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Abstract In classical control systems, the plant to be controlled does not have intention to gain its payoff or

benefit, which is obviously not the case in various aspects of social and economic systems(or subsystems). In the

latter case, competition and cooperation between players who will optimize their own payoffs turn out to be an

important feature, and a fundamental problem is how to achieve cooperation from these rational players. In this

paper, we present a neat way to lead to cooperation in dynamical Prisoner’s Dilemma game. In our scenario, the

two players are heterogenous with hierarchical roles as the ‘leader’ and the ‘follower’ respectively. It is shown

that the system will co-evolve into and stay at the cooperation state if and only if the leader is restricted not to

take the dominating strategies. For the special case of 1-step-memory, the optimal strategies for the leader and

follower are ‘Tit for Tat’ and ‘ALL C’ respectively. In this framework, both the heterogeneity of the players’

roles and the multiplicity of time-scales are crucial for cooperation, which are quite natural settings from the

view point of control theory. Besides, the boundary for cooperation also turns out to depend on the relative

payoffs of the players.
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1 Introduction

Over the past half century, a great deal of research effort have been devoted to adaptive control systems,

and much progress has been made in both theory and applications (see, e.g. [1]). In the traditional

parametric adaptive control, the controller may be regarded as a single agent acting on the system based

on the information or measurement received, and the time-varying parameter process may be regarded

as the strategy of another ‘agent’, save that the action of this ‘agent’ usually does not depend on the

control actions, and that it has no intention to get its ‘payoff’.

However, in many systems such as those in social and economic systems, there exist more complex

interactions: the controller, which might be called the ‘leader’ in the system, stands on a position to

manage or to control the system by making rules, while the plant, which might be called the ‘follower’,

can respond to these rules. This interaction can be seen from many phenomena in the real world, like

the interaction among the law, the government, the enterprises, and the individuals. Different from the
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classical control systems, the follower does have its intension and rationality to optimize its payoff and

thus will adapt its action to the leader’s action. Then the system can just evolve under the actions of

both players. Then, in these cases, competition and cooperation among agents with different positions

and roles in the system turn out to be a significant feature, since in many cases, cooperation is good for

both the players and the system, but not easy to achieve.

To study this new kind of system, we need to extend the traditional control framework. One feasible

and reasonable way is to model the interactions between agents in such systems as games between

heterogeneous/hierarchical players, which is clearly different from the research either in classical game

theory [2], or in the differential game theory [3]. As a starting point, we derived a non-equilibrium

dynamical game between two heterogeneous players called a ‘machine’ and a ‘human’ and considered the

optimization of the ‘human’ while the ‘machine’ was assumed to take a fixed strategy [4]. Following [4],

in the current paper, we will further consider the optimization of both players and formulate the problem

as a repeated game between a leader and a follower. Then we will find that the cooperation just emerges.

This leader-follower way is different from the setting in the existing related literature.

One notable related work was accomplished by Axelrod [5,6]. In the computer tournament Axelrod

designed, the simplest ‘Tit for Tat’ strategy (which just copies the action of its opponent in the last

round) won surprisingly. In another simulation ([7], Chapter 3) where the strategies evolved by Generic

Algorithm, even better strategies emerged.

Another related direction is to study the cooperation in the population with spacial structures, such as

on lattices or networks, which are pretty productive over the past decades [8,9]. Some other researchers

have also tried to achieve cooperation by letting the finite automaton play games [10,11], or by introducing

an ε-Nash Equilibrium [12] or the ‘good’ strategy [13].

Although much work [14] has been devoted to the study of emergence and maintenance of cooperation,

the framework in this paper is still different from them. In the above mentioned work, the players are

assumed to be homogenous on their roles. In our framework, the players possess hierarchical roles (so

they must be heterogeneous), which is a quite natural setting from the view-point of control theory.

