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State Observability and Observers of
Linear-Time-Invariant Systems Under Irregular

Sampling and Sensor Limitations
Le Yi Wang, Chanying Li, G. George Yin, Lei Guo, and Cheng-Zhong Xu, Senior Member, IEEE

Abstract—State observability and observer designs are investi-
gated for linear-time-invariant systems in continuous time when
the outputs are measured only at a set of irregular sampling time
sequences. The problem is primarily motivated by systems with
limited sensor information in which sensor switching generates ir-
regular sampling sequences. State observability may be lost and
the traditional observers may fail in general, even if the system has
a full-rank observability matrix. It demonstrates that if the orig-
inal system is observable, the irregularly sampled system will be
observable if the sampling density is higher than some critical fre-
quency, independent of the actual time sequences. This result ex-
tends Shannon’s sampling theorem for signal reconstruction under
periodic sampling to system observability under arbitrary sam-
pling sequences. State observers and recursive algorithms are de-
veloped whose convergence properties are derived under poten-
tially dependent measurement noises. Persistent excitation condi-
tions are validated by designing sampling time sequences. By gen-
erating suitable switching time sequences, the designed state ob-
servers are shown to be convergent in mean square, with prob-
ability one, and with exponential convergence rates. Schemes for
generating desired sampling sequences are summarized.

Index Terms—Irregular sampling, mean square convergence,
observability, persistent excitation, quantized sensors, state ob-
servers, strong convergence.

I. INTRODUCTION

S TATE estimation of linear-time-invariant systems is
studied when output observations are sampled on a set

of non-periodic and irregular sampling times and the sampled

Manuscript received January 06, 2009; revised June 07, 2009; accepted Feb-
ruary 14, 2011. Date of publication March 03, 2011; date of current version
November 02, 2011. The work of L. Y. Wang was supported in part by the Na-
tional Science Foundation under DMS-0624849, and in part by the Air Force
Office of Scientific Research under FA9550-10-1-0210. The work of G. Yin was
supported in part by the National Science Foundation under DMS-0907753, and
in part by the Air Force Office of Scientific Research under FA9550-10-1-0210.
The work of C. Xu is supported in part by the National Science Foundation
under DMS-0624849, CNS-0702488, CRI-0708232, CNS- 0914330, and CCF-
1016966. Recommended by Associate Editor P. Colaneri.

L. Y. Wang and C.-Z. Xu are with the Department of Electrical and Com-
puter Engineering, Wayne State University, Detroit, MI 48202 USA (e-mail:
lywang@wayne.edu;czxu@indigo.eng.wayne.edu).

C. Li is with the Department of Mechanical Engineering, The University of
Hong Kong, Hong Kong, China (e-mail: chanying@hku.hk; cli@eng.wayne.
edu).

G. Yin is with the Department of Mathematics, Wayne State University, De-
troit, MI 48202 USA (e-mail: gyin@math.wayne.edu).

L. Guo is with the Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, 100190 Beijing, China (e-mail: Lguo@amss.ac.cn,
lguo@iss.ac.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2011.2122570

values are corrupted by possibly dependent noises. State ob-
servability may be lost and the traditional observers may fail
in general, even if the system has a full-rank observability
matrix. This paper contributes to this problem in several related
aspects: 1) Observability of systems under arbitrary sampling
time sequences is established. 2) An observer design procedure
is introduced and recursive algorithms are developed. 3) The
critical issue of persistent excitation conditions for convergence
of state estimation under irregular sampling is resolved. 4)
Convergence properties and convergence rates of the designed
state observers are derived.

Irregular sampling time sequences may be generated pas-
sively due to event-triggered sampling or low-resolution signal
quantization, or actively by input control or threshold adap-
tation under binary-valued sensors. While synchronized peri-
odic sampling has been extensively studied, non-uniform sam-
pling has emerged from many applications. Studies on funda-
mental properties of non-uniform sampling remain an active
area of research, see [9] and the references therein for some re-
cent work in this area. Our problem here was initially investi-
gated in [35]. The current paper demonstrates that if the con-
tinuous-time system is observable, then within any finite time
interval, there exists a critical frequency such that as long as
the density of sampling points exceeds the frequency, the initial
state can be uniquely reconstructed, regardless the actual sam-
pling time sequences. In this sense, it resolves completely the
issue of observability of sampled systems with arbitrary sam-
pling times. The result can be compared to the Nyquist fre-
quency of a signal in Shannon’s sampling theorem under syn-
chronized sampling for signal reconstruction.

Binary sensors are used in many practical systems and
systems involving communication channels. Due to sensor
nonlinearity, the state estimation becomes a nonlinear fil-
tering problem. The added difficulty is that the nonlinearity
is non-smooth and has only two output values. As a result,
methodologies that rely on local linearization or small perturba-
tion analysis such as extended Kalman filters are not applicable.
Also, under irregular sampling, the sampled systems are time
varying, and cannot be lifted to become linear-time invariant
systems. Observer design methods for linear-time-invariant
systems such as deadbeat design, pole placement,
filtering [6], [8], [16], [28], etc., cannot be directly applied.
Early work on optimal nonlinear filtering can be traced back
to Stratonovich [30]. The first rigorous derivation was given
by Kushner in his seminal paper [19]; see also [20]. Such
equations are referred to as Kushner’s equations. Subsequently,
the conditional law of the filter was further developed by Zakai
[39], later referred to as Zakai’s equations. Nowadays, one
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of the well-known stochastic PDEs for nonlinear filters is the
so-called Duncan-Mortensen-Zakai equation. One main chal-
lenge faced by nonlinear filtering problems is that the filters are
generally infinite dimensional. Much effort has been devoted
to finding finite dimensional filters. However, to date, there are
only a handful of finite dimensional nonlinear filters known in
existence, including the Wonham filter, Benes filter, etc.

