
fied using the above human strategy with at most 7 steps from any initial state.

Remark 21.2.3. For non-identifiable machine strategies, one may be surprised by the
possibility that identification may lead to a worse human’s payoff. We have shown
that this is true for the PD game [25]. It is true for the Snow drift game too. For
example, if the machine takes the non-identifiable strategy A = (0,1,1,1), then by
acting with “A” blindly, the human can get a payoff a by the payoff matrix at each
time. However, once he tries to identify the machine’s strategy, he may use the “B”
to probe it. Then the machine will be provoked and act with “B” forever. That will
lead to a worse human payoff c < a afterwards.

21.3 The State Transfer Graph

In order to provide the theoretical proofs for the main results stated in the above
section, we need to use the concept of State Transfer Graph (STG) together with
some basic properties, as in the paper [25]. Throughout this section, the machine
strategy A = (a1,a2,a3,a4) is assumed to be known.

Given an initial state and a machine strategy, any human strategy {h(t)} can
lead to a realization of the states {s(1),s(2), ...,s(t), ...} . Hence, it also produces a
sequence of human payoffs {p(s(1)), p(s(2)), ..., p(s(t)), ...}. Thus the Question 1)
raised in Section 21.2 becomes to solve

{h(t)}∞t=1 = argmaxP+
∞

among all possible human strategies.
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In order to solve this problem, we need the definition of STG, and we refer to
[24] for some standard concepts in graph theory, e.g. walk, path and cycle. We will
only consider finite graphs (with finite vertices and finite edges) in the sequel.

Let G = (V,E) be a directed graph with vertex set V and edge set E .

Definition 21.3.1. A walk W is defined as an alternating sequence of vertices and
edges, like v0e1v1e2...vl−1elvl , abbreviated as v0v1...vl−1vl, where ei = vi−1vi is the
edge from vi−1 to vi, 1≤ i≤ l. The total number of edges l is called the length of W.

If v0 = vl, then W is called closed, otherwise is called open.

Definition 21.3.2. A walk W, v0v1...vl−1vl , is called a path (directed), if the vertices
v0,v1, ...vl are distinct.

Definition 21.3.3. 1 A closed walk W: v0v1...vl−1vl, v0 = vl, l ≥ 1, is called a cycle
if the vertices v1, ...,vl are distinct.

Definition 21.3.4. A graph is called strongly connected if for any distinct vertices
vi,v j, there exists a path starting from vi and ending with v j.

Now, we are in a position to define the STG.
Note that any given machine strategy of k-memory, together with a human strat-

egy, will determine an infinite Walk representing the state transfer process of the
game.

Definition 21.3.5. A directed graph with 22k vertices {s1,s2, ......s22k} is called the
State Transfer Graph (STG), if it contains all the possible infinite walks correspond-
ing to all possible human strategies, that equals to say, it contains all the possible
one-step path or cycle in the walk.

In the case of k = 1, for a machine strategy A = (a1,a2,a3,a4), the STG is a directed
graph with the vertices being the state s(t) ∈ {s1,s2,s3,s4} with si = i.

An edge sis j exists if s(t + 1) = s j can be realized from s(t) = si by choosing
h(t + 1) = 0 or 1. Since si = i, by (21.3) and (21.4), that means,

the edge sis j exists⇔ s j = 2 ·ai+ 1 or s j = 2 ·ai+ 2 (21.8)

and the way to realize this transfer is taking human’s action as h = (s j−1)mod 2 by
(21.3).

By the definition above, one machine strategy leads to one STG, and vice versa.

Definition 21.3.6. A state s j is called reachable from the state si, if there exists a path
(or cycle) starting from si and ending with s j. All the vertices which are reachable
from si constitute a set, called the reachable set of the state si. A STG is called
strongly connected if any vertex si has all vertices in its reachable set.

1The Definition 21.3.3 of cycle is a little different from [24]. We ignore the constraint that
the length l ≥ 2 and include ‘loop’ in the concept of “cycle”.
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Thus, the reachability of s j from si means that there exists a finite number of human
actions, such that the state s(·) can be transferred from s i to s j with the same number
of steps.