This hierarchical formulation appears to be rare in the existing literature and the most related work

seems to be [15]. However, [15] still differs with the current paper in several aspects: the original

motivation of [15] was not to achieve cooperation but to reach a state which is better than mutual

defection, the follower’s strategy was restricted to a special class, the method was enumerating rather

than analytical in essence, the win-loss criterion was not introduced and used, and finally neither other

games besides the Prisoner’s Dilemma game nor the case for general memory length were considered.

These will all be considered in the current paper.

In this paper, the repeated Prisoner’s Dilemma game will be played between a ‘leader’ and a ‘follower’.

Then we will prove that, under some conditions, the rational players will go into and stay at the co-

operation state. Moreover, for the 1-step-memory case, the ‘Tit for Tat’ strategy is best for the leader

and it is robust to the payoff parameters and the initial states, while the ‘ALL C’ strategy is best for

the follower. This is a simple, direct and precise way to lead to cooperation and for the first time, the

optimality of ‘Tit for Tat’ is proven analytically. For general k-step-memory strategies, the necessary and

sufficient condition is given for cooperation, which shows that the relative payoff for the players is just

indispensable. Additionally, we will give two claims that to study cooperation in 2× 2 symmetric games,

only three games need to be considered and the condition for cooperation holds for all of them. Parts of

this paper were presented in [16].

The remainder of the paper is organized as follows. In Section 2, we give the problem formulation and

in Section 3, we state the main results and the proofs will be given in Section 4. Section 5 will conclude

the paper with some remarks.

2 The problem

The Prisoner’s Dilemma (PD) game has been mostly used in the study of evolution of cooperation and

can be presented in Figure 1 below, where action ‘C’ means the player cooperates with the partner, and
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Player II

Player I

C                     D
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(r, r)                 (s, t)

(t, s)                 (p, p)

Figure 1 The payoff matrix of the PD game.

‘D’ means the player defects the partner. The parameters r, s, t, p denote the payoffs of the players under

each action profile. For instance, the payoff profile (t, s) means that under the action profile (D,C), i.e.,

when Player I’s action is D and Player II’s action is C, Player I will get a payoff t and Player II will get

a payoff s. The parameters satisfy the standard condition [5] as in (1) below.

t > r > p > s, r >
t+ s

2
. (1)

In the PD game, mutual defection (D,D) is the unique Nash equilibrium, while mutual cooperation

(C,C) is better for both. In fact, for any finitely repeated PD game, (D,D) is the unique Nash equilibrium

[2]. Much research has been carried out to study how to achieve cooperation. In this paper, following

the scenario of [4], we will let the game be played in the leader-follower way and rigorously prove that

cooperation can be achieved.

In [4], we derived the dynamical game where the players were heterogenous: one being a ‘human’ and

the other being a ‘machine’. Though the two players will take their actions simultaneously as usually

assumed, the machine acts according to a fixed k-step memory strategy, while the human can identify

the machine’s strategy and optimize his own payoff. However, the optimization problem of the ‘machine’

was not considered in [4].

In this paper, we will further let the ‘machine’ also optimize its payoff. Thus the machine is like a

‘leader’ who sets its strategy first, and the human acts like a ‘follower’ who will react to the leader’s

strategy. Next, we will formulate this idea precisely and use the notion ‘leader’ (called a ‘she’ below) and

‘follower’ (called a ‘he’ below) instead of the ‘machine’ and ‘human’.

As in [4], the game is infinitely played at t = 0, 1, 2, . . . . Let l(t) and f(t) denote the actions of the

leader and the follower at t. The action ‘C’ is denoted by 0 and ‘D’ by 1 and the action set is denoted

by A = {0, 1}.
Assume the leader’s strategy has k-step memory as follows:

l(t+ 1) = g(l(t− k + 1), f(t− k + 1); . . . ; l(t), f(t)), (2)

where g represents a certain mapping. In contrast, the follower’s strategy can be any mapping gF : H →
A, where H =

⋃
t Ht, and Ht � {(l(0), f(0); ...; l(t− 1), f(t − 1))} is the history of actions up to time

t− 1.