To deal with nonlinear and time-varying systems and random
noises, we use a time domain formulation in a stochastic frame-
work. The main challenges in these problems include: (1) When
will the sampled system be observable under irregular sampling
sequences? (2) How can the states be estimated on the basis of
irregular sampling points? (3) How should the set of sampling
times be selected to ensure that persistent excitation conditions
for state estimation are validated? (4) What convergence proper-
ties can be derived for the state estimates? This paper focuses on
resolving these issues. Since this paper deals with convergence
analysis in stochastic systems, it is related to many classical
treatments of similar topics. We cite [12], [13], [15], [21], [29]
for their relevance to this paper, but emphasize that state observ-
ability under irregular sampling, state estimation with binary
sensors, active observer design, convergence under mixing-type
sampling disturbances, and convergence rates of state observers
under irregular sampling schemes mark departure of our results
from traditional ones.

The rest of the paper is organized as follows. Section II
formulates the state observation problems pursued in this
paper. Section III focuses on observability of systems under
arbitrary sampling times. The main result (Theorem 1) re-
solves this issue completely. The observer design is studied
in Section IV. An observer structure is introduced first, which
includes a discrete state estimator and a continuous-time state
observer with updating schemes. It is shown that if the original
system is observable, then the observer can be constructed and
implemented. Recursive algorithms are derived. After certain
normalization steps in expressing estimation errors, Section V
investigates conditions on sampling time sequences that will
validate persistent excitation conditions for convergence of
state estimation. Section VI is devoted to convergence analysis.
Section VI-A establishes convergence properties of the state
observer in a finite horizon. Mean-squares (MS) convergence
and strong (with probability one) convergence are established.
Section VI-B deals with convergence analysis of the state ob-
server over an infinite horizon. By generating suitable switching
time sequences, we show that not only MS and strong conver-
gence properties can be guaranteed, but also the convergence
is exponentially fast. Generation of irregular sampling-time se-
quences is discussed in Section VII, including passive types of
signal quantization and event-triggered sampling, and strategies
of binary-valued sensors with active input control or threshold
adaptation. An illustrative example is provided in Section VIII.
Finally, some concluding remarks are given in Section IX.

Some related results on identification, state estimation, and
fault detection using binary or quantized outputs can be found
in [17], [31], [33]–[36]. In relation to the existing knowledge on
observability of sampled systems, we refer the reader to stan-
dard textbooks on digital control systems; see, e.g., [7], [18],

[24] for classical synchronized sampling schemes on linear sys-
tems, and [1], [11] on nonlinear systems. Shannon’s sampling
theorem is a fundamental result on digital signal processing, see
[25]. References [26], [31] contain more recent studies on ob-
servability of sampled systems. Irregular sampling may occur
due to event triggered sampling [3], [23] or communication un-
certainty and interruptions [12]. Some preliminary results of this
paper were reported in [37], [38].

II. PROBLEM FORMULATION

Consider an MISO (multi-input-single-output) linear time-in-
variant system

(1)

where , , and for , is
the control input, is the state, and is the
system output. The initial state is unknown. We are interested in
estimation , from some limited observations on . Here,
we limit our studies to MISO systems for notational simplicity,
although technically inclusion of MIMO cases is quite straight-
forward. An MIMO system provides more measurement infor-
mation than MISO systems. Consequently, if one output is suf-
ficient for state estimation, so will be its MIMO counterpart.

In our setup, the output is only measured at a sequence of
sampling time instants with measured values (using
the notation is non standard, but consistent with the inter-
pretation that it is the threshold value of a binary sensor) and
noise

(2)

We would like to estimate the state from information on
, and . In general, the sampling-time sequence

is irregular and non-periodic. In this paper, the switching time
sequence will be deterministic. Generation of such irregular
sampling-time sequences may be passive as in event-triggered
sampling and low-resolution signal quantization. Here, we
are mostly motivated by state estimation problems with bi-
nary-valued observations. Active control of inputs or thresholds
causes system outputs to cross sensor thresholds and the sensor
outputs to switch values, generating an irregular sampling-time
sequence. As a result, the sequence will be interchange-
ably called “sampling-time sequence” or “switching-time
sequence.” Generation of such sequences will be discussed in
Section VII.

It is obvious that state estimation will not be possible if the
system is not observable. Also, in this paper, is allowed to be
dependent. These are stated in the following assumptions.

Assumption 1: The following conditions hold.
(a) The system is observable, i.e.,

is full rank.
(b) The sensor noise is a stationary sequence of

-mixing random variables and .
Remark 1: We refer the reader to [32, p. 101] and [2, p. 1466]

for a definition of mixing processes. Mixing processes are es-
sentially those whose remote past and distant future are asymp-
totically independent; different types of mixing processes are
characterized by their mixing measures. Loosely speaking, a
mixing process is characterized by using covariance as a mixing
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measure. The class of mixing processes include i.i.d. se-
quences, stationary martingale difference sequences, and certain

-mixing processes [10, Section 7.2]. For example, a sequence
of i.i.d. random variables (discrete-time ’white noise’) is

-mixing with covariance for . A moving-av-
eraging process of order driven by a ’white noise’ is also
a -mixing process, where the covariance becomes 0 for any
time lag larger than . Likewise, if is a discrete-time Markov
chain that is irreducible and aperiodic with a finite state space,
then it is also a -mixing process. Here the covariance decays
exponentially fast. In addition, -mixing also includes Markov
chains with countable spaces satisfying certain conditions, as
well as many other infinitely correlated noises as long as their
correlations decay sufficiently fast. We should emphasize that
our results show that the same convergence properties and con-
vergence rates for i.i.d. noises continue to hold under mixing
processes, as such they are not more conservative. For the prob-
lems of this paper, practical importance of mixing processes
stems from the fact that if an i.i.d. noise passes through a com-
munication channel with finite memory, or infinite but stable
decaying memory, the received signal will be corrupted by
mixing noises.

To simplify notation, in some proofs we adopt the convention
of using a generic positive constant to represent unspec-
ified positive constants. Hence, for any , . This
simplifies expressions where actual values of some positive con-
stants are irrelevant to the conclusions.

