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A bstract In this paper，we studied the least mean—square—based distributed adaptive filters，aiming at collec— 

tively estimating a sequence of unknown signals(or time—varying parameters)from a set of noisy measurements 
obtained through distributed sensors．The main contribution of this paper to relevant literature is that under 

a genera1 stochastic cooperative signal condition，stability and performance bounds are established for dis— 

tributed filters with general connected networks without stationarity or independency assum ptions im posed on 

the regression signals． 
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1 Introduction 

Filtering or parameter tracking is a basic problem in several areas including communication，statistics， 

signal processing，system identification，and control systems．Some classical algorithms and theoretical 

results are presented in『1 3]．However，to perform filtering task in more complex systems，a single sensor 
may only sense or observe partial information of unknown signals．Moreover，due to limited communica- 

tion ability．a sensor may exchange information with its neighbors only．Thus，scientists design distributed 

filters according to partial measurements and local communications among neighbor sensors，and utilize 

the network topology of the spatially distributed sensors to enhance the observability of the network． 

Owing to the increasing practical demands，the design and theoretical analysis of such distributed filters 

are of great significance in，for instance，sensor networks【4J4．Compared to the centralized method in 
which all measurements must be transmitted to a fusion sensor for processing，the distributed filtering 

scheme may have the advantages of reducing the communication and computation costs and enhancing 

the robustness with respect to partial node failures[5]． 
Recently,a variety of consensus—based distributed filtering algorithms have been proposed，which con— 

tain certain consensus schemes to reflect the cooperation among sensors of networks．Stability and perfor— 

mance analyses of various algorithms have been conducted，and most results concern with the estimation 
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of constant unknown parameters．Further．the existing theoretical 1iterature can be roughly classified into 

two categories depending on the assumptions of the regression vectors(or observation matrices)：One 
is the case in which the regression vectors are deterministic．so that the desired cooperation properties 

of the distributed filters can be established under a joint deterministic excitation condition『5—81．It is 

worth remarking that the distributed algorithm investigated in『5]may still be classified into this care 
gory because the mathematical expectation of the observation matrices rather than stochastic matrices 

is used in the implementation of the algorithms．The other category is the stochastic case in which the 

regression vectors are usually assumed to be stationary and independent with the positive covariance 

matrices『9—111．More recent results are presented in f12，131，which show that with optimal choices for 
the combined weights，the distributed strategy can be designed to match or exceed the performance of 

the conventional unweighted，centralized strategy．Note that the deterministic case can also be regarded 

as a degenerated independent stochastic case． 

However，the stationarity and independency are simplifications and idealizations of complicated prac． 

tical situations． In fact，in almost all control systems described by stochastic regression models．the 

regression vectors usually contain input and output signals of the closed—loop systems，which are ob— 

viously correlated．A typical case is the stochastic adaptive control systems，in which the closed loop 

signals are usually determined through a set of highly complicated，nonlinear，and stochastic equations
， 

which cannot be simplified to stationary and independent cases『14]． 

Through this paper，we aim to relax the usually used stationarity and independency assumptions of the 

stochastic regression vectors in the existing relevant literature，and to realize the stability of distributed 

filters in a general stochastic case．Wle investigate the diffusion least mean．square algorithm (DLMS1 

introduced in[9]_The output signals are generated using a linear time—varying stochastic regression mode1． 
Wle will establish the stability and performance bounds of the distributed filters under a general stochastic 

cooperative signal condition，without imposing the stationarity or independency assumptions on the 

regression signals．To this end，we need to investigate the product of random matrices，in which the major 

problem is that the random matrices are temporally non．commutative．non．independent and spatially 

coupled．Furthermore，we will also prove that general connected networks of sensors can cooperate to 

guarantee the stability of the filtering algorithm，even though some individual filters may not have such 

a capability． 

The remainder of this paper is organized as follows．In Section 2．we present the DLMS algorithm 

and the main results concerning stability and performance analyses．In Sections 3 and 4，we prove a 

key technical lemma，and the main theorems，respectively．Finally，the concluding remarks are made in 

Section 5． 

2 The main results 

2．1 Problem form ulation 

To present the DLMS algorithm，we first introduce some notations． represents an identity matrix 

with order n．Operators(·) ，diag(·)， max(·)，and Amin(·)denote matrix transpose，diagonal matrix，the 
largest eigenvalue，and the smallest eigenvalue of the corresponding matrix，respectively．The notation 

col(⋯ )stands for a vector in a stack of specified vectors．o denotes the Kronecker product of two 

matrices．A matrix A ≥0 indicates that A is semi—positive definite，and A ≥B implies A—B ≥0．The 

matrix A is stochastic if each element of A is non—negative and the sum of each row is 1．Fu rthermore． 

a matrix is called doubly stochastic if it is a stochastic matrix and the sum of each column is also 1．A 

stochastic matrix A is called ergodic if limt_÷o。A exists and all its rows are the same．For a vector ， 

