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On Feedback Capability in a Class of Nonlinearly
Parameterized Uncertain Systems

Chanying Li and Lei Guo

Abstract—In this technical note, we will investigate the maximum capa-
bility and limitations of the feedback mechanism in globally stabilizing a
basic class of discrete-time nonlinearly parameterized dynamical systems
with multiple unknown parameters. Both “possibility” and “impossibility”
theorems together with a fairly complete characterization on the capability
of feedback will be presented. It will be seen that to characterize the feed-
back capability, the growth rates of the sensitivity functions of the nonlinear
dynamics with respect to the uncertain parameters play a crucial role, and
a suitable decomposition of the family of the nonlinearly parameterized
functions in question turns out to be necessary.

Index Terms—Feedback capability, global stabilization, nonlinear sys-
tems, parameterized uncertainty.

I. INTRODUCTION

It is well known that feedback is a key concept in control systems,
which is mainly used to deal with uncertainties in dynamical systems
to be controlled. Robust control and adaptive control are two typical
techniques for feedback design in the presence of structural uncertain-
ties, and comparisons between the two from various aspects are also
available (cf, e.g., [27]). It is conceivable that adaptive control has the
ability to deal with larger class of uncertainties since an on-line esti-
mation loop is usually imbedded in the feedback control design.

There has been much progress in adaptive control of linear sys-
tems(cf., e.g., [2], [4], [6], [7]), or nonlinear systems with nonlinearity
having linear growth rate(cf. e.g. [20], [22] and [25]). Furthermore, it
is also possible to design globally stabilizing adaptive controls for a
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wide class of nonlinear continuous-time systems (see, e.g., [9] and [11])
and for infinite-dimensional systems. However, while many results in
continuous-time case can be extended to the discrete-time one (see,
e.g., [8]), fundamental difficulties arise for adaptive control of discrete-
time nonlinear systems with either nonparametric uncertainty ([26]) or
parametricuncertainty but the nonlinearity having a growth rate faster
thanlinearity (cf. [5], [10], [24]), partly because the high gain or non-
linear damping methods that are so useful in the control design of con-
tinuous-time systems are no longer effective in the discrete-time case.
Similarly, forsampled-data control of nonlinear uncertain systems, the
design of stabilizing sampled-data feedback is shown to be possible
only forthe case where the sampling rate is high enough (cf.e.g., [18]).
In fact, difficulties will again emergewhen the sampling rate is a pre-
scribed value (may not be smallenough). This is so even for nonlinear
systems with nonlinearityhaving a linear growth rate (cf. [23]).

Given the above difficulties that we encountered in the adaptive con-
trol of discrete-time (or sampled-data) nonlinear systems, one may be
curious to know whether or not such difficulties are caused by the in-
herent limitations of the feedback principle. To investigate this fun-
damental problem, we have to place ourselves into a framework that
is somewhat beyond those of the traditional robust control and adap-
tive control, because one needs to study the fundamental limitations of
the full feedback mechanism which includes all (nonlinear and time-
varying) feedback laws and which is not restricted to a specific class of
feedback laws.

An initial step in this direction was made in [5] for a basic class
of nonlinear stochastic systems with a scalar unknown parameter. It
was found that the system is globally stabilizable by feedback if and
only if the nonlinear function has a growth rate not faster than �

�

when � � � (see, [5], [16]). This critical rate appears to be some-
what surprising! This result was subsequently extended to systems with
multiple unknown parameters by introducing a polynomial criterion
(see, [24], [25]). Not long ago, [17] proved that the polynomial rule
of [24] does indeed provide a necessary and sufficient condition for
global feedback stabilization of a wide class of nonlinear systems with
bounded multiple unknown parameters and with bounded noises, by
using a somewhat complicated purely deterministic method. Recently,
by introducing a simple stochastic imbedding approach, a new critical
theorem on the feedback capability was obtained for the case where the
input channel contains an uncertain parameter [14]. It should be pointed
out that the related existing results (e.g. [3], [5], [14]–[17]) on feedback
capability concern only with linearly parameterized discrete-time non-
linear models, i.e., the unknown parameter enters into the systems in
a linear way. This has obvious shortcomings since, as is well-known,
nonlinearly parameterized models are usually encountered in practical
systems, as well as used in system approximation and identification
(see, e.g., [1], [19] and [21]).