III. OBSERVABILITY OF IRREGULARLY SAMPLED SYSTEMS

We start with the system in (1) with noise-free observations
(so, in this section). The initial state is un-
known. Suppose that the output of the system is sampled at a set
of time instances , generating
the set of observations . Observ-
ability of the sampled system deals with reconstruction of the
state from output observations . Since the system con-
tains no uncertainty and the input is known, this is equivalent to
reconstruction of the initial state from .

Definition 1: (i) System (1) is said to be observable if
can be uniquely determined from any observations on

. (ii) For a given time interval and an integer , the
system is said to be -sample observable if the system is
observable for any with , .

We use some examples from [7], [27] to illustrate the key is-
sues involved in observability of the irregularly sampled system.
Suppose the system contains complex eigenvalues. Then for
some non-zero initial state , the output will be zero infin-
itely often, say, at , . If these are the actual sam-
pling times, the output samples will be zeros and provide no in-
formation about , rendering the sampled system unobserv-
able with respect to such observation sets. On the other hand, it
is well understood that for any given -dimensional observable
system, there exists a sufficiently small time interval such
that if sampling times , then the system is always

observable. In other words, the system is -sample observ-
able. However, this is not the case when is not small. The main
goal of this section is to establish a general result that resolves
the issues illustrated in these examples.

The main result of this section is the following theorem. Sup-
pose the matrix in (1) has eigenvalues , . De-
note , where is the imagi-
nary part of . For a given time interval , define

(3)

Theorem 1: Suppose that Assumption 1 (a) is true. Given
, if , the system in (1) is -sample observable.

Remark 2: This theorem asserts that for a given , if all
sampling points are confined in and the number of sam-
ples exceeds , the initial state can always be uniquely deter-
mined from , regardless the actual sampling times. In some
sense, the condition on sampling in Theorem 1 is the weakest re-
striction on a sampling scheme to reconstruct . Asymptoti-
cally for large , , which is independent
of the system order . One may compare this with the Nyquist
frequency of Shannon’s sampling theorem for signals. Suppose
the largest imaginary part of the eigenvalues of is . Then,

and is precisely the Nyquist frequency
in Hz, if one interprets as the bandwidth of the system. The
result here is more general since it does not require the sampling
scheme to be periodic. In the special case of synchronized sam-
pling and pure imaginary eigenvalues, the sampled values may
be all zeros if the sampling frequency is below (see [27] for
details), implying that the observability is lost. In other words,

is an asymptotically tight bound for large .
The remainder of this section is devoted to proving The-

orem 1. Without loss of generality, we may focus only
on the zero-input relationship . Under

sampling times , we have
with ,

, which can be written as , where

...
... (4)

Consequently, the system is observable if and only if is
full rank.

We express in terms of the matrices ,
, where

can be solved by the Lagrange-Her-
mite interpolation (when the eigenvalues of are all distinct,
the method is called the Sylvester interpolation) [14]. Suppose

has distinct eigenvalues , of multiplicity ,
respectively. Here, . Define the modes of the
matrix by

(5)
It is noted that although in engineering, it is customary to

use real-valued expressions for the modes of matrix such as
in place of , devel-

opment of our results in this section is simplified when the orig-
inal eigenvalues (possibly complex) are used.

Then, for any given , the characteristic polynomial of
is . By [14, Section 6.1.14, pp. 390],
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there is a polynomial , which satisfies the
interpolation conditions: for and

(6)

The coefficients , , depending on , are uniquely
determined by (6). is said to interpolate and its deriva-
tives at the roots of .

Let , . Then, (6) can be
rewritten as

(7)

where the matrix depends on , and their
multiplicities and is invertible due to the uniqueness of solutions
of (6) (see [14, pp. 390]). From the proof of [14, Theorem 6.2.
9(a)], one has

(8)

It should be pointed out that although determination of
from (6) is unique, there may be other that satisfies (8)
but not (6). In fact, in the proof of Theorem 6.2.9(a) of [14],

is selected from interpolation of and its derivatives at
the roots of the minimal polynomial of . However, here
interpolates and its derivatives at the roots of , which
still leads to by the same argument as in [14, pp.
387]. This indicates that by choosing different polynomials that
annihilate , one may obtain different expressions of in the
form of (8). Here we use the particular expression (7), where
is invertible.

For any given , is a linear combination
of the modes of . As a result, it belongs to the class of exponen-
tial polynomials: for any and ,
let

(9)

where , are the distinct eigenvalues of
with multiplicity and . Recall that a nonlinear

function is said to be non-trivial if . In reference
to , . Since the elements of are linearly
independent, for any , is non-trivial. The following key
lemma on the number of zeros of exponential polynomials can
be derived from [5, Theorem 3.2.47]. Let be defined as in
(3).

Lemma 1: The number of zeros in of a non-trivial
exponential polynomial defined in (9) is bounded by

.
The next lemma is concerned with the rank of in (4).
Lemma 2: If the system in (1) is observable and ,

then is full rank.
Proof: Suppose has distinct eigenvalues of multi-

plicity , . From (8), we have

...
(10)

For any sampling times , , define

... (11)

Then

(12)

Since is full rank, we only need to show that is full rank.
However, by (7), , which implies

(13)

where

... (14)

Now, by the previous argument, is full rank. Consequently, it
remains only to show that is full rank.

For any and , define . Since the
elements of are independent, is non-trivial.

... means that has zeros in . However,

by Lemma 1, the number of zeros of is bounded by
. This contradiction implies that . Since is arbitrary,

this proves that is full rank. This completes the proof.
Proof of Theorem 1: The system output can be written as

where is known. For sampling times with
, can be expressed as

, where is known and is defined in
(4). Since the system is observable and , by Lemma 2,

is full rank. Consequently, can be determined uniquely
from .

IV. OBSERVER DESIGN

We now study observer design when the output measure-
ments are noise corrupted.