For the analysis to follow, we define the system state as

s(t) �
k−1∑

l=0

{
22l+1 · l(t− l) + 22l · f(t− l)

}
+ 1, (3)

which establishes a one-to-one correspondence between the vector set {0, 1}2k and the integer set {1, 2, . . . ,
22k}. Hereinafter, when s(t) = i, we will denote it by s(t) = si, i = 1, 2, . . . , 22k. Here we use si to

represent a certain state so as to avoid the possible misunderstanding when only i is used. Then, the

leader’s action at time t+ 1 under a strategy with k-step-memory can be written as

l(t+ 1) =
22k∑

i=1

aiI{s(t)=si}(s(t)), (4)
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where I represents the indicator function

I{s(t)=si}(s(t)) =
{
1, if s(t) = si;

0, if s(t) �= si.

Then the leader’s strategy can be denoted by a vector A = (a1, a2, . . . , a22k). The strategies constitute

a set Ak = {k-step-memory-strategy}. Obviously, Ak increase with k, i.e., Ak ⊂ Ak+1.

Now, given any initial state s(0), any leader’s strategy g as in (2) (or A as in (4)) and any follower’s

strategy gF (as defined following (2)), the game will be realized and both the players will get their

one-step payoff value pL(t) and pF (t). The relative payoffs at t for both players can also be defined as

wL(t) � sgn{pL(t)− pF (t)}, and wF (t) � −wL(t), which indicate whether the leader or the follower wins

or not at time t.

The overall payoff on the infinite time horizon is defined in the average sense (called the averaged

payoff in the following): Pi � limT→∞ 1
T

∑T
t=1 pi(t), i = L, F . The averaged relative payoff Wi, i = L, F

is defined similarly. When the leader and follower choose their strategies A and gF respectively, their

resulting averaged payoffs and relative payoffs will be denoted by Pi(s(0), A, gF ), Wi(s(0), A, gF ), i =

L, F , where s(0) is a given initial state. In the case where s(0) is not concerning, we simply denote them

by Pi(A, gF ), Wi(A, gF ), i = L, F .

Let the players optimize their averaged payoffs and averaged relative payoffs lexicographically: If there

are two strategies which give the player the same averaged payoff, he/she will choose the one which gives

a bigger averaged relative payoff. If two strategies give the player the same averaged payoff and the same

averaged relative payoff, the player chooses either one. Then by Proposition 1 in next section, this choice

will not influence the final result of the game.

By Theorem 2.1 in [4], for any given Ai ∈ Ak, there exists gF = B∗
i ∈ Ak which is optimal for the

follower. Then, neglecting the initial state here, the lexicographical optimization of the players can be

expressed as

B∗
i = argmax

B∈Ak

(PF (Ai, B),WF (Ai, B)), Ai∗ = argmax
Ai∈AL⊆Ak

(PL(Ai, B
∗
i ),WL(Ai, B

∗
i )). (5)

By (5), the follower will choose B∗
i so that he can optimize his averaged payoff PF (Ai, B) and averaged

relative payoff WF (Ai, B) lexicographically knowing the leader’s strategy Ai; meanwhile, the leader will

choose Ai∗ so that she can optimize her averaged payoff and averaged relative payoff PL(Ai, B
∗
i ), WL(Ai,

B∗
i ) lexicographically knowing the follower’s optimal choice B∗

i . In (5), AL is a subset of Ak. In next

section, we will see that in order to induce cooperation, we must have AL �= Ak for k � 2.

Now, two basic and further questions remain to be addressed: Knowing that the follower will optimally

react to her strategy, which strategy should the leader choose in order to optimize her own averaged payoff

and relative payoff lexicographically? What will happen to the whole dynamic game system? i.e., What

is the solution to (5) and what is the system state under the solution? These will be answered in the

following section.

3 Main results

3.1 Cooperation in the leader-follower Prisoner’s Dilemma game

First we give the following proposition, from which one can see that if there are two strategies giving the

same averaged payoff and the same relative payoff to a player, then he/she can choose any one without

influencing the result of the game.