In this technical note, we will investigate the feedback capability
in stabilizing a basic class of discrete-time nonlinearly parameterized
dynamical systems with nonlinear dynamics having nonlinear growth
rates, and with multiple unknown parameters and bounded noises. We
will not only present a theorem on the maximum capability of feedback,
but also give a theorem on the fundamental limitations of the feedback
mechanism. It will be seen that the growth rates of the sensitivity func-
tions with respect to the uncertain parameters play an important role
in characterizing the feedback capability, but it turns out that such a
characterization in the present nonlinearly parameterized case is more
complicated than the linearly parameterized case previously studied.
Some preliminary results were presented in [12].

The rest of the technical note is organized as follows. In the next sec-
tion, we will present the main theorems of the technical note, with their
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proofs given in Section III. Some concluding remarks will be given in
Section IV.

II. MAIN RESULTS

To explore the fundamental limits of the feedback capability in
nonlinearly parameterized control systems, we consider the following
model:

���� � ���� ��� � �� � ���� (1)

where � � �, � � �, is an unknown parameter vector in the �-di-
mensional Euclidean space, ��, �� and �� are the system output, input
and noise signals, respectively, ���� � ��� � is a known non-
linear measurable function. We assume that the parameter vector and
the noise sequence satisfy the following conditions:

A1) The unknown parameter vector � belongs to a certain ball in
� � �� � �� � ��� � ��, where � 	 � may not be known a

priori.
A2) The noise sequence is an arbitrarily bounded sequence with
an upper bound � 	 �, i.e.

	
�
���

	��	 � �
 (2)

We are interested to know whether or not the above uncertain sys-
tems can be stabilized by feedback. The precise definitions of “feed-
back” and “global stabilization” by feedback are referred to e.g. [14]
and [26]. To establish our main results of the technical note, we need
some further structural conditions on the nonlinear function ���� �� as
follows.

A3) The sensitivity function of � defined by � ���� ��
�
�

������ ��
���
�
� �� ����� ��� � � � � �

�
���� ���

� exists and is contin-
uous, which has the following growth rates as � � 


� ����� �� � � 	�	� � � � � � � (3)

uniformly in �, where �
�
� ���� � � � � ��� � � with1 �

�
� �� � �� 	

� � � 	 �� 	 � 
��� �� 	 ��. In the following, all functions ���� ��
satisfying Assumption A3) will be denoted as a class ����.

For any given � � ���� � � � � ���, let us introduce a polynomial � ���
defined by

� ��� � ���� � ���
� �

���

���

��� � ������� ��
 (4)

Let us define ��
�
� �� � � � � ��� 	 � ��� 
� � ��� ���� as the

stabilizability set and ��
�
� �� � � � �� � �� as the unstabilizability

set.
Our main results of this technical note will justify the above nomen-

clature by showing that, for any function ���� �� � ����, the system (1)
is globally stabilizable for � � �� and is not stabilizable for � � ��.
We first give a result on stabilizability.

Theorem 2.1: Under the Assumptions A1)-A2), for any ���� �� �
����, the corresponding uncertain system (1) is globally stabilizable
by feedback provided that � � ��.

Moreover, we have the following “Impossibility Theorem”:
Theorem 2.2: Under the Assumptions A1)-A2), for any ���� �� �

����, the corresponding uncertain system (1) is not globally stabiliz-
able by feedback if � � ��.

1In the case where the growth rates are bounded by linear, i.e., � � � � �,
the system (1) is already known to be globally stabilizable by feedback (see,
[13]).

Remark 2.1: By Theorems 2.1 and 2.2, we obviously have �� �
��
�. But by [24, Corollary 3], it is not hard to see that �� �� ��

� for
� � �. This demonstrates that there is a gap between the stabilizable
set and unstabilizable set. However, we remark that both Theorems 2.1
and 2.2 are the best possible results that one could have under the given
conditions, since the function class ���� is rather general and hence
“too rich”. This will be explained in detail in the following.