A. Observers

For both and , the solution to system (1) can
be expressed as .
Suppose is a sequence of sampling times.
The observer is to estimate , before the
next sampling occurs at .

Since new information about the state is obtained only at the
next sampling time , a discrete-time state estimator will first
generate an estimate of the state at , which will be used to
update the state estimate to , and then the observer
will run open loop in .
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For , we have

Since the second term is known, it will be denoted by
. This leads to the

observations

(15)

Define

...
...

...
... (16)

Then, (15) can be written as

(17)

Suppose that is full rank, which will be established in
later sections. Then, a least-squares (LS) estimate of is
given by

(18)

with estimation error

The observer will have the state estimate updated at by
, and will run as an open loop observer for

, . Due to the state
update at , is discontinuous at , but continuously
differentiable in .

B. Recursive Algorithms

can be calculated recursively. Although in (18) ap-
pears to be in a LS form, the standard recursive LS algorithm is
not applicable, due to the fact that and are
not merely expanded from and by adding a new
entry.

New information at consists of the sampling time
and the measured value , and the following calculated
values:

and

The relationship among , , and , ,
can be derived as follows:

Moreover

As a result

This implies

In the following derivation, let

(19)

Theorem 2: Suppose that for some , is full rank, and
let , , and be specified by (18) and (19), respec-
tively. For , in (18) can be updated recursively by

Proof: Since , by the matrix inver-

sion lemma
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Let

which implies

Moreover,

Now,

The proof is thus concluded.

V. ESTIMATION ERRORS AND PERSISTENT EXCITATION

CONDITIONS

A. Estimation Error Representation and Normalization

From (17) and (18), the estimation error for at is

(20)

for any . We note that this expression is valid for
any . However, for convergence of ,
is usually required. The boundedness of can
be established usually for only. From the expression

given in (16), we define the (negative) time difference
, . A

typical row of is . By the Cayley-Hamilton Theorem

[22], the matrix exponential can be expressed by a polynomial
function of of order at most .

(21)

where the time functions can be derived by the Lagrange-
Hermite interpolation method, see [14], [22] for the algorithms.
While the exact calculation of is not important here, it
needs to be emphasized that is a linear combination of the
modes of . If has a real eigenvalue of multiplicity , then
the corresponding modes are , . If has a
complex pair of eigenvalues of multiplicity , then the
corresponding modes are , , ,

, .
This implies

...
(22)

where and is the observ-

ability matrix. Denote ... . We have

(23)

As a result, for any ,
.

Under Assumption 1 (a), exists. Convergence results
will be established by the following two sufficient conditions:

, and , for some . In
principle, for the first condition to be true must be bounded.
Sampling time sequences must be carefully selected to ensure
that the second condition is valid. However, is often un-
bounded, as shown in the following example.

Example 1: Consider a first-order stable system
. Then, and , and .

For any fixed , when , and becomes
unbounded.

One possible remedy is to normalize the error expressions so
that the modified sequence becomes bounded. For this example,
one may write with . Then,

where is bounded, and

This example is generalized to a normalization procedure
below. It is noted that only stable modes of will cause un-
boundedness of since . We shall decompose
in (22) into two parts , where
contains all modes that are unbounded when and

contains all modes that are uniformly bounded for
. More concretely, let the distinct eigenvalues of be

where has multiplicity . Decompose
into
and , where is the real part of . Then,
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contains all modes corresponding to , and contains all
modes corresponding to .

If is empty, then , is bounded, and normal-
ization is not needed. When is not empty, define

and assume that the corresponding eigenvalue
has multiplicity . Define the normalization factor

Let . Now, define

(24)

The elements of are uniformly bounded. This leads to, for
any ,

(25)

Example 2: Suppose a typical takes the form of
. Then

. For where solves ,
. It follows that

which is uniformly bounded since .
This normalization process reduces convergence analysis to

the following two sufficient conditions , and
, for some .

A typical element of takes the form
. Since is doubly indexed

on and , this is a triangularly weighted sum of mixing
variables , and classical results on strong convergence of
single-indexed weighted sums of mixing variables cannot be
applied. The main convergence results will be given by Lemma
3 and Theorem 4 in Section VI.

B. Persistent Excitation Conditions and Sampling Time
Sequences

With normalization, will be bounded and the remaining
key issue is the following persistent excitation condition.

PE Condition: For some ,

(26)

where is the smallest eigenvalue of for a suitable
symmetric matrix .

In a typical parameter estimation problem, the PE condition
is imposed on the input, leading to a condition for identification

input design. However, in our problems, is determined by
the matrix and the sampling sequence only. Hence, the PE
condition is a condition on and the switching time sequence

. The PE condition means that (a) is full rank and
(b) the smallest eigenvalues of grow at least as fast as

. These are non-trivial conditions. They depend on
, , and the time sequence.
First, (26) is always satisfied under the following conditions.

A switching time sequence in is said to be uniformly
spread in if

(27)

The simplest example is when the switching time sequence is
equally spaced in , for which the limit follows from the
Riemann integration. But, there are many other time sequences
that also satisfy (27).

Proposition 1: If the system is observable and for a fixed
, the time sequence is uniformly spread in , then

for sufficiently large , (26) is always satisfied with .
Proof: By hypothesis converges to the inte-

gration , which is full rank for any
when is observable. Hence, there exists such that for
all , is uniformly bounded away from 0.
Since is full rank and is bounded in a finite interval,
(26) is satisfied.

More generally, suppose is a time sequence
in . Since are continuous, they are
bounded on . For , suppose

exists. Let be the
symmetric matrix . Then .

As a result, the condition is
satisfied if . On a finite interval, this implies (26).

In general, however, (26) is not always satisfied. When the
time sequence is causally and sequentially generated, we show
by the following examples that (26) may not hold in some
choices of time sequences.

Example 3: Suppose , . Then

is observable. If the time sequence is , con-
tains identical rows of , which will never be full rank for any

. This example motivates some time sequence selections to
avoid such situations.

