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Abstract An important task in control theory is to study the limitations of feedback principle in dealing

with uncertainties. Although some progresses have been achieved in this area, they are all focused on some

special classes of linearly parameterized nonlinear uncertain systems. In this paper, we will present a dynamic

inequality for the output process of a quite general class of nonlinear dynamical control systems with nonlinearly

parameterized uncertain parameters. This inequality will be established using a stochastic imbedding approach

based on a Cramér-Rao inequality for dynamical systems, and will be shown to play a crucial role in investigating

the fundamental limitations of the feedback mechanism.
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1 Introduction

Feedback, as a central concept in control theory, can be used to deal with various uncertainties including

initial state uncertainty, parameter uncertainty, structure uncertainty, and unknown disturbances, etc.

As has been well demonstrated in a vast literature in many areas including adaptive control and robust

control [1–7]. A natural and important question from both theoretical perspective and practical appli-

cations arises: Does the feedback principle have any limitations in dealing with parameter or structure

uncertainties?

To answer this fundamental question, we first observe that most of the existing literature on control

of uncertain dynamical systems assumes that a continuous-time controller (or a controller with sampling

rate fast enough) is implemented, and/or assumes that the uncertain systems are linear (or the nonlinear

dynamics are dominated by a linear growth rate). These assumptions are obviously not true in many

applications, though they are helpful for the theoretical investigation in the existing literature.

To understand what will happen when the above-mentioned assumptions are violated, a series of

studies initiated by [8] on the maximum capability and fundamental limitations of the feedback principle

have been carried out in recent years [9–15]. It has been found and rigorously established that the
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feedback mechanism (or principle) does indeed have fundamental limitations in dealing with various

uncertain nonlinear dynamical systems. For example, such limitations exist in the control of discrete-time

parametric nonlinear stochastic systems having a nonlinear growth rate [13], in the control of discrete-

time nonparametric nonlinear systems even if the nonlinearity has a linear growth rate [14], and also in

the sampled-data control of continuous-time nonlinear systems with a prescribed sampling rate, even if

the nonlinearity is bounded by linear growth rate [15].

All the above mentioned progresses, however, are focused on some special classes of nonlinear uncertain

dynamical systems. To lay a foundation for the investigation of the fundamental limitations of the

feedback mechanism for more general uncertain systems, we will in this paper establish a general dynamic

inequality for a quite general class of uncertain nonlinear systems. Two key ideas and methods behind

this study are as follows: i) The stochastic embedding approach. The uncertain systems are assumed

to have parametric uncertainties, which means that the unknown parameters may take any values in a

certain domain, which in turn means that the feedback law should be able to deal with all the systems

corresponding to all the possible parameter values in this domain. Hence, if, for any given feedback law,

there is always at least one system that cannot be dealt with by this law, then a fundamental limitation

of the feedback principle will be found. Thus, we can imbed a random variable into the domain of the

uncertain parameters, as well as a stochastic sequence into the domain of the disturbances. By doing so,

a key observation is that without requiring our analysis to hold on all the sample paths, we carry out the

analysis on a set with non-zero probability [9]. ii) After introducing the stochastic imbedding approach,

the next key step is to establish an extended Cramér-Rao lower bound [13,16] to the uncertainties in the

dynamical systems to be controlled. Such a universal lower bound to the estimation error of the system

uncertainties will then be transformed to the lower bound to the output processes of the dynamical

systems to be controlled. These ideas will be expounded on in detail in the paper.

The remainder of this paper is organized as follows. In Section 2, we will present the main theorem of

the paper. The proof is given in Section 3. The final section will give some concluding remarks.

2 Main result

Consider the following model:

yt+1 = f(θ,φt) + wt+1, (1)

where θ ∈ R
p, p � 1 is an unknown parameter vector, φt = (yt, ut; . . . ; yt−d, ut−d) with d � 0, ut

and wt are the system regression vector, feedback law and noise signal respectively, and where f(·, ·) :

R
2(d+1)+p → R is a nonlinear measurable function. Denote the partial derivative of f(θ,φ) with respect

to θ by f ′(θ,φ) = [f ′
1(θ,φ), f

′
2(θ,φ), . . . , f

′
p(θ,φ)]

τ , which is assumed to exist and be continuous.