Proposition 1. Given two pairs of strategies of the leader and follower (A1, B1) and (A2, B2), if the sys-

tems under them lead to the same averaged payoff and the same averaged relative payoff for the follower(or

for the leader), i.e. PF (A1, B1) = PF (A2, B2) and WF (A1, B1) = WF (A2, B2) (or the respective equa-

tions for the leader), then the system will give the same averaged payoff and the same averaged relative
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payoff for the leader (or for the follower), i.e. PL(A1, B1) = PL(A2, B2) and WL(A1, B1) = WL(A2, B2)

(or the respective equations for the follower).

Now, we can answer the questions raised at the end of Section 2 for the simplest case with k = 1.

Theorem 1. Consider the leader-follower Prisoner’s Dilemma game defined by (5). Let k = 1 and

AL = A1. Then, the optimal strategy profile (Ai∗ , B
∗
i∗) exists. Moreover, under (Ai∗ , B

∗
i∗), the system

will reach and stay at the cooperation state (C,C) from any initial state s(0).

Proposition 2. Consider the leader-follower Prisoner’s Dilemma game defined by (5). Let k = 1 and

AL = A1. Then

(i) The ‘Tit for Tat’ strategy, i.e, AT = (0, 1, 0, 1) is the solution for Ai∗ for any initial state s(0) and

any parameters (s, p, r, t) satisfying (1). The corresponding optimal strategy B∗
i∗ for the follower is the

‘ALL C’ strategy AC = (0, 0, 0, 0).

(ii) If (t+ p)/2 � r, the ‘Tit for Tat’ strategy is the unique solution for Ai∗ as in (i).

Remark 1. The optimal strategy profile (TFT, ALL C) (‘Tit for Tat’ will be abbreviated as TFT below)

can be seen as the ‘equilibrium’ in the leader-follower game, by which the Prisoner’s Dilemma game can

reach cooperation in a neat way. This is different from the previous understanding of the homogeneous

scenario [17], where the ‘ALL C’ strategy is obviously dominated by ‘ALL D’.

Remark 2. Proposition 2 implies the robustness of TFT with respect to the perturbation of payoff

parameters and the initial states.

For the case with general k, cooperation cannot be reached in the game defined by (5) if AL =

Ak. However, the necessary and sufficient condition with respect to AL can be given in order to reach

cooperation. Before giving the condition, we define two kinds of strategies for the leader.

For simplicity, in the following, denote the leader’s strategy by L and the follower’s by F . The averaged

payoff and averaged relative payoff under the strategy profile (L, F ) are denoted by Pi(L, F ) andWi(L, F ),

i = L, F . Given L ∈ Ak, denote by F (L) = argmaxF∈Ak
(PF (L, F ),WF (L, F )) the optimal strategy for

the follower.

Then, a leader’s strategy L is called a cooperating strategy, if under L and F (L), the leader’s

averaged payoff satisfies PL(L, F (L)) = r, WL(L, F (L)) = 0 where r is the payoff for the player at the

cooperation state (C,C) (see the payoff matrix in Figure 1). The set of all cooperating strategies is

denoted by Acc. Note that for any k, the 1-step-memory-strategy ‘Tit for Tat’ belongs to the set Acc (by

Theorem 1), such that we always have Acc �= ∅.
Then, Acc defines the cooperation state (C,C): on one hand, given (L, F (L)), if the system will reach and

stay at the cooperation state (C,C), the leader’s average payoff must be PL(L, F (L)) = r, WL(L, F (L)) =

0; on the other hand, if the leader’s averaged payoff is PL(L, F (L)) = r, WL(L, F (L)) = 0, then the system

must be at the cooperation state (C,C), since by (1), any other cycle of states cannot give the leader such

a payoff.