lIxll represents the Euclidean norm of x，and for a matrix A，its norm is defined as l LA LI={ max(AA )} ． 
w_e refer to lIAIIL defined by lIAllL。全{EIIAIIp)亩as the L；-norm of A． 
Consider a network comprising of n sensors in which only single—hop communication is allowed．that 

is，sensor i can only communicate with the sensors in its neighborhood c{1 ．，n}．wle use graph 
= f El to describe the relationship between sensors，where the vertex V is the set of sensors and 
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the edge set E is defined as follows：(i，J)∈E if and only if the sensor J is a neighbor of sensor i．For 
convenience of analysis，we assume that the graph is undirected and contains a self-loop at each vertex， 

that is，i∈人 for any i∈V．An佗×n matrix A={aiA is introduced to represent the weights of the 

edges with aij=aji and∑ 1 n =1，where aij>0 if and only if(i，J)∈E． 
The task of the sensor network is to estimate a sequence of m—dimensional time—varying signal for 

parameter)vectors{Ok，k=1，2 ．}．We may write the evolution of the Ok as follows： 

Ok=Ok一1+Vwk， (1) 

where represnts a scaling constant and represents a vector describing the direction of variation．We 

assume that the unknown signal{ )is to be estimated by n distributed sensors，and that the signal 

{ ， )received conforms to the following time—varying stochastic linear regression model： 

= ( ) ok+ 

where and are scalar observation and noise signal at sensor i respectively,and is the m— 

dimensional stochastic regression vector．Obviously，the classical linear regression model corresponds to 

the single sensor case n= 1． 

In this paper，we use the combine—then-adapt(CTA)diffusion method，which was first introduced 

in[9]to estimate{ )．First，at each time instant (k≥0)，sensor i has access to the estimates of its 

neighbors J(J∈ )and obtains the aggregate estimate for Ok by minimizing the following objective 
function： 

=argmin日∈Rm∑n ( 一 )。=∑aidOJk， 

where is the estimate of sensor i for the unknown parameter Ok at step ．W e then use the normalized 

LMS algorithm to estimate the unknown parameters in which the estimate of sensor i at step k is replaced 

by the aggregate estimate ，that is，for i： 1，2，．．．，礼， 

十 + t ( 一( ) )， 

where ∈(0，1)is a step—size，and the initial estimates{ )can be chosen arbitrarily． 

Remark 1． The aforementioned CTA Di肌sion LMS algorithm appears to be first introduced in l 1 5 

and then further investigated and reviewed in『12，131．It allows al1 the sensors to estimate the unknown 
signals simultaneously and to be able to respond to changes in the environment． In this form．the 

combination is performed before adaptation．There is another similar form in which the order is switched， 

that is，adaptation performed before combination，and is referred to as adapt·then-combine(ATC)DLMS， 
which shares almost the same properties with CTA form． Superior performance properties of DLMS 

implementations are established in[12，la]． 

Our main goal is to establish the global stability and performance analysis of the algorithm with more 

practical and general regression signals．To proceed with our analysis，we introduce the following global 

quantities： 

e 全col{0k⋯ ．， )， 全col{wk⋯．， ) 
、 。‘’、，‘。一-， 、。 。‘、，。。_-， 

礼 礼  

全colM⋯．， )， 垒col{0~，⋯， 嚣)， 

diag{9~1，．．．， 嚣)， 全col{O~，．．．， 嚣 

e col{~⋯．， }with = 一 ， 

Vk=col{v~⋯．， 譬)， 

L diag 
{ 

1+II 圳 一’1+ll II 
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The linear regression model 

A全diag{#1Im，⋯， )， A=A Im 

can then be written as 

Yk= ek+ 

Correspondingly,by using the Kronecker product o，Eq．(3)can be written a 

≈+1：AO％+A ( 一 A ) 

By subtracting e from both sides of(5)and considering(A M)Ok @ ，we Ob ain 

Ok+l f 一AFk)AOk+ALkG 一，y +1 

=  k 

2．2 Definitions and assum ptions 

(5) 

T0 aIlalvze the prOperties of舀k，some conditions are required on the regressors and noises·To this end, 

we need to introduce some definitions from[16一is]． 

Definition 1． A random matrix(or vector)sequence{Ak， ≥0}defined on the basic probability Pace 

fQ，厂，P1 is called Lp-stable(p>0)if SUPk>0 EllAklILp<oo· 

Definition 2． A sequence of d x d random matrices A：{Ak， ≥0)is ca
，

lled Lp-exponentia
．

1ly
．

stable 

(p>01 with parameter ∈[0，1)if it belongs to the set ( )={ ：Il兀 计1 AjlIL ≤M 。，Vk≥ 

≥0，for some M >0}． 

Definition 3． For a 8ca1ar random sequence n= a ，i≥0)，we set So( )={n ∈【0，1】：En =i+1(1— 