We assume that the parameter vector and the noise sequence satisfy the following conditions:

A1) The unknown parameter vector θ belongs to a certain ball in R
p : Θ0 = {θ : ‖θ‖ � R}, where

R > 0 may not be known a priori.

A2) The noise sequence is an arbitrarily bounded sequence with an unknown upper bound w > 0, i.e.,

sup
t�1

|wt| � w. (2)

We are interested in how the unknown parameter θ ∈ Θ0 may fundamentally influence the output process

of (1) . For this, we need the following regularity assumption on the nonlinear function f(·, ·).
A3) The input sequence {ut} is any feedback sequence, i.e., ut is a Borel measurable function of the

observations {y0, y1, . . . , yt}.
A4) For any ε > 0, there exists a non-increasing and nonnegative function h(ε) such that for any

φ ∈ R
2d+2 with ‖φ‖ > h(ε), the set Δε,φ defined by

Δε,φ � {θ ∈ Θ0 : |f(θ,φ)| < εmax
θ

‖f ′(θ,φ)‖}, (3)



Li C Y, et al. Sci China Inf Sci January 2013 Vol. 56 012201:3

satisfies L(Δε,φ) � Mε, where L(·) denotes the Lebesgue measure on R
p and M > 0 is some constant.

Moreover, assume that for ‖φ‖ � h(δ), f ′
i(θ,φ) �= 0 for θ ∈ Θ0, i = 1, 2, . . . , p, where δ is any real number

in
(
0, πR2

16M

]
.

Theorem 2.1. Let Assumptions A3), A4) be satisfied. Then, there exist a parameter θ ∈ Θ0 and a

noise sequence {wi} satisfying A2) such that the corresponding outputs of system (1) satisfy

y2t+1 � 1

C1(t+ 1)4

(
dt
rt−1

− 1

)
− C2, (4)

provided that the regressors satisfy ‖φi‖>h((i+1)−2δ) for all i � t, where dt �
∑p

j=1 minθ∈Θ0 |f ′
j(θ,φt)|2,

and

rt−1 � 1 + t4 max
θ∈Θ0

[
t−1∑
i=0

‖f ′(θ,φi)‖2
]

with r−1 � 1. (5)

and C1, C2 > 0 are some constants.

If the uncertain parameter vector θ enters function f(θ,φ) linearly, the first condition of Assumption

A4) will be satisfied automatically ([10, Lemma 3.2]). To see this clearly, let us give a simple example

where f(θ,φ) = θφ with both θ and φ being scalars. Let h(·) ≡ 0 in Assumption A4). Then for any

φ ∈ R,

Δε,φ = {θ ∈ Θ0 : |θ| < ε} ⊂ {|θ| � min{ε,R}},
which immediately implies L(Δε,φ) � Mε for some M > 0.

Corollary 2.1. Let Assumption A3) be satisfied and that f(θ,φ) = θτg(φ) for some known function

g(·) ∈ R
p with g(φ) �= 0 if ‖φ‖ > h(ε). Then, there exist a parameter θ ∈ Θ0 and a noise sequence {wi}

satisfying A2) such that the corresponding outputs of system (1) satisfy

y2t+1 � 1

C1(t+ 1)4

(
‖g(φt)‖2

1 + t4
∑t−1

i=0 ‖g(φi)‖2
− 1

)
− C2, (6)

provided that the regressors satisfy ‖φi‖ > h((i + 1)−2δ) for all i � t, where C1, C2 > 0 are some

constants.

Remark 2.1. Theorem 2.1 and Corollary 2.1 give a dynamical lower bound to the system outputs.