A leader’s strategy L is called a dominating strategy, if under L and F (L), the leader’s averaged

payoff satisfies WL(L, F (L)) > 0, PL(L, F (L)) � r. The set of all dominating strategies is denoted by Ad.

Intuitively, the dominating strategy is preferred by the leader but not by the follower: on one hand,

if the leader takes a dominating strategy L ∈ Ad, then whatever the follower optimizes, the leader’s

averaged payoff will always be strictly better than at the cooperation state; on the other hand, the

follower’s averaged payoff will always be PF � r (since at any state pL + pF � 2r), WF < 0 (since at any

state wL + wF = 0), i.e. the leader dominates the follower and the game now.

Here we note that both Acc and Ad are defined relative to Ak. When k varies, both Acc and Ad will

varies too. Then, we have

Theorem 2. Consider the leader-follower Prisoner’s Dilemma game defined by (5). Let k be general and

AL ⊆ Ak. Then the system will reach cooperation if and only if Acc

⋂AL �= ∅ and Ad

⋂AL = ∅.
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From Theorem 2, the sets Acc and Ad define a boundary between the cooperation and non-cooperation

in the system defined by (5). Here we note that to describe Acc and Ad, both the payoff and relative

payoff for the players must be considered, and the relative payoff is just indispensable.

To see this, define four subsets of Ak as below: Aw
k � {L ∈ Ak : WL(L, F (L)) < 0}, Âw

k � {L ∈ Ak :

WL(L, F (L)) � 0}, Ap
k � {L ∈ Ak : PL(L, F (L)) < r}, Âp

k � {L ∈ Ak : PL(L, F (L)) � r}. Then, we

have Acc = (Âw
k \ Aw

k )
⋂
(Âp

k \ Ap
k). Also, define Ac � Ak \ Ad, which is the largest set that AL can be

taken in (5) in order to reach cooperation. Then, Ac = Âw
k

⋃
((Âw

k )
c
⋂Ap

k) = Âp
k \ ((Âw

k )
c
⋂
(Âp

k \Ap
k)) =

Ak \ ((Âw
k )

c
⋂
(Ap

k)
c). So, neither Acc nor Ad can be expressed completely by the payoff or the relative

payoff only.

It is interesting to investigate the sets Acc, Ad in detail. Unfortunately, to describe them clearly is not

easy: on one hand, the number of elements in Ak is 2(4
k), which makes searching over Ak quite hard when

k is large; on the other hand, the popular mathematics lose their power here. For k = 2, the simulation

result shows that Ad is not big, which seems helpful for cooperation. For k � 2, we can prove that Ad is

nonempty.

Proposition 3. Let k � 2. If the parameters r, s, t, p in (1) also satisfy (2s+ t)/3 > p and (2t+s)/3 > r,

then there always exists a leader’s strategy L = ‘2 Tits for 1 Tat’, i.e., k = 2, A = (a1, a2, . . . , a16),

a11 = 0, ai = 1, ∀i �= 11, belonging to Ad.

Remark 3. Proposition 3 coincides with Axelrod’s simulation result where the strategies were evolved

by Generic Algorithm ([7], Chapter 3) and some new strategies performing better than TFT emerged.

This fact also reveals the difference between the solution for the leader-follower game and the Nash

equilibrium: given a big enough strategy space, the leader do have the advantage over the follower.

3.2 Cooperation in 2× 2 symmetric games

There are two other interesting game models: the Snowdrift and the Staghunt game, which can also be

used to study the emergence and maintenance of cooperation [18,19]. They can also be presented by

the payoff matrix in Figure 1, where for the Snowdrift game, the parameters satisfy t > r > s > p,

r � (t+ s)/2, and for the Staghunt game, r > t � p > s. An interesting question is: are there some other

games for studying cooperation between 2 players? The answer is NO.