First, we point out that in Theorem 2.1, the condition � � �� cannot
be relaxed without further specifications on ���� ��, in addition to the
condition ���� �� � ���� as given in A3). To show this, we consider
the following polynomial regression model:

���� � ���
�
� � ���

�
� � � � �� ���

�

� � �� � ���� (5)

which obviously belongs to ����. By [17], we know that for any � �
��
�, the system (5) is not globally stabilizable. This shows that the stabi-

lizability set�� in Theorem 2.1 cannot be expanded anymore under the
general condition ���� �� � ����. It is worthy noting that although for
some ���� � ����, � � �� is a necessary and sufficient condition for
stabilizability, this fact may not be true for other functions ���� � ����.
The example (6) below is such a counterexample.

Similarly, the condition � � �� in Theorem 2.2 also cannot be re-
laxed under the general condition ���� �� � ����. The following ex-
ample may explain this point:

���� � ���
�
� ���

�

���

��
	��	� �� � �

� �� � ���� (6)

which can be easily verified to belong to ����. However, as will be
shown later in the proof of Theorem 2.3 (see (25) in Section III-C),
the system (6) is stabilizable whenever � � ��

�. Hence, the unstabi-
lizability set �� cannot be enlarged in general. For the same reason,
� � ��

� cannot be a necessary and sufficient condition for the stabiliz-
ability for all ���� � ����, as has been shown by the example (5).

We remark that even though �� � ��
� in general, in the special

case where � � �, we do have �� � ��
� � ��� � � � �� � ��.

As a corollary, we obtain a critical value for feedback capability of
nonlinearly parameterized uncertain systems, which is similar, but in
fact, an extension of that established in [5] and [16] for the linearly
parameterized case.

Corollary 2.1: Let � � �, and the Assumptions A1)-A2) hold. Then,
the uncertain system (1) with ���� �� � ���� is globally stabilizable by
feedback if and only if � � ��.

For the case where � 	 �, there will indeed be a gap between the
sets �� and ��

�. Now, let us further consider the connections between
Theorems 2.1 and 2.2. As we already know, �� and �� are the stabi-
lizable set and unstabilizable set respectively, and �� � ��

�. One may
be curious to know the following question: Whether or not there exists
a parameter set �	 with �� � �	 � ��

�, such that �	 can serve as
a universal criterion of the feedback capability for each ���� �� � ����
with � � �? The answer is no, because the family of functions ���� is
too rich, as will be demonstrated in the following lemma.

Lemma 2.1: For any given parameter set �	 with �� � �	 � ��
�,

there always exists a function �	��� �� �� � ���� such that
under Assumptions A1)-A2), the uncertain system (1) with
���� �� � �	��� �� �� is globally stabilizable by feedback if and
only if � � �	.

Conversely, we can also find a mapping from any function ���� �� �
����� � � � to a parameter set of �, which characterizes the feedback
capability.

Lemma 2.2: For any function �	��� �� � ����� � � �, let it be
explicitly parameterized as �	��� �� ��. Then, there is a corresponding
parameter set �	 with �� � �	 � ��

�, such that the system (1) with
���� �� � �	��� �� �� is stabilizable by feedback if and only if � � �	.
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Now, we are in a position to answer the following question: Can the
complicated class of functions ���� be decomposed as the union of fi-
nite or countable number of subclasses, with each subclass corresponds
to a criterion for feedback capability? The answer is again no, because
the union of such a decomposition has the cardinality of the continuum.
A complete characterization is given in the following theorem.

Theorem 2.3: Consider the function class ���� as defined in As-
sumption A3). Let �� be any set of parameter � such that �� � �� �
��
�. Then ���� can be decomposed as follows:

���� �
�

�����

where ����� � ���� are disjoint and nonempty families of functions
for different �, such that for each ���� �� � �����, the corresponding
system (1) is stabilizable by feedback if and only if � � ��.

III. PROOFS OF THEOREMS 2.1–2.3

We will first prove Theorem 2.1.

A. Proof of Theorem 2.1

First, by (3) we know that there exist some �� � � and �� � �� � �
such that

�� �
�� ����� ���

����
� ��� ���� � ��� 	 � �� �� � � � � 
� (7)

For any � � �, let us define 		����� � � 
 � 

 sequentially by

	���� �� 	
��	

�������

����� (8)

	���� �� 	
��	
 ����� � � 
 � 
� (9)

where� � ��	��
� �������	�
�
�.
Without loss of generality (see [17, pp. 281]), we may suppose

��� � � ��, where �� is given in (7). The key lemma to estimate the
parameter vector is as follows.