The key points lie in the fact that such inequalities no longer involve the uncertain parameters and are

true for any feedback sequence {ut}. This may enable one to analyze the possible divergence rate for any

given feedback sequence {ut}.
Remark 2.2. We remark that, under some mild conditions, the output at t + 1 with (4) or (6) will

further result in ‖φt+1‖ > h((t + 2)−2δ), and the dynamical lower bound to the outputs can be derived

by repeatedly applying these inequalities [10].

Remark 2.3. An immediate application of Theorem 2.1 and Corollary 2.1 is to establish the limitations

of the feedback capability. They can be applied directly to a large number of parameterized models, which

give a much simpler analysis than the existing method [9,11,12]. For example, consider the following

system:

yt+1 = θτybt + ut + wt+1, (7)

where yt, ut and wt are the system output, input and noise respectively, θ is an unknown parameter, and

the exponent b > 0 is a real number. By [11], we know that system (7) is not globally stabilizable by

feedback if b � 4. Such an impossibility theorem was derived in [11] by a rather involved method, which

estimate the uncertain domain of θ at each step. Now, due to Corollary 2.1, the derivation becomes much

easier. In fact, for any feedback control law, by time t � 0, we have

y2t+1 � 1

C1(t+ 1)4

(
y2bt

1 + t4
∑t−1

i=0 y
2b
i

− 1

)
− C2,
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if yi �= 0, i � t. When b � 4, it can be proved by the above inequality that the outputs tend to infinity

if the initial value |y0| is large enough [10,11]. For a more general case, where the model is a nonlinearly

parameterized uncertain system

yt+1 = f(θ, yt) + ut + wt+1, (8)

the extension of the analysis method as used in [11] can hardly be applied due to the complexity of

the problem. But, the current Theorem 2.1 turns out to be very useful in establishing the impossibility

theorem on feedback (see [10] for details).

3 Proof of Theorem 2.1

Theorem 2.1 is a deterministic result in nature, but it will be established by using a stochastic imbedding

approach as that used in the linearly parameterized case [9]. The reason for using this approach is that a

direct analysis in the deterministic way is much more complicated even for linearly parameterized models

[12], not to mention the current case where the unknown parameters enter into the systems nonlinearly.

Let (Ω ,F , P ) be a probability space, θ ∈ R
p be a random vector and {wt}∞t=1 be a stochastic process

on this probability space. The stochastic imbedding idea is to construct a special class of θ and {wt}∞t=1

on this probability space, such that their sample pathes are consistent with those in our Assumptions

A1) and A2), and they are easily applicable to some Cramér-Rao-like inequalities for dynamical systems.

This can be done by choosing a suitable class of probability density functions (p.d.f.s) as follows.

Let θ ∈ Θ0 have the following spherical p.d.f. p(θ) defined by [13, Remark 3.2.3]

p(θ) =

{
c(2−1R2 − ‖θ‖2), if 0 � ‖θ‖ � R/2,

c(R − ‖θ‖)2, if R/2 � ‖θ‖ � R,
(9)

where c is some constant chosen to make
∫
‖θ‖�R

p(θ)dθ = 1 and ‖ · ‖ denotes the Euclidean norm.

Note that by a direct calculation based on the above definition of p(θ), it can be concluded that the

derivative of p(θ) exists in ‖θ‖ < R but not on the boundary ‖θ‖ = R. Similarly, the second derivative of

p(θ) exists for all ‖θ‖ < R except ‖θ‖ = R
2 . Fortunately, these will not affect our results and subsequent

analyses, since the Lebesgue measure of {θ : ‖θ‖ = R or R/2} is zero.

Next, let {wt} be an independent sequence independent of θ with wt having a Gaussian p.d.f. qt(z)

defined by N(0, 1
t2 ) :

qt(z) =
t√
2π

exp

(
− z2t2

2

)
. (10)

Obviously, {wt} is bounded almost surely, since

lim
t→∞wt = 0, a.s. (11)

Now, we will show that in the above stochastic framework, for any feedback control ut ∈ F t
y � σ{yi, 0 �

i � t}, there always exist an initial condition y0 and a set D ⊂ Ω with positive probability such that

for any ω ∈ D, θ(ω) ∈ Θ0 and |wt(ω)| � w hold1), and that the corresponding output sequence {yt} of

the closed-loop control system has a dynamical lower bound. This will naturally gives the corresponding

results in the deterministic framework of this paper.