Example 4: Consider the same system as in Example 3. Sup-
pose that is sequentially generated and approaches . In this
case, if we choose the sequence to approach sufficiently fast,
the smallest eigenvalues of become bounded. This im-
plies that , violating (26). This example shows
that even in finite horizon scenarios, one needs to choose the
time sequence carefully.

We now establish conditions on sampling time sequences that
will validate (26).

Case 1: . In this case, for some
integer and . Let the sampling sequence be selected
such that for some , . Then there exists some

, for any , . Consequently,
(26) is satisfied if which provides a sufficient
condition on the sampling time sequences.
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Example 5: Returning to Example 1, we have

As a result, by choosing
, the PE condition (26) is satisfied.

Case 2: . In this case, and .
All terms in are either bounded or decaying to 0 exponen-
tially, as . The following example illustrates how the
sampling time sequence should be selected.

Example 6: Consider a first-order unstable system
. Then, and , and . In

this case, . Letting ,
,

which implies for any , will satisfy
(26).

We now present a rigorously established sampling time se-
quence for the PE condition. Suppose that the outputs of the
system (1) are sampled at some times with and for
some constant

(28)

The following lemma shows that the PE condition is indeed sat-
isfied if the outputs are measured at the sampling times defined
in (28).

Theorem 3: Under Assumption 1(a) and (28), there is a con-
stant such that

(29)

This theorem implies that under this sampling time sequence,
for any , the PE condition (26) is satisfied. The proof
of this theorem, which contains some interesting technical re-
sults on function zeros and an improved Lojasiewicz inequality,
is highly involved and is postponed to Appendix.

The above examples and theorem indicate a practical guide-
line in sampling time sequence selections, which will be called
Principle of Logarithmic Time Sequences: To satisfy the PE con-
dition (26), the sampling time sequence should take the form of

for some positive constants and that depend
on the system matrix .

VI. CONVERGENCE ANALYSIS

A. Convergence Analysis in Finite Horizon

In convergence analysis over a finite horizon, we should fix
a time interval . The case of infinite horizon cases will be
discussed in Section VII. For implementation, time sequences
in a finite time interval must be generated causally (no future
information is used in selecting the current ) and sequentially

. In this case, since is monotone and bounded,

always approaches a limit. As a result, we have and
. However, we also allow the case of pre-determined

finite sampling points. In the later case the statement with a
limit “ ” should be understood in the following sense:
For any desired , a sampling scheme can be performed such
that at least sampling times occur in this time interval. This
problem will become immaterial for infinite horizon cases in
which we always assume that the time sequence is generated
causally and sequentially.

To proceed, we first establish a rate-of-convergence result re-
garding the noise. The following result on strong convergence
of triangularly weighted sums of -mixing variables is essen-
tial for this convergence analysis.

Lemma 3 [2, Theorem 2]: Let be a -mixing
sequence of identically distributed random variables, ,

, and for . Suppose that
is an array of real numbers satisfying

(30)

Then w.p.1 as .
The following theorem is crucial in obtaining the convergence

results as well as large-time behavior of the systems.
Theorem 4: Under Assumption 1, for any ,

(31)

where is defined by (24).
Proof: To prove the assertion, it suffices to look at the th

component of . By the trans-
formation in (24), is uniformly bounded, , where
is a generic positive constant.

Select and . Since
, we have and . As a

result, . Hence, (30)
is satisfied. By Lemma 3,

Theorem 5: Under Assumption 1 and (26), the following as-
sertions hold:

(a) w.p.1 as .
(b) If in addition, , then

.
Proof: Note that assertion (a) follows immediately from

Theorem 4.
To prove (b), since the system is observable, is invertible.

It follows from (23) and (25) that
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Now,

... (32)

Under the hypothesis, since all are continuous, uni-
formly bounded, and are uniformly bounded in , ,
, for some generic constant . It follows that

for a typical term in (32),

This implies

(33)

Moreover, by (26), exists and
, where is the largest

eigenvalue. This, together with the existence of and (33)
implies

(34)

for some constant .
Under some mild conditions, convergence of to

implies that for any . Let
be a finite time horizon and . Then it

is easily seen that .
Theorem 6: Under Assumption 1 and (26), for

and ,
.

Proof: This follows from the fact that for ,
the estimator runs open loop and . Since

is finite and is continuous, there exists a constant
such that

. Consequently, for any
as .

B. Convergence Analysis Over Infinite Horizons

The convergence properties of the previous section are estab-
lished over a finite time interval. For stability analysis of the
closed-loop system, infinite time horizon must be considered.
We now investigate observation errors under certain unbounded
switching time sequences. In this section, time sequences will
always be causally and sequentially generated.

1) Relationship Between and : The observer error
sequence is said to be in if
and (mean square integrable) if .

Let . The next lemma claims that for
dealing with convergence properties of we may concentrate
on the sequence .

Lemma 4: If is uniformly bounded and , then
(a) w.p.1 as implies that w.p.1 as

. (b) in mean square as implies that
in mean square as . (c) implies

.
Proof:

(a) Since the observer is running open loop for
, we have . Now if
is uniformly bounded, there exists a constant

such that

(35)

This and the hypothesis implies that
as w.p.1 leading to w.p.1. as .

(b) The inequality (35) implies further that
.

Hence, , as implies that
as .

(c) Moreover,

As a result, implies that .
2) MS and Strong Convergence:
Case 1:
In this case, and hence ,

or (if and ) as ,
. Since is bounded, the next theorem

follows from Theorem 5.
Theorem 7: Under Assumption 1 and (26), if , then

and w.p.1
as .

Case 2:
In this case, with , .

As a result, when , for any fixed ,
, rendering and the PE condition is

lost.
To resolve this issue, we extract the dominant mode as in Case

1. Since in this case, the unstable modes may result
in divergence. We now resort to generation of switching time
sequences to restore convergence.