To see this, consider a general symmetric game in which there are two players and either has two

actions ‘C’ and ‘D’. And the payoff matrix is still presented as Figure 1. Then if the cooperation state

(C,C) is good for both players but hard to reach, the parameters must satisfy:

(i) t > s, i.e. the defector gets more payoff than the cooperator in the profile (C,D);

(ii) r > s, i.e. the cooperator gets more payoff against a cooperator than against a defector;

(iii) r > p, i.e. mutual cooperation is better than mutual defection for both;

(iv) t � p, i.e. the defector gets no less payoff against a cooperator than against a defector;

(v) 2 · r � s+ t, i.e. the sum of their payoffs at mutual cooperation is no less than at (C,D) or (D,C).

Now the relations between r and t, s and p are uncertain, which might be:

r > t ⇔ the best action for one player against C of the opponent is C;

r < t ⇔ the best action for one player against C of the opponent is D;

s > p ⇔ the best action for one player against D of the opponent is C;

s < p ⇔ the best action for one player against D of the opponent is D.

Denoting by (x, y) that x is the best action against C of the opponent, y is the best action against D.

Then if (x, y) = (C,C) (which implies r > t, s > p), the cooperation can be reached trivially. In contrast,

if the cooperation is hard to reach, there must hold (x, y) = (C,D), or (x, y) = (D,C), or (x, y) = (D,D),

which correspond to r > t, s < p, or r < t, s > p, or r < t, s < p, i.e. the Staghunt, the Snowdrift, the

Prisoner’s Dilemma game respectively. So, we have

Claim 1. When considering cooperation in 2× 2 symmetric games, it suffices to consider the Prisoner’s

Dilemma, the Snowdrift and the Staghunt game.
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Now, for the Snowdrift and the Staghunt game, when k = 1, can the leader-follower game defined by

(5) reach cooperation when L ∈ A1? It is easy to check that:

(i) For the Snowdrift game, the solution to (5) is (ALL D, ALL C), which will not reach cooperation.

(ii) For the Stag-hunt game, the solution to (5) is (ALL C, ALL C) or (TFT, ALL C) which will reach

cooperation.

However, if the leader’s strategy set AL is restricted as in Theorem 2, cooperation can be reached from

the game defined by (5). Thus, we have

Claim 2. For the 2 × 2 symmetric games, Theorem 2 gives the necessary and sufficient condition for

cooperation.

3.3 Some further remarks

In the above sections, we proposed the framework for the game-based control system by modeling it as

repeated games between a leader and a follower, and stated the main results that under some necessary

and sufficient condition, cooperation can emerge from rational players who optimize their own payoffs.

In reality, the game can be played in the following way:

(a) First, the leader chooses a strategy.

(b) Then, the follower optimizes by choosing his actions at each step, and both players get their payoffs.

The leader’s strategy will be used for finite but long enough steps (say T0 steps).

(c) After T0 steps in step(b), the leader can change to a new strategy. Then the game begins from

step(a) again and step(b) will be carried out for another T0 steps. This process will not be ended until

either player will not change his/her strategy any more.

Then, we remark that in this framework, there are two ingredients which we think of as important for

cooperation: first, the players are hierarchical on their roles — a ‘leader’ and a ‘follower’: the leader will

set her strategy first; second, the time scales of the players to improve their strategies are different (this

point is hidden): the follower is assumed to be fast and flexible, while the leader is slower when changing

her strategy to a better one so that the follower can have enough time (e.g. in [4], this time is at least 7

steps when k = 1) to identify the leader’s strategy.

Otherwise, if the players are homogenous on their roles, then the repeated Prisoner’s Dilemma game(k =

1) has more than 1 equilibrium while TFT is not an equilibrium strategy. On the other hand, if the players

are homogenous on the time scales, the weakness of TFT must be considered [17] too: it cannot correct

a mistake of the opponent, i.e. once the action of the opponent is D, TFT will retaliate immediately,

leaving no chance for repentance of its opponent and thus lead to a cycle of (D, D) or an oscillation

between (C, D) and (D, C), and the system may not reach cooperation.

But with heterogeneity on the roles and the time-scales, TFT is the optimal strategy for the leader

and its weakness can be easily overcome.