Lemma 3.1: Consider the equations for any � � � and

 � �� � � � � � 
:

�� ��� � � �� �� ��� � �� ��� � �� ����� � �� ������ (10)

Then there exists a map �� � �� such that � � ������, where
�� � ��� ������ � � � � �� ������


 . Furthermore, let ���
� ���

�
�

�� ���� �� ����� � � � � �
���� �� �����


 . Then ������ is differentiable
with respect to ��, and satisfies ������� � ������, where
������� � �����������.

Proof: By the system (1), the vector defined by ����� ���
�
�

��� ���� � � � � �� ����

 � �, and for any � � �, it is differentiable on the

domain ��� ������	. Moreover, by (8), we have ���������� ��� �
���

� ��� 
� �, then the first assertion is obviously true by the im-
plicit function theorem. Next, let � �� ��� ��� � ����������� ��� and
� ����� ��� � ���������� ���, the implicit function theorem also gives

������� � � � �� �������� ���
��

� �� �������� ��� �

Note that � �� �������� ��� � � and � ���������� ��� � ���
� ���, we ob-

tain the second assertion.
Now, we proceed to design the controller. Let the parameter esti-

mator be defined as

��� � � for � � � � �� � �;
��� � ����� for � � ��.

(11)

Then, we may let �� � ������� ���, where ��� is defined by (11). Thus,
the system (1) at time � � �� can be written as

���� � � �������� ���� � ������� ��� � ����

� � � �
 ���� �������
���� � ����� (12)

where �� � ������ �, and ��� is some vector. Note that ��� � ��� � �
������ for any ���� 
� �, where ��� � is the adjoint matrix of �.
By some simple manipulations we have

������ � � �
 ���� �������
���� � �

� ���

	

���

����
�

	


�� ��
����
�� ���

������
� ����

� ��

where �
������ �� is the ��� 	�-th cofactor of ������
� ����.

The rest of the proof is similar to that in [17, Section IV, pp. 283]
by using a contradiction argument, which gives ������ ���� ��, and
completes the proof of Theorem 2.1.

B. Proof of Theorem 2.2

The proof is based on a proposition, which considers the following
more general nonlinearly parameterized model:

���� � ���� ��� � ���� (13)

where � � 	, 
 � � is an unknown parameter vector,
�� � ���� ��� � � � � ����� ����� with � � �, �� and �� are the
system regression vector, feedback law and noise signal respectively,
and where ���� �� � �������	 � is a nonlinear measurable
function. Denote the partial derivative of ���� �� with respect to � by
� ���� ��, which is assumed to exist and be continuous.

Before the proposition is presented, we first give a regularity assump-
tion on the nonlinear function ���� ��.

A4) For any � � �, there exists a non-increasing and nonnegative
function ���� such that for any � �  ���� with ��� � ����, the
set ���� defined by

����
�
� � � �� � ����� ��� � ��	


�
� ���� �� (14)

satisfies !������ �"�, where !��� denotes the Lebesgue mea-
sure on 	 and " � � is some constant. Moreover, assume that
for ��� � ��#�, � ����� �� 
� � for � � ��, 	 � �� �� � � � � 
, where
# is any real number in ��� ���"���$ ��.

Proposition 3.1: Let Assumption A4) be satisfied. Then, there exist
a parameter � � �� and a noise sequence 	��
 satisfying A2) such
that the corresponding outputs of system (13) satisfy:

����� �
�

%���� ��	
��
&���

� � �%� (15)

provided that the regressors satisfy ���� � ���	�����#� for all 	 � �,
where

�� �

	

���

�� 
��


� ����� ���
�

&���
�
�� � �	 �	


��


���

���

� �
 ��� ����
���� ��� (16)

with &��
�
� % and %�� %� � � are some constants.

Proposition 3.1 can be proven by a stochastic imbedding method (cf.
[14]), and the detailed proof will be omitted here due to space limita-
tion. The interested readers are referred to [15]. To prove Theorem 2.2
by applying Proposition 3.1, we need to prove that Assumption A4)
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holds automatically for sufficiently large ��� by Assumption A3). This
is the content of the following lemma.