Assumption 2: For some , the switching-time
sequence satisfies (a) as . (b) For some

, as . (c)
such that for any

(36)

Remark 3: We show now that a sequence satisfying
Assumption 2 for any chosen can be constructed. This remark
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also provides a typical choice of such a sequence. Choose
from

(37)

Then . Clearly, and
. Now,

For large , due to

It follows that , which implies
.

Remark 4: Although the generated sampling time sequences
are unbounded (i.e., ), the sampling intervals

become progressively smaller. For practical implemen-
tation, when the switching sensor has accuracy limit, time delay,
sensor noise, there is a limitation on the sampling interval. We
can easily accommodate such a limitation by stopping reduction
of sampling intervals when they fall below precision levels of
the sensors or the control actuators. This stopping rule will result
in a small residual and irreducible error. This is not a new phe-
nomenon. For any convergence or stability analysis, measure-
ment precision will impose a limitation. Consider an open-loop
system , the feedback control achieves
a closed-loop system which is exponentially stable.
However, if measurement or actuator implementation has lim-
ited accuracy, the true feedback will become
with a bounded error from measurement. Then the closed-loop
system becomes . will converge exponentially to
a bounded set, but not to 0. Our theoretical development will al-
ways be subject to such implementation constraints which will
not be discussed further.

Theorem 8: Under Assumption 1, (26), and 2, with satis-
fying , (a) in the MS
sense. (b) .

Proof: From the definition of , since is
bounded, we have for some constant

.
(a) Following the derivation steps in (34), we arrive at

for some constant .
This leads to

(38)

by Assumption 2. Now, Lemma 4 implies in the
MS sense.

(b) By (38) and Assumption 2

with , which implies
. By Assumption 2, ,

namely . By Lemma 4, .
3) MS Exponential Convergence: We now present conditions

under which exponential convergence rates of can be ob-
tained. We show that converges to 0 exponentially in the
MS sense and w.p.1.

Case 1:
Theorem 9: Under the assumptions of Theorem 7, if the

switching time sequence is for some , then
for any as

.
Proof: From we obtain . By

Theorem 7, , which im-
plies . Since

and ,

Case 2:
Theorem 10: Under the assumptions of Theorem 8 and sup-

pose is generated from (37), if for some
, then there exists such that

as .
Proof: By (38) and (37)

Let . Then
. This proves as

.
4) Almost Sure Exponential Convergence: Here, we derive

exponential convergence rates in the almost sure sense for
.

By a certain choice of switching time sequences, Theorem 4
implies exponential convergence in the almost sure sense. Sup-
pose that the switching time sequence is which
implies .

Theorem 11: Under the Assumption 1 and (26), if ,
then there exists some such that

(i) .
(ii) .

Proof: To prove (i), note that by (25) and under (26), for
some

Choose that is given in Theorem 4, Theorem 4
immediately yields the claim.

To prove (ii), since as , for any
, there exists such that . Also,

.
Since , we have

.
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The case can be directly obtained from Theorem
4 by a similar treatment of Theorem 11 for any switching time
sequence with uniformly bounded, where .

Theorem 12: Under the Assumption 1 and (26), if ,
there exists some for which w.p.1
as and w.p.1 as .

VII. GENERATION OF SWITCHING TIME SEQUENCES

Estimation of the state utilizes the information from the sam-
pling-time/switching-time sequence and the corresponding
values . Consequently, it is essential to generate such a se-
quence. In practical systems, the irregular sampling sequences
can be generated via different means, depending on system set-
tings. We list some of these sampling-time generating mecha-
nisms for which the results of this paper may be applied.

A. Directly Controlled Sampling

Multi-rate sampled systems are a classical topic. Such sam-
pling schemes implicitly assume that sampling times can be
designed. We refer the reader to some standard textbooks and
monographs [4], [7], [24] for sampled systems with uniform
or non-uniform sampling intervals. Classical treatment of this
topic is mostly limited to multi-rate sampling and does not seek
active utility of such a capability in state estimation. Advanced
analog-to-digital conversion units (A-D) allow selection of sam-
pling times beyond periodic sampling schemes. In these cases,
the sampling times can be directly controlled. The results of this
paper provide some insights and methodologies on how such
advanced capabilities might be utilized to achieve fast conver-
gence of state estimation.

B. Event-Triggered Sampling and Signal Quantization

Departing from traditional sampling mechanisms, sampling
times may be event triggered. Typically, if a binary-valued
or quantized sensor is used in signal measurement, a sam-
pled value is generated only when the output of such sensors
switches values. Each switching of the sensor output represents
an event that provides a sampled value of the system output
at the switching time. Event-based sampling usually involves
fixed thresholds, open-loop stable systems or just a class of
bounded signals [3], [23]. For example, photoelectric sensors
for positions of robot movements, Hall-effect sensors for speed
and acceleration in electrical machines, EGO oxygen sensors
in automotive emission control will provide meaningful values
of the system outputs only at the time of sensor switching.
In a distributed sensor network, a grid of location sensors are
allocated in an area, creating a network of checkpoints. When
a mobile agent, such as a vehicle, a robot, a soldier, or an
airplane, passes through a sensor checkpoint, the event will
generate a position signal at that time instant. The set of the
time instants forms an irregular sampling-time sequence.

C. Binary-Valued Sensors With Input Control

Suppose that the output of the system (1) is measured by a
sensor whose output is binary-valued with a fixed
threshold . The sensor can be represented by

if
if

(39)

At a switching time , the sensor threshold value is an
approximation of in that , which will be used
to estimate the state. Since a binary sensor provides information
about only when it switches, one may actively control the
input to cause to pass the sensor threshold .

In [35], sampling times are generated by controlling the input
so that the sensor output will switch values within a designated
time interval, under assumption that the system is state control-
lable.

Assumption 3:
1) The prior information on the initial state is given by

a compact set , namely, .
2) System (1) is completely state controllable and completely

state observable.
Theorem 13: [35] Under Assumption 3, for any , there

exists a causal control input for such that
switches at least once in .