4 Proofs of the main results

Proof of Proposition 1: Given the players’ strategy profile (Ai, Bi), the system will enter a cycle of states.

Denote the cycles resulted by (A1, B1) and (A2, B2) by C1, C2. Denote the number of state s1, s2, s3, s4
(defined for k = 1) included in the cycles C1, C2 by m1,m2,m3,m4 and n1, n2, n3, n4 respectively. Then

we have PF (C1) = PF (C2), WF (C1) = WF (C2), i.e.

m1 · r +m2 · t+m3 · s+m4 · p
m1 +m2 +m3 +m4

=
n1 · r + n2 · t+ n3 · s+ n4 · p

n1 + n2 + n3 + n4
,

m1 · 0 +m2 · 1 +m3 · (−1) +m4 · 0
m1 +m2 +m3 +m4

=
n1 · 0 + n2 · 1 + n3 · (−1) + n4 · 0

n1 + n2 + n3 + n4
.

Then by some simple calculations, we get

m1 · r +m2 · s+m3 · t+m4 · p
m1 +m2 +m3 +m4

=
n1 · r + n2 · s+ n3 · t+ n4 · p

n1 + n2 + n3 + n4
,
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m1 · 0 +m2 · (−1) +m3 · 1 +m4 · 0
m1 +m2 +m3 +m4

=
n1 · 0 + n2 · (−1) + n3 · 1 + n4 · 0

n1 + n2 + n3 + n4
,

i.e. PL(C1) = PL(C2), WL(C1) = WL(C2). That completes the proof.

Proof of Theorem 1: k = 1, then |A1| = 24 = 16. So obviously the optimal strategy (A∗
i , B

∗
i∗) exists

by finiteness.

By Theorem 2.2 in [4], for k = 1, the follower will never lose; thus Ad = ∅,Ac = Ak. Additionally,

the set Acc = {L : PL = r,WL = 0} is nonempty: the ‘Tit for Tat’ belongs to it: if L = TFT, then

F (L) = ALL C, and the system will enter and stay at the cooperation state where PL = r, WL = 0.

Then Theorem 1 can be proved immediately from Theorem 2.

Proof of Proposition 2: Denote Ai∗ = (a∗1, a
∗
2, a

∗
3, a

∗
4). (i) is obvious.

Now we prove (ii). By Theorem 1, the cycle under the solution of (5) includes only the mutual

cooperation state s1. Thus a
∗
1 = 0.

Next, we prove a∗2 = 1 by contradiction argument. If a∗2 = 0, the follower who optimizes his averaged

payoff will identify this fact and then makes use of it by always acting a D, and then the system will stay

at s2. This is a contradiction.

Now, since Ai∗ must satisfy (5) for any initial state, the State Transfer Graph (see [4] for the detailed

definition) of the strategy Ai∗ must be strongly connected. Then a∗3 and a∗4 cannot be both 1. So Ai∗

might be (0, 1, 0, 1), (0, 1, 1, 0) or (0, 1, 0, 0).

If (t + p)/2 � r, on the State Transfer Graphs of the strategies (0, 1, 1, 0) and (0, 1, 0, 0), there exists

a cycle {s2, s4} where PF ({s2, s4}) � PF ({s1}) = r and WF ({s2, s4}) > WF ({s1}) = 0, i.e. Bi∗ for the

follower will not lead to the cooperation state. This contradicts to Theorem 2. This proves the uniqueness

of TFT when (t+ p)/2 � r.

Proof of Theorem 2: In the proof, PL(L, F (L)) and WL(L, F (L)) are abbreviated as PL andWL. Under

the strategy profile (L, F (L)), the system state (and thus the actions of players) will enter and stay in

a cycle on which the leader’s averaged payoff and averaged relative payoff might be: [PL > r,WL > 0],

[PL > r,WL = 0], [PL > r,WL < 0], [PL = r,WL > 0], [PL = r,WL = 0], [PL = r,WL < 0],

[PL < r,WL > 0], [PL < r,WL = 0], [PL < r,WL < 0].