Lemma 3.2: Let ���� �� � ��� � be a nonlinear function with
� � . Then, Assumption A4) holds under A3).

Proof: Let �� �� � ����, where ���� is defied in Assumption
A4). Since (7) is satisfied with � � �, by the definition of ����, it is
easy to see that if ��� � ��,

���� ��� ����� �� �����	
�

� ���� ��

� ��
�
������� 	 (17)

Note that ���� ���� � 
 and ���� � ���� for � � �� 
� 	 	 	 � �, by (7),

���� ��� ����� �� �

�

���

����
�� �� �� � ���

� ������ �� � ��� � �
����� ������ �

where �� � �. So, by (17), we immediately obtain

�� � ��� � ����
�
�
 �
����� ������

������

As a result, for any ��� � 
��� ���
�
�����, we have ��� �

���� � ���
�
������ .

Since � and �� are arbitrary points in �� and ���� � 
, � � �� 	 	 	 � �
for all � � �, we have 
���� � ����
�����

�
������ . Let � �

����
�����
�
����� and

���� � ��	

��� ���

��
� �� (18)

where �� is defined by (7). According to A3), we immediately conclude
Assumption A4).

Proof of Theorem 2.2: Let ��	� be defined by (18). By Proposition
3.1, if

���� � �
�

��
 ���

there exist a � and a 
��� such that the corresponding output sequence
satisfies (15). Since � ����� ��� � ����� � uniformly in � whenever
���� � ��, we have for any � � �� 	 	 	 � � and � � � � �, there is a
�� � � such that ���� � ���

� �

���

���
	��

���	 
 �, where ���� is
defined by (16). Consequently, for some �� � �,

������ �

����
���
����

�

���

���
	��

���	 
�
�� ���� � � �	 (19)

Furthermore, since �� � �, there exists a root � � ��� ��� of the
polynomial �� � ���
 ��. We now prove by induction that for � � �,
there are two constants � ��� � � such that

������ � �

� ���
 ���
��
����

�

� (20)

������ � �
����


��
 ���
����


��
�

��
 ���
� (21)

whenever ���� � � is large enough, where � is defined in Proposition
3.1. In fact, by (19),

��� � �

��

���� � � ���	 (22)

Then, it is easy to see that there is a � � � � such that (20) holds for
� � � by (19) when ���� is sufficiently large. Let � � � be a constant
such that

� � ���
�

�
 �

�

��

� �	 (23)

Similar to (22), by (20) for � � �, the inequality (21) holds when ����
is sufficiently large.

Now, suppose (20) and (21) hold for � � �, where � � � is some
integer. For � � �
�, by the induction assumption it is easy to obtain
(20) from (19). As a result, by (20) and (23),

� �� 
 ��������� � � �� 
 �������
�����

�

	

Next, let �� � �������. The above inequality can be rewritten by
���� � ���������� . Since (21) holds for � � �, which means ���� �
�
� , � � �� 	 	 	 � �. By [17, Lemma 3.3], we immediately get ���� �
�
���. That is

������ � �
���� 
 ���


�� 
 ���
������


which also implies the second inequality in (21). By induction, we have
(20) and (21) hold for all � � �. Hence, 
��� diverges to infinity expo-
nentially.

C. Proof of Theorem 2.3

We first prove Lemmas 2.1 and 2.2.
Proof of Lemma 2.1: We adopt a constructive method to prove this

theorem. First, for any given �� with �
 � �� � ��
�, we construct a

function as follows:

����� �� ��
	
�

�� �	�
�

���

�

��� ��
�� � � � ��

���
� 
 ���

� 
 	 	 	
 ���
�� � 
� ��.

(24)

We now first prove that if � � ��, the system (1) with � � ����� is
stabilizable. Note that for � � ��, �� � � and

����� �� �� � �� �	�

�

���

��
���� �� 
 �

�� 	 (25)

We only need to prove that the system (1) with ���� �� � ����� �� ��
is stabilizable for any �� � �.