Corollary 1: [35] Under Assumption 3, for any and
for any given integer , there exists a causal control input ,

such that switches at least times in .
The above results indicate that by actively controlling the

input, one can always generate a desired switching-time se-
quence.

D. Binary-Valued Sensors With Threshold Control

Another approach of controlled generation of sampling-time
sequences is to control the sensor threshold. Suppose that
the output of the system (1) is measured by a sensor whose
output is binary-valued with a possibly time-varying
threshold . The sensor can be represented by

if
if

(40)

One possible scheme of threshold control is illustrated in con-
trol problem for a power system shown in Fig. 1. The voltage

is the output of a system whose states are to be estimated.
The reference voltage is generated by a circuit whose
value can be adjusted. This can be easily realized by opera-
tional amplifiers, DC-DC converters, etc. The binary sensor is a
simple sign detector. When the sign detector switches its value
at , it triggers the reference value to be coarsely quan-
tized to and hence is subject to errors, and sent over the
noise-corrupted network to the receiver. The receiver receives

as a noise corrupted observation on
at the switching time, and has a clock so the time is also
recorded. The switching time and the received value
constitute the information for observer design and feedback.

Let be a vector norm.
Assumption 4: At , the information on the state is

given by a bounded set .
Theorem 14: Under Assumption 4, given a switching time ,

for any , there exists a continuous threshold function
for such that switches at least once in .

Proof: Consider first the case , that is,
. We will show that there exists a function for

such that . By continuity, this implies that
switches from 0 to 1 at least once at .
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Fig. 1. Controlled threshold and networking example.

For , . Under Assumption
4, there exist known constants and ( if the
system is stable) such that

(41)

Let the threshold function be selected as

(42)

with some which is to be specified later. Since is
continuous, is continuous. To guarantee , we
only need to take sufficiently large such that

(43)

which gives

(44)

Then, from (41) and (42), we have . Consequently,
will occur at some .

The case of can be similarly achieved by (44)
if we let , where
satisfies (43), since , .

Theorem 14 can be applied repeatedly to reach the following
conclusion.

Corollary 2: Under Assumption 4, for any given time interval
and for any given integer , there exists a threshold design ,
such that switches at least times in the time interval.

We should point out that for practical algorithm implementa-
tions, we may use different , as long as the sensor switches
frequently to provide information for state estimation.

Example 7: Consider a system with

, , .

The input to the system is a step input , and
, , and initial state is . This

implies that the initial output is . Initial threshold
value is . For , the threshold is controlled
by increasing its value when and decreasing its
value when , leading to two functions of . In this
simulation, both functions are linear, although exponential

Fig. 2. Threshold design and sensor switching.

functions can be used also. Simulation results are shown in
Fig. 2.

VIII. AN ILLUSTRATIVE EXAMPLE

We provide an example to demonstrate how the methods of
this paper may be used. In the example, the time-varying sensor
threshold is compared to the noise-corrupted plant output by
using a binary comparisor, representing the binary sensor. When
its output switches values, the threshold value at that time instant
is used as the measured value of the output.

Example 8: Consider now an unstable system ,

with , ,

The unknown initial state is .
We first run the system open-loop for a short period of time with
a constant control input . The threshold is controlled to
increase or decrease on the basis of sensor output switching,
using the threshold control algorithms. To take into considera-
tion of the threshold control and time measurement constraints,
we impose a bound on the maximum slope of threshold changes
at 45 per second. Simulation is performed and the collected data
on the binary sequences are used to estimate . Fig. 3 de-
picts the signal trajectories, including the states, the output, the
threshold control, and the sensor output. Fig. 4 shows state es-
timation errors as a function of data points.

IX. CONCLUSIONS

This paper has resolved the observability issue: If the density
of the sampling times exceeds a critical threshold, the sampled
system is always observable, independent of the actual times.
This finding provides a foundation for state estimation, output
feedback, and other control activities that involve irregular sam-
pling due to, for example, communication channel interruptions,
event-triggered sampling, or other system constraints.

This paper also introduces a method of designing observers
for linear time invariant systems with irregular sampling-time
sequences, which can be generated either passively in event-
triggered sampling or by actively controlling the system input or
sensor threshold when the sensor is binary-valued. By selecting
the sampling-time/switching-time appropriately, the persistent

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on August 13,2020 at 01:22:28 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: STATE OBSERVABILITY AND OBSERVERS OF LINEAR-TIME-INVARIANT SYSTEMS 2651

Fig. 3. Signal trajectories.

Fig. 4. State estimation errors.

excitation condition is validated and convergent state observers
can be developed. It is shown that convergence in mean square,
with probability one, as well as almost sure exponential rates
can be guaranteed when the switching time sequence is suitably
generated. The results of this paper can be used in feedback de-
sign for stability and performance on the basis of state estima-
tion.

APPENDIX

PROOF OF THEOREM 3

The proof of Theorem 3 relies on several technical results,
which are of interests by themselves and will be presented first.

Improved Lojasiewicz Inequality: The smallest eigenvalue
of relies on some lower bounds on modulus of exponen-
tial polynomials in the form of (9), where can be viewed as
a confinement of a complex exponential polynomial on the real
axis. The global Lojasiewicz inequality (see [5, p. 210]) pro-
vides a lower bound on the module of an analytic function. It
will be extended here to estimate the lower bound in (29). In
this subsection, we will derive a key inequality which is essen-
tial to estimate the smallest eigenvalue of matrix. First, we need
some preliminary knowledge on exponential polynomial.

Definition 2: An exponential polynomial of (the set
of complex numbers) is an entire function of the form

(45)

where , are distinct, and
, are nonzero polynomials of degree .

The degree of is

(46)

and the norm of is

(47)

Now, in (9) is the limitation of

(48)

to , where , are the distinct eigenvalues
of (also called frequencies of in complex analysis) with
multiplicity , respectively. Note that . The
coefficients and here

(49)

where with . Obviously,
.