First, we prove that the sets {L : PL > r,WL < 0}, {L : PL > r,WL = 0}, {L : PL = r,WL < 0} are all

equal to ∅, i.e. no leader’s strategy gives her the averaged payoff as [PL > r,WL < 0], [PL > r,WL = 0]

or [PL = r,WL < 0].

In fact, if WL < 0, in the cycle, the number of (l(t), f(t)) = (1, 0) (which is s3 when k = 1) is strictly

smaller than the number of (l(t), f(t)) = (0, 1) (which is s2 when k = 1), and vice versa. Since the PD

game is symmetric, we have WL < 0 ⇔ PL < PF and similarly WL = 0 ⇔ PL = PF . Additionally, there

always is PL+PF � 2 ·r, thus we have WL < 0 ⇒ PL < r and WL � 0 ⇒ PL � r. So no leader’s strategy

will lead to [PL > r,WL < 0], [PL > r,WL = 0], or [PL = r,WL < 0], i.e. the sets {L : PL > r,WL < 0},
{L : PL > r,WL = 0} and {L : PL = r,WL < 0} are all equal to ∅.

So if and only if AL

⋂Ad = ∅, the leader’s averaged payoff can be: [PL = r,WL = 0], [PL < r,WL > 0],

[PL < r,WL = 0] or [PL < r,WL < 0], where obviously [PL = r,WL = 0] is best for the leader and thus

L ∈ {L : PL = r,WL = 0} = Acc will be chosen if and only if AL

⋂Acc.

Second, if and only if (L, F (L)) leads to a cycle with [PL = r,WL = 0], i.e., L ∈ Acc, the system

is at the cooperation state (l(t), f(t)) = (0, 0), i.e. (C,C). This is because PL = r, WL = 0 implies

PF = PL = r, and only the cooperation state gives them the largest payoff sum PL + PF = 2r. This

completes the proof.

Proof of Proposition 3: Proposition 3 can be proved directly from Remark 2.1 in [4]. If the leader takes

the strategy ‘2 Tits for 1 Tat”, then if (2s+ t)/3 > p, the optimal cycle for the follower is {s10, s7, s11},
which corresponds to a cycle of action profiles like

(
l(t)

f(t)

)

=

(
1 1 0 1 1 0 · · ·
0 0 1 0 0 1 · · ·

)

.

And the leader can get a payoff (2t+ s)/3 > r, i.e. PL > r, WL > 0. That completes the proof.
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5 Concluding remarks

From a new view point, the controller and the plant in the traditional control framework can be regarded

as two ‘agents’ while the plant has no intention and capability to get its payoff or benefit. This is not

the case in the real world. In the real world, the plant and the controller can both optimize their own

payoffs. For instance, if we regard the law or policy as a controller while regard the individual as a plant,

then both of them will optimize their payoffs which can be well defined. This kind of interactions may

be modeled as games between hierarchical players and the systems can be seen as game-based control

systems. In these systems, competition and cooperation between the players are a focus in research, and

how to achieve cooperation is a fundamental problem.

In this paper, we have studied the dynamical Prisoner’s Dilemma game between a leader and a follower,

which are different both in their roles and time-scales. The leader’s strategy is restricted to be in

a given set and both the players would optimize their averaged payoffs and averaged relative payoffs

lexicographically. Then we can prove that if we want the system to evolve into and stay at the cooperation

state, then the leader are not allowed to take the dominating strategies and a necessary and sufficient

condition for cooperation can be built. This appears to be a neat and rigorous way to achieve cooperation.

Of course, there are many interesting problems in this framework worthy of further investigation. For

example: how can the problem be properly formulated when there are many leaders or many followers?

Can the leader-follower structure still promote cooperation then? What will happen if the follower does

not optimize but sub-optimize his own payoff? These appear to be more complicated problems and

belong to further investigation.
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