To get the above results, we need a key lemma on a conditional Cramér-Rao inequality for dy-

namical systems, which may be regarded as an extension of those in [13] and [16]. To this end,

we first define some notations which will be used in the sequel. ft � f(θ,φt), where φt is defined

by (1). Exy � E{y|x}, where x, y are random vectors. f̂(θ,φt) � E[f(θ,φt)|Fy
t ]; Pt+1(θ) �

KI +M1(t+1)4
∑t

i=0 E[f ′(θ,φi)f
′τ (θ,φi)|Fy

t ] with P0(θ) � KI; where Fy
t � σ{y1, . . . , yt}, K,M1 > 0

are two nonnegative random variables and f ′(θ, ·) is the derivative of f(θ, ·) with respect to θ.

1) It is worth noting that by (11), wt may not satisfy the upper bound in A2) at the first finite time steps, but this will

not essentially influence the analysis in what follows
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We first give a Cramér-Rao inequality-like result to get the best prediction of the uncertain function

f(θ,φt) given {y1, . . . , yt}.
Proposition 3.1. Let θ be a random parameter vector with p.d.f. p(θ) defined in (9), and be

independent of {wk} which is an independent random sequence with p.d.f. qt(z) defined in (10). Let

the nonlinear function f(·, ·) be differentiable with respect to θ. Then for dynamical system (1) with

arbitrarily deterministic initial value φ0, for t � 0, we have

Ex[f(θ,φt)− f̂(θ,φt)]
2 � 1

2
Eτ

xf
′(θ,φt)P

−1
t (θ)Exf

′(θ,φt), (12)

where x � {y1, . . . , yt}.
The next proposition shows there is a set D ∈ Ω , on which the outputs of system (1) have the desired

dynamical lower bound.

Proposition 3.2. Under the conditions of Proposition 3.1 and Assumptions A3)–A4), if the regressor

satisfies ‖φt‖ � h
(

δ
(t+1)2

)
for all t, where δ is some constant to be defined later on, then there exists some

set D ⊂ Ω with P (D) > 0 such that on this set,

y2t+1 � 1

(K1(t+ 1)4 + 4)

(‖Exf
′(θ, φt)‖2

2λmaxPt(θ)
− 1

)
−K2, a.s. (13)

holds for all t � 0, where K1,K2 > 0 are some random variables.

To prove Theorem 2.1, we need to prove Propositions 3.1 and 3.2. The proof of Proposition 3.1 involves

several lemmas to be given below. The first lemma is a variation of the Cramér-Rao inequality (see [13,

16]).

Lemma 3.1. Let x be a random vector, and let θ be a parameter vector with p.d.f. p(θ) defined by

(9). Also, let g(x, θ) be any measurable vector function having partial derivatives of first order w.r.t. θ,

and let there be Exg(x, θ) and Ex
∂g(x,θ)

∂θ . Denote by p(x, θ) the joint p.d.f. of x and θ. Then we have

Ex[g(x, θ)− Exg(x, θ)]
2

�Ex
∂g(x, θ)

∂θ

{
Ex

[
∂ log p(x, θ)

∂θ
· ∂

τ log p(x, θ)

∂θ

]}−1

Eτ
x

∂g(x, θ)

∂θ
.

Applying this lemma to the dynamical system defined by (1), we can further get the following result.

Lemma 3.2. Under the conditions of Proposition 3.1, for t � 1, we have

Ex[f(θ,φt)− Exf(θ,φt)]
2 � 1

2
Eτ

xf
′(θ,φt)[ExFt(θ)]

−1Exf
′(θ,φt), (14)

where x � {y1, . . . , yt} and

Ft(θ) �
t∑

k=1

∂ log qk(yk − fk−1)

∂θ
·

t∑
k=1

∂τ log qk(yk − fk−1)

∂θ
+KI,

with p(·) and qt(·) being the p.d.f.s of the parameter θ and noise wt respectively, and where K > 0 is

some random variable.