According to Definition 2 and (46), the degree of de-
pends on the coefficients . If , , then

(50)

In general, if the leading coefficient (non-zero with the
highest index ) of is , then

. We denote the leading coefficient by

(51)

By (47), the norm of is

(52)

where . Furthermore, define the sup-
porting function by , where we use
and denote the real part and the imaginary parts of ,
respectively.

Now, we proceed to estimate the modulus of . Let
be the set of zeros of and

denotes the distance between and . The global Lojasiewicz
inequality (see [5, p. 210]) gives a lower bound on by

where , , and can
be explicitly estimated in terms of and of . However,
the leading terms may be very small even if the norm
of is a given value. So, we make some modifications to the
global Lojasiewicz inequality to estimate the modulus of by

. It will be useful in dealing with the eigenvalues of Hermite
matrices in the subsequent arguments.

The following modification is based on the argument of
Grudzinski who obtained an inequality in the form of the global
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Lojasiewicz inequality without the denominator [5]. The main
approach is to introduce the exponential polynomial function

(53)

which satisfies

(54)

If we use to represent the set of coefficients in the
exponential polynomial (48), the following inequality holds (see
[5, pp. 211–214]).

Lemma 5: Let and
. Then there exists a positive

independent of such that .
We now present the main claim of this subsection, which

gives an improved Lojasiewicz inequality to suppress the effect
of leading term .

Proposition 2: Let
and . Then there exists some

and a positive independent of such that

where and depends on and of
.

Proof: Observe that from (52), there is a
such that

(55)

Define a positive sequence of length as follows: Let

(56)

For , define

(57)

where , is the partial sum of .
It is easy to see that is a geometric sequence

(58)

Consequently, there is a such that

(59)

Otherwise, by (56) and (58),
, which contradicts to (55) by the fact

.

Let and . By (54) and (59),
the leading term of satisfies .
So, by Parseval’s formula and (59),

(60)

Furthermore, from (56) for any ,
by (59). One has

. Thus

(61)

Now, , which together
with (57), (60) and (61) implies

(62)

where the first inequality follows from
for nonnegative number , , with .

Note that , for any . Then, by
(58), (62) and Parseval’s formula again, one has

, which from

(56) immediately yields
. Finally, Lemma 5 leads to the

claim.
In this proposition, the leading term is replaced by .

The tradeoff is that cannot be explicitly derived, which is a
known fact for in Grudzinski’s inequality [5, pp. 211–214].
Fortunately, although cannot be explicitly estimated, from the
proof of Proposition 2 and the argument of Grudzinski, can be
determined by and , and the vector space of all exponen-
tial polynomials with .

Numbers of Zeros: The next lemma on the number of zeros
of exponential polynomial is also needed in the proof of The-
orem 3. It can be obtained from [5, Theorem 3.2.47].

Lemma 6: Let be the square
and be the number of zeros

of the nontrivial exponential polynomial defined by (48) in
. Furthermore, let ,

. Then,
.

Proof of Theorem 3: The proof is prefaced with some tech-
nical lemmas. Let be a fixed integer and denote

. The following lemma shows that given
, there is a set such that for any ,

the distance between and less than 1 is for some
, where is defined in Lemma 5. It also implies that

the ratio of cardinality of and is bounded, whose bound
is independent of and .

Lemma 7: Suppose . Let
, where , and

. Then, there is a ,
with such that , where

for .
Proof: If , take and the lemma is ob-

viously true. Now, suppose . Let
. It is easy to verify

that for any , . So, .
Given , let be the number of zeros of defined by
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(48) in . Lemma 6 gives , which is inde-
pendent of . As a result, is finite for a given (noting that

may not be uniformly finite for ). Let be the set of all
zeros of in . Thus, for any , there is a
such that . This means , and hence

.
Remark 5: The set defined in the proof of Lemma 7 is

nondecreasing respect to . This illustrates that all zeros in
are still in .

Now, let for . Given , let the
number of in be , and hence by Lemma 7,

for all and . Without loss of generality,
suppose they are , arranged in a nonde-
creasing order. Set and (If , there
are only two numbers and ). As a consequence,

.
Observe that for every , falls

into some interval , let .
Moreover, let , . Then, for and

, define

for

for
(63)

with .
Lemma 8: There is a constant such that the

number of that satisfies is at least for
sufficiently large .

Proof: For any , it is easy to check that if
or ,

and .
Hence, for , the number of is
larger than for
sufficiently large such that . Consequently,
the number of for satisfies

. Since and ,
one has

, which implies

. Note that the right-hand side of the above inequality is
minimal when , . Therefore,
by and , for sufficiently large ,

, which completes the proof.
Let . The following corollary follows imme-

diately from Lemma 8 for sufficiently large .
Corollary 3: There is a constant such that the

number of that satisfies is at least .
Lemma 9: Let . Then, for any ,

.
Proof: For any , .

So,we only need to consider . By Lemma 7,
, that is, for any , there is a such

that

(64)

Observe that ,
and , for ; , for

. Thus, by (63) and (64), , which is less
than the smallest distance between and .
Consequently, .

Proof of Theorem 3: For convenience, we still use the no-
tation in (14) with replaced by . Similar to
(12) and (13), . Since is a Hermite
matrix, all the eigenvalues are real. By the inequality

(65)

we only need to estimate .
By Rayleigh-Ritz theorem

. We now estimate for
every with . By (14), one has

(66)

where is defined by (48). The following arguments are dis-
cussed in two cases.

Case 1: The set in Lemma 5. Then
with . As a result, ,
where is defined by the proposition.
Therefore, for sufficiently large , there is a such that

, which together with
(66) implies .

Case 2: . By Proposition 2, for some ,
, where

(If , i.e., , is just an exponential,
which belongs to Case 1). By Lemma 9, . Note
that for any . Consequently,

. Hence, from Corol-
lary 3 and the fact , for sufficiently large

,
, which together with (65) to (66)

completes the proof.
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