Furthermore, we need to define the payoff of a walk on STG as follows:

Definition 21.3.7. The averaged payoff of an open walk W = v0v1...vl on a STG,
with v0 �= vl, is defined as

pW � p(v0)+ p(v1)+ ...+ p(vl)

l + 1
, (21.9)

and the averaged payoff of a closed walk W = v0v1...vl, with v0 = vl, is defined as

pW � p(v0)+ p(v1)+ ...+ p(vl−1)

l
. (21.10)

Now, we can give some basic properties of STG below.

Lemma 21.3.1. For a given STG, any closed walk can be divided into finite cycles,
such that the edge set of the walk equals the union of the edges of these cycles. In
addition, any open walk can be divided into finite cycles plus a path.

Lemma 21.3.2. Assume that a closed walk W = v0v1...vL with length L, can be
partitioned into cycles W1,W2, ...,Wm, m ≥ 1, with their respective lengths being
L1,L2, ...,Lm. Then, pW , the averaged payoff of W can be written as

pW =
m

∑
j=1

Lj

L
p j, (21.11)

where p1, p2, ..., pm are the averaged payoffs of the cycles W1,W2, ...,Wm, respec-
tively.

By Theorem 21.2.1, the state of the repeated games will be periodic under the optimal
human strategy. This enables us to find the optimal human strategy by searching on
the STG, as will be illustrated in the example below. Similar to [25], we give an
example for the Snowdrift game.

Example 21.3.1. Consider the “ALL A” strategy A= (0,0,0,0) of the machine. Then
the STG can be drawn as shown in Figure 21.4, in which s1(a,0) means that under
the state s1, the human gets his payoff vector P(s1) = (p(s1),w(s1)) = (a,0). The
directed edge s1s2 illustrates that if the human takes action D, he can transfer the
state from s1 to s2 with payoff vector (b,1). Others can be explained in the same
way. Now we take the initial state as s(0) = s3 = (c,−1).Then the reachable set of
s3 is {s1,s2}, and we just need to search the cycle whose vertices are on this set.

Obviously, there are three possible cycles W1 = {s1}, W2 = {s2}, W3 = {s1,s2}
and by (21.10), the averaged payoffs of the human are respectively p W1 = p(s1) = a,

pW2 = p(s2) = b, pW3 =
p(s1)+p(s2)

2 = a+b
2 .

Obviously, the optimal payoff lies in the cycle W2 = {s2}. To induce the system
state enters into this cycle, the human just take h(1) = 1. Then by taking h(t) = 1, t ≥
2, the optimal state sequence s(t) = s2, t ≥ 1 will be obtained from s(0) = s3.
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S1(a, 0) S2(b, 1) 

S3(c, -1) S4(0, 0) 

Fig. 21.4. STG of ALL A machine strategy A = (0,0,0,0) in Snowdrift game

Remark 21.3.1. The search procedure above can be accomplished in the general case
by an algorithm which is omitted here for brevity, and it can also be seen that for any
given machine strategy with k-memory, there always exists a search method to find
the optimal strategy of the human. Moreover, the optimal payoff remains the same
when the initial state varies over a reachable set.

21.4 Proofs of the Main Results

First of all, it is not difficult to see that in the current general case, Theorem 21.2.1,
Proposition 21.2.1 and Theorem 21.2.3 can be proven along the proof lines of those
in [25], and so the details will be omitted here.

Remark 21.4.1. It is worth mentioning that the form of the averaged payoff criteria is
important in Theorem 21.2.1. For other payoff criteria, similar results may not hold.

As for the proof of Theorem 21.2.2, the first conclusion on the Prisoners’ Dilemma
game can be seen in [25], and so we just need to prove the conclusions (2) and (3).

Proof of Theorem 21.2.2 (2).
The conclusion will be proven if we can find the required machine strategy. To this
end, we just need take the “ALL B” strategy (1,1,1,1) as the machine’s strategy.
Then starting from any initial state, to optimize his payoff value, the human has to
take the action “A” always, which will lead to a payoff c for him while the machine
will get b. Hence he will lose.

Proof of Theorem 21.2.2 (3).
For the game of the Battle of Sex, consider the following two cases:

Case 1: when b > c, the pure Nash equilibria of the game are the profile (A,A) and
(B,B);

Case 2: when b < c, the pure Nash equilibrium of the game is the profile (A,B).