Proof. Directly applying Lemma 3.1, we have

Ex[f(θ,φt)− Exf(θ,φt)]
2

� Eτ
x

∂f(θ,φt)

∂θ

{
Ex

[
∂ log p(x, θ)

∂θ
· ∂

τ log p(x, θ)

∂θ

]}−1

Ex
∂f(θ,φt)

∂θ

= Eτ
x

∂f(θ,φt)

∂θ

{
Ex

[
∂[log p(x|θ) + log p(θ)]

∂θ
· ∂

τ [log p(x|θ) + log p(θ)]

∂θ

]}−1

Ex
∂f(θ,φt)

∂θ
. (15)
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By the Bayes rule and the dynamical equation (1), we know that

p(x|θ) = p(y1, y2, . . . , yt|θ)
= p(y1|θ)p(y2|θ, y1) · · · p(yt|θ, . . . , yt−1)

= q1(y1 − f0) · q2(y2 − f1) · · · qt(yt − ft−1).

Then, by the matrix Schwarze inequality

(
t∑

k=1

∂ log qk(yk − fk−1)

∂θ
+

∂ log p(θ)

∂θ

)
·
(

t∑
k=1

∂ log qk(yk − fk−1)

∂θ
+

∂ log p(θ)

∂θ

)τ

� 2

(
t∑

k=1

∂ log qk(yk − fk−1)

∂θ
·

t∑
k=1

∂τ log qk(yk − fk−1)

∂θ
+

∂ log p(θ)

∂θ
· ∂

τ log p(θ)

∂θ

)
,

and the following fact (e.g. [13])

Ex
∂ log p(θ)

∂θ
· ∂

τ log p(θ)

∂θ
= −Ex

∂2 log p(θ)

∂θ2
,

we know that to prove Lemma 3.2, it suffices to show that

−Ex
∂2 log p(θ)

∂θ2
� KI, a.s., (16)

where K > 0 is some random variable.

First, it is not difficult to show that ∂2p(θ)
∂θ2 and 1

p(θ)

(
∂p(θ)
∂θ

)(
∂p(θ)
∂θ

)τ

are bounded. Then with some

simple manipulations, we have

∂2 log p(θ)

∂θ2
= − 1

p2(θ)

(
∂p(θ)

∂θ

)(
∂p(θ)

∂θ

)τ

+
1

p(θ)

∂2p(θ)

∂θ2
� − C

p(θ)
I,

where C > 0 is some constant. Hence

−Ex
∂2 log p(θ)

∂θ2
� CI ·Ex

1

p(θ)
. (17)

Note that for any integrable random variable X , E[X |Fy
t ] is a.s. bounded (see, e.g., [17, p.145]).

Hence, we have Ex
1

p(θ) a.s. bounded since E 1
p(θ) = 1, which gives (16).

Remark 3.1. Lemma 3.2 still holds for F0(θ) � KI at time t = 0. This is because in (15), the

following equality

Ex

[
∂ log p(x, θ)

∂θ
· ∂

τ log p(x, θ)

∂θ

]
=

∂ log p(θ)

∂θ
· ∂

τ log p(θ)

∂θ
, a.s.,

will be true for t = 0, which together with (16) shows our claim at t = 0.

Lemma 3.3. Under the conditions of Proposition 3.1, for any t � 1, we have

Ft(θ) � M1t
4
t−1∑
k=0

f ′(θ,φk)f
′τ (θ,φk) +KI,

where Ft(θ) is defined in Lemma 3.2 and M1 > 0 is some random variable.