The idea of the proof is similar to that of [16], so we only write
down the differences in the proofs. Without loss of generality, suppose
�� 
� �. For any � � �, let

�� �� �����	
�������

����	 (26)

Let �� � �� �	�
 �

���
������ 
 ����� �� �� and �� be the domain

of all ��’s possible values. By (25) and the system (1), �� is actually

�� �
�� �� � �� � �� ��

���
	

Since �� �� is unknown and ��� ��� � �, then ��� � � ������ ���,
where � 	 � is the length of an interval. Note that

��
��

� �	�

�

���

��
� 
 ����� ��

� ��
� 
 ��� �� ��
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we have

��

��
� ��� ���

�

���

��

� � ����� ��
�

���

�

���

��

� � ��� �� ��

� ���

�

���

��� �

So, the domain �� of all ��’s possible values can be shown to be an
interval similarly and satisfies

���� � ���

�

���

��� ��� � �
��� �

���
��� �

��� ��
� (27)

Let 	�� be the center point of ��, we define the control sequence as the
following:

�� 
 �� �� 
 �	���
�
� � 
�� � � �� (28)

Then for � � �, the closed-loop dynamics is

���� 
 ��� � 	����
�
� � ����� (29)

Therefore, noting that the noise are bounded, by (27)

������ �
��� �

���
��� �

��� ��
����

� � �� 
�� �� � �� (30)

Then by (26), we have

������ �
��� �

���
��� �

���
�������

�����
����

� � �� 
�� �� � �� (31)

The rest arguments are the same as that in [16, Section 3, pp. 454], and
will not be repeated. Thus, the system (1) with 	��� 
� 
 	���� 
� ��
is stabilizable for any � � ��.

On the other hand, if � �� ��, we have by (24)

	���� 
� �� 
 ��

� � ��


� � � � �� ��

�
�

By [17], we immediately know that if there is a 
 � ��� ��� such that
� �
� � �, where � �
� is defined by (4), then, the system (1) with
	��� 
� 
 	���� 
� �� is not globally stabilizable by any feedback.
Since � �� �� implies � �� ��, the above condition is obviously satis-
fied, and the necessary part is also proved. This completes the proof of
Lemma 2.1.

Proof of Lemma 2.2: Given any 	���� �� �� � 	���, the system
(1) can be written as

���� 
 	���� 
� �� � �� � ����� � � � (32)

where � and 
��� satisfy Assumptions A1) and A2), respectively. Let
us define �� � � by

��

��� � ��� ������ ���� �� ������������ �� 
������ � �

Obviously,�� must satisfy�� � �� � ��
�, because by Theorems 2.1

and 2.2 and the definition of ��, we know that �� 
��
� and �� 
��

are both empty sets.
Proof of Theorem 2.3: For any �� with �� � �� � ��

�, let us
define

	����
�

 
	��� �� � 	��� � ��� ������ ��� �� ������������

�� 
������ �
 �!� �!�� �
 � � ��� �

Then, by Lemmas 2.1 and 2.2, it is easy to see that the theorem is true.

IV. CONCLUSION

The primary motivation and contribution of this technical note is to
explore the maximum capability and fundamental limitations of the
feedback principle in stabilizing uncertain nonlinear dynamical sys-
tems. To the best of our knowledge, this technical note seems to be the
first to address these issues for discrete-time nonlinearly parameter-
ized uncertain systems with sensitivity functions having growth rates
faster than linear. Such growth rates, parameterized by ���� � � � � ���,
are used in characterizing both “possibility” and “impossibility” theo-
rems on the capability of feedback as established in the technical note.
Finally, we would like to point out that, while various extensions or
improvements of the technical note may be expected, the impossibility
results established in Theorems 2.2 and 2.3 are actually applicable to
any larger class of uncertain systems that includes the basic model class
(1) as a subclass.
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Theories and Ultra Efficient Computation of Joint Spectral
Radius for Estimating First Passage Time

Distribution of Markov Set-Chain

Keyong Li

Abstract—This technical note is concerned with the tail distribution of
the first passage time of Markov set chains (MSC). An original two-part
idea—a more progressive relation and a sortedness test—is conceived to
characterize such chains. The theoretical construction based on this idea
further results in an algorithm that can compute the tightest exponent
bound of the tail distribution for high-dimensional problem instances
with surprising ease. To understand the computational implication of
this algorithm, note that the problem is equivalent to computing the joint
spectral radius (JSR) of a special independent column polytope (one that
defines Markov set chains) of nonnegative matrices. In this context, the
reported algorithm can compute the exact JSR value for cases of 100
100 matrices in less than a second in Matlab. Problems of this size is far
beyond the scope of known JSR techniques. It is worth noting that the
fields of MSC and JSR have not had significant overlap as one may expect,
despite their conceptual akiness. Meanwhile, the present technical note is
a contribution that belongs to both fields.