Then in Case 1, if the machine takes the “Always B” strategy (1,1,1,1), then the
optimal human strategy will always act “B” too. Thus the state will repeat the profile
(B,B) and the human will get a payoff of b while the machine get a, which implies
that the human will lose. In Case 2, similar to the proof of Theorem 21.2.2 in [25],
we can prove that the human cannot lose to the machine in this case. This completes
the proof of Theorem 21.2.2. �
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Remark 21.4.2. Note that all the three games in Theorem 21.2.2 have some char-
acters about “need for coordination”, and the differences in the three assertions of
Theorem 21.2.2 result from the different game structures. Specifically, the Snow-
drift game has a more cruel assumption, i.e. the player must never choose “both B”
which is the worst case for both, while the “A” player have to sacrifice in a (A,B)
profile. For the Battle of Sex game, we can imagine that the parameters may mea-
sure whether the two players care more about the time they share or care more about
their own interest. If they care more about the sharing time, i.e. when b > c, then the
selfisher one can use this feature to win.

21.5 Extensions to 3×3 Matrix Games

In this section, we consider possible extensions of the results in the previous sections.
Consider the 2-player 3-action games, in which there are 2 players while either one
has three actions. The payoff matrix is then as in figure 21.5

B

(a33, b33)(a32, b32)(a31, b31)

(a23, b23)(a22, b22)(a21, b21)

(a13, b13)(a12, b12)

C

(a11, b11)

B

A

CA

Player II 

Player I 

Fig. 21.5. The payoff matrix of 2-player 3-action game

Similar to Section 21.2, we can formulate a repeated game and describe the corre-
sponding dynamic rules by a STG. To this end, we need to define the system state
first. For the 1-memory machine strategy, there are 3 actions for each player, which
can be denoted as 0,1,2 like a ternary signal. So there are 3×3 = 9 1-memory histo-
ries, and thus we can define the state as

s(t) = 3 ·m(t)+ h(t)+ 1, (21.12)

and the machine strategy can be written as

m(t + 1) = f (m(t),h(t)) =
9

∑
i=1

aiI{s(t)=si} (21.13)

Thus, the STG with have 9 vertices and can be formed and analyzed by similar
methods as those in Section 21.3. It can be easily seen that Theorem 21.2.1 and
Proposition 21.2.1 will hold true in this case since the proofs only use the finite
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state information. However, Theorem 21.2.2 must be checked for specific games and
Theorem 21.2.3 must be modified for this kind of 2-player 3-action games. Also,
extensions to 2-player n-action games can be carried out in a similar way.

A well-known example of 2-player 3-action games is the “Rock-Paper-Scissors”
game whose payoff matrix can be specified by as in figure 21.6. This game is a zero-

paper

(-1, 1) 

(0, 0) (1, -1) (-1, 1) 

(-1,-1)(0,0)(1, -1) 

(1, -1) (0, 0)

scissors 

paper

rock

scissors rock

Player II 

Player I 

Fig. 21.6. The payoff matrix of “Rock-Paper-Scissors” game

sum game, and the relationship between the optimality and the wining of the human
is consistent. In fact, the human can select one from the three actions to beat his
opponent, and the game is like history independent. So, once the machine’s strategy
is known, the human can always get his optimal payoff and win at the same time.

21.6 Concluding Remarks

In an attempt to study dynamical control systems which contain game-like mecha-
nisms in the system structure, we have, in this paper, presented a preliminary inves-
tigation on optimization and identification problems for a specific non-equilibrium
dynamic game where two heterogeneous agents, called “Human” and “Machine”,
play repeated games modeled by a generic 2× 2 game. Some typical games includ-
ing the Prisoner Dilemma game, Snowdrift game and the Battle of Sex game have
been studied in certain detail. By using the concept and properties of the state transfer
graph, we are able to establish some interesting theoretical results, which have not
been observed in the traditional control framework. For example, we have shown that
the optimal strategy of the game will be periodic after finite steps, and that optimiz-
ing one’s payoff solely may lose to the opponent eventually. Possible extensions to
more general game structures like 2-player 3-action games are also discussed. It goes
without saying that there may be many implications and other extensions of these re-
sults. However, it would be more challenging to establish a mathematical theory for
more complex systems, where many (possibly heterogeneous) agents interact with
learning and adaptation, cooperation and competition, etc.
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