Proof. Since qk(yk − fk−1) =
k√
2π

exp{−k2

2 (yk − fk−1)
2}, k = 1, 2, . . . , t, we have

∂ log qk(yk − fk−1)

∂θ
=

∂

∂θ

{
− k2

2
(yk − fk−1)

2

}
= k2f ′(θ, θk−1)wk.
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Moreover, by the definition of the p.d.f.s qt(z) of {wt}, we know that, for some random M1 > 0,∑t
k=1 w

2
k � M1. Hence, by the matrix Schwarze inequality, we have

(
t∑

k=1

k2f ′(θ,φk−1)wk

)(
t∑

k=1

k2f ′(θ,φk−1)wk

)τ

�
(

t∑
k=1

k4f ′(θ,φk−1)f
′τ (θ,φτ

k−1)

)(
t∑

k=1

w2
k

)

� M1t
4

t∑
k=1

f ′(θ,φk−1)f
′τ (θ,φτ

k−1),

which gives the lemma by the definition of Ft(θ).

Proof of Proposition 3.1. By Lemmas 3.2, 3.3 and Remark 3.1, Proposition 3.1 is true.

To prove Proposition 3.2, we first prove the following lemma.

Lemma 3.4. Under the conditions of Proposition 3.2, there exists a setD ⊂ Ω with positive probability

such that on D, E[y2t+1|Fy
t ] �

(
4 +K1(t+ 1)4

)
(y2t+1 +K2) + 1 holds for any t � 0, where K1,K2 > 0

are some random variables.

Proof. Define

Δt �
{
θ ∈ Θ0 : |f(θ,φt)| < δ

(t+ 1)2
f∗(φt)

}
, t � 0,

where δ is defined by A4) and f∗(φt) � maxθ∈Θ0 ‖f ′(θ,φt)‖. Now, we we will prove that

0 < δ <
1

MP
∑∞

t=0
1

(t+1)2

, (18)

where P � supθ∈Θ p(θ), andM > 0 is defined in A4). In fact, by (9), P = cR2

2 . To estimate c, noteing that∫
‖θ‖�R

2
p(θ)dθ < 1, by the definition of c and (9), we immediately have c

(
R2

2 − R2

4

)
πR2

4 < 1, and hence

c < 16
πR4 . Consequently, P < 8

πR2 . Since
∑∞

t=0
1

(t+1)2 � 1 +
∫∞
t=1

1
t2dt � 2, we have MP

∑∞
t=0

1
(t+1)2 �

16M
πR2 . As a result, (3) holds by A4).

Recursively define Θt+1 � Θt −Δt, t = 0, 1, . . . , where Θ0 is defined by Assumption A1). Let Θ∞ �
limt→∞ Θt, D � {ω : θ ∈ Θ∞}.

So, by (3), Assumption A4) and the condition of this lemma, we have L(Δt) � Mδ
(t+1)2 , and hence

P

({
ω : θ ∈

∞⋃
t=0

Δt

})
�

∞∑
t=0

P ({ω : θ ∈ Δt}) =
∞∑
t=0

∫

Δt

p(θ)dθ � PM

∞∑
t=0

δ

(t+ 1)2
< 1,

which implies

P (D) � 1− P

({
ω : θ ∈

∞⋃
t=0

Δt

})
> 0.

Now, let ω∗ ∈ D be a fixed point, and let {θt} be a sequence of random variables such that |f(θt,φt)| =
maxθ∈Θ |f(θ,φt)|. Then by the definitions of D and Δt, we have

[f(θt,φt)− f(θ(ω∗), θt)]
2 = [(θt − θ(ω∗))τf ′(ξt, θt)]

2

� ‖θt − θ(ω∗)‖2 ·max
ξ

‖f ′(ξ, θt)‖2 � 2R(t+ 1)4

δ
f2(θ(ω∗),φt), (19)

where ξt is some random variable, and R is defined in Assumption A1). Consequently, by noting that

w2
t � K2, a.s. for some random constant K2 > 0, and the fact that maxθ∈Θ0 f

2(θ,φt) is measurable Fy
t ,

for any ω∗ ∈ D, we have

Exy
2
t+1 = Exf

2(θ,φt) + Ew2
t+1 � max

θ∈Θ0

f2(θ,φt) + 1
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� 2f2(θ(ω∗),φt) + 2[f(θt,φt)− f(θ(ω∗),φt)]
2 + 1

�
(
2 +

2R(t+ 1)4

δ2

)
f2(θ(ω∗),φt) + 1.