Index Terms—Joint spectral radius (JSR), Markov set chains (MSC).

I. INTRODUCTION

This technical note is concerned with the first passage time of fi-
nite Markov chains with uncertain and possibly time-varying transi-
tion probabilities. More specifically, we are interested in estimating the
exponent bounds of the tail distribution of the first passage time as it
approaches infinity, with the only knowledge that the transition prob-
ability matrix is contained in some set at all times. Note also that we
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do not assume slowly varying transition matrices. In this pursuit, some
interesting structures are discovered, which lead to an algorithm that
computes the exponents with surprising efficiency.

Two bodies of literature are particularly relevant: Markov set-chains
(MSC), such as [11], [20], [21], and Joint Spectral Radius (JSR), such
as [2], [4], [9], [18]. The former is a standard model of Markov chains
with uncertain and time-varying parameters. The MSC literature con-
tains more theoretical results such as conditions of ergodic properties,
while the JSR research concentrates more on computational issues. It
is well known that the spectral structure of nonnegative matrices plays
a key role in Markov chains. However, the actual impact from JSR re-
search to MSC is limited (see for example [12], which is useful for
slowly varying inhomogeneous chains). One observation is that the un-
certainty model in MSC is a polytope of transition matrices, while the
JSR problem is most often considered for a finite set of matrices. Al-
though the JSR of a polytope of matrices can be reduced to that of the
extreme points [3], that would result in a huge number of points to con-
sider. To give an idea, note that the set of all � � � substochastic ma-
trices has ������ extreme points. On the other hand, the JSR problem
is very hard for even a pair of matrices [22]. A set of ������ matrices
(or something of similar order of magnitude) would be out of the ques-
tion for � � ��. More detailed discussion of known results in MSC
and JSR will be given in a separate section.

In the present technical note, the Markov set-chains under consider-
ation are analysed in terms of a more/less progressive relation to sorted
homogeneous chains. Both ideas of progressivity and sortedness are
original. This construction further results in an algorithm (Algorithm
1.) with surprising efficiency for computing the exact sought-after ex-
ponents. In related JSR terms, what we compute is the JSR of some set
of nonnegative matrices that represents independent column uncertain-
ties. It has been proved in [5] that the JSR in this case is less elusive
than the general case, as it coincides with the spectral radius of some
extreme point of that set. But the algorithm that we provide has much
less computation cost than computing the spectral radius of all extreme
points, or the method in [5]. Numerically, cases of � � ��� are solved
by our algorithm in less than a second in Matlab. This is not possible
with a straightforward adoption of any known technique.

The fact that our algorithm computes the exact JSR value is formally
proved, while the claim that the algorithm always finishes very quickly
is in an empirical sense based on a large number of numerical experi-
ments. The formal proof of the latter is most likely non-trivial and most
likely probabilistic. It is also true that the present technical note spe-
cializes in nonnegative matrices, while many works on JSR apply to
general matrices. In short, this technical note enhances the state of the
art of JSR research in a particular direction.

Applicationwise, finite-state model is an effective approach for many
problems, but it is only an approximation of the much richer reality.
In many potential application areas of the probability theory, there is
a difficulty of assigning exact probabilities to real-world events. This
motivates us to consider what would happen if the transition proba-
bilities in the finite-state model are uncertain within some range. It is
worth noting that the modeling of hybrid systems using MSC has been
suggested in [1].

In what follows, Section II formulates the problem. A detailed dis-
cussion of the MSC and JSR literature is then given in Section III.
Section IV proves a rather general theorem for comparing uncertain,
inhomogeneous processes against time-homogeneous Markov chains
(Theorem 1). Section V then discusses a particularly useful construc-
tion (Theorem 2) involving two new concepts that we call progressivity
and sortedness. The former is a new relation between substochastic ma-
trices and the latter is a property that certifies a substochastic matrix
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