Hence,

[Exy
2
t+1](ω

∗) �
(
2 +

2R(t+ 1)4

δ2

)
f2(θ,φt)(ω

∗) + 1

=

(
2 +

2R(t+ 1)4

δ2

)
[yt+1(ω

∗)− wt+1(ω
∗)]2 + 1

=

(
4 +

4R(t+ 1)4

δ2

)
(y2t+1(ω

∗) +K2) + 1

� (4 +K1(t+ 1)4)(y2t+1(ω
∗) +K2) + 1,

where K1 = 4R
δ2 is a constant. Hence the proof is completed.

Proof of Proposition 3.2. First of all, it is easy to see that E[wt+1|Fy
t ] = Ewt+1 = 0 by (10). By (1)

we know that

yt+1 = [f(θ,φk)− f̂(θ,φk)] + f̂(θ,φk) + wt+1, (20)

where f̂(θ,φk) are defined as in Proposition 3.1. Consequently, from the fact thatE[f(θ,φk)−f̂(θ,φk)|Fy
t ]

= 0 and E[wt+1|Fy
t ] = 0, it follows that, for any ut ∈ Fy

t ,

E[y2t+1|Fy
t ] = E{[f(θ,φk)− f̂(θ,φk)]

2|Fy
t }+ f̂2(θ,φk) + E[w2

t+1|Fy
t ]

� E{[f(θ,φk)− f̂(θ,φk)]
2|Fy

t }. (21)

Then by Proposition 3.1, on D, we have

Exy
2
t+1 � 1

2
Eτ

xf
′(θ,φt)P

−1
t (θ)Exf

′(θ,φt) �
1

2

‖Eτ
xf

′(θ,φt)‖2
λmaxPt(θ)

.

This together with Lemma 3.4 shows that Proposition 3.2 holds true.

Proof of Theorem 2.1. By Proposition 3.2, there is a ω ∈ D, which corresponds to a value θ, a sequence

{wt} and some constants M1,K,K1,K2 such that

y2t+1 � 1

(K1(t+ 1)4 + 4)

(‖Exf
′(θ,φt)‖2(ω)

2λmaxPt(θ)(ω)
− 1

)
−K2. (22)

Note that for any t � 0, ‖φj‖ > h((j + 1)−2δ) � h(δ), 0 � j � t. Since f ′
i(θ,φj) is continuous,

i = 1, 2, . . . , p, it is thus not equal to zero for all θ ∈ Θ0 by Assumption A4). This implies that f ′
i(θ,φj)

is either positive or negative for all θ ∈ Θ0. As a result, for any ω ∈ Ω , we have

‖Exf
′(θ,φt)‖2 =

p∑
i=1

E2
xf

′
i(θ,φt) �

p∑
j=1

min
‖θ‖�R

|f ′
j(θ,φt)|2. (23)

Moreover, since Pt(θ) � 0, for any t � 1, we have

λmaxPt(θ) � trPt(θ) � M1t
4 max
‖θ‖�R

[
t−1∑
i=0

f ′τ (θ,φi)f
′(θ,φi)

]
+Kp. (24)

Obviously, λmaxP0(θ) = K. Taking (23) and (24) into (22), we immediately obtain the theorem.



Li C Y, et al. Sci China Inf Sci January 2013 Vol. 56 012201:9

4 Concluding remarks

We have presented a dynamical inequality on the output sequence of a wide class of uncertain nonlinear

control systems, and have illustrated how to use this inequality to derive some fundamental limitations

to the capability of the feedback principle. Such an inequality for uncertain control systems may play an

important role, like the well-known Cramér-Rao bound, in mathematical statistics. More results are to

be derived along this line of research.
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