0 )≤M)~k-i,Vk≥i≥0，for some M>o)． 
Denote S。=A I

- -

JAE(0,1)S。()、)．To proceed further，We must introduce a class of weakly dependent random 

sequences as follows． 
、 

Definition 4． We say that a random sequence 全{ )∈Mp(P≥1)if there exists a constant 

only depending on P and{ )such that for J≥0， 

jwh 

∑ 
i=j+1 Lp 

≤Cp(x)h~， Vh≥1 

Remark 2． As is known，the martingale difference sequence，0-mixing and —mixing sequence ’and 

the linear process driven by white noises are all in the set Mp(see，[16J)· 

Definiti0n 5． Let f )be a matrix sequence，and bk be a positive scalar sequence·Then，bY Ak 

O(b )，we indicate th there exists a constant M <。。such that for any k≥0，we have IIAkll≤Mbk· 

Throughout the sequel，we use to denote the 一algebra generated by{ ：， i， ；一1，J：l，’·‘，n， 

i≤ )． 

Assumption 1 fConnectivity)．The graph is connected· 
Remark 3． Bv Assumption 1 and the symmetry and self-loop properties of ，we see that the weighted 

stochastic matrix A is ergodic． Fhrthermore，we know that A has佗 real eigenvalues which can be 

arranged in a non—decreasing order： 一1< n(A)≤ 礼一I(A)≤·· ≤A2(A)< 1(A)=1· I’hen， 

max{I；~2(A)l， (A)1)<1． 

Assumption 2(Cooperative excitation condition)．Let{ ，． ，k≥0，i=1，···，礼}be n adapted 

sequences and fA ，k≥0)∈S。( )for some ∈(0，1)，where 

=

A 

min 

1一 gap 

一 

一1 ∑ 
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Remark 4． To estimate the unknown signals．it is necessary to require some excitation properties on 

the regressors．The aforementioned is called a cooperative excitation condition because it is imposed 

on the collected regressors．nlrthermore．if the regressors are stationary and independent with positive 

definite covariance matrices and if the network has a connected topology,then{ )defned by(8)will 
have a positive lower bound and gap< 1．Therefore，Assumption 2 will be typically true．This implies 

that the commonly used assumptions in literature are a specia1 case of Assumption 2．The advantages 

of Assumption 2 in the stability analysis of the diflused adaptive filters will be discussed in Remark 5． 

In addition，more discussions on similar conditions for a single filter can be found in f 1 71，in which it has 

been shown that some non．stationary and correlated signals of practical intcrests can be included． 

Assumption 3． For some P≥1，let the initial estimation error be bounded，that is，Ile0 2 <oo． 

Furthermore，let{Lk )∈M2p and{ )∈M2p． 
W_e remark that by Definition 4．this assumption simply implies that both the noises and parameter 

variations are weakly dependent with certain bounded moments． 

2．3 The main theorems 

Lemma 1． If Assumptions 1 and 2 are satisfied，then for any 0≤ A< n and P≥ 1，the coefficient 

matrix sequence of the homogeneous part of(6){( n—A )A， ≥1}is Lp-exponentially stable． 
Remar k 5． Fo r a single sensor with signals generated by the regression model 

Yk= + Vk， 

where Yk， k，Ok and Vk are observations，regression vectors，unknown parameters，and noises，respec- 

tively．If we employ the conventional single LMS to estimate Ok，then the corresponding homogeneous 

part of the estimation error equation will be L2一exponentially stable whenever the following conditional 

excitation condition[17】is true： 

{E[ ‘ h ( )．r ∑． j =kh 1 ’ 。。 ]1 ̂I}∈S。 J J 
where S。is defined in Definition 3．In addition．this condition is considered necessary for stability when 

the signals are weakly correlated in a certain sense f1 7]．For a network of sensors，even though none of the 

sensors satisf、，condition f9)，all the sensors as a whole can still be able to satisfy Assumption 2．Thus， 

the DLMS algorithm can fulfill the estimation task in a cooperative manner．even when any sensor does 

not have sufficient excitation．For example，in f 191，the regressor vectors of each sensor are the outputs 
of a linear stochastic system，which are neither independent nor stationary．It can be verified that each 

single sensor does not satisfy(9)，but Assumption 2 can be satisfied jointly． 

According to Lemma 1．we can establish a preliminary result on the upper bound of the moments of 

the tracking error． 

Theorem 1． Suppose that Assumptions 1 and 2 are satisfied and that for some P ≥ 1， > 1，the 

initial estimation error is bounded，that is，lleoliL <。。，and op=A supk【I log (e+∈k)忆 <。。，where 
= fI ll+IIWk+ll1．Then，the filtering error sequence{Ok，k≥1)generated by(6)is Lp-stable and 

lim sup IIOkll~ ≤c[ap log(e+ )】， 
— — }∞  

where e is the base of natural logarithms and c is a positive constant． 

Pro@ Let c ll兀 Ⅲ (( 一AFa)A)II．By considering Assumpti0n 2，Lemma 2．3 in[17]，and 

Lemma 1，Cki}satisfies the conditions in Lemma 4．1 in[ir]．Note that ffALkl J≤maxlEi~<n i．Thus， 
according to(6)， 

ek+l llL ≤IIck，一100 l lCki~k IIL 

∑=l 

+ 



Chen c．et a1． Sci China In]Sci November 2016 Vo1．59 1 12202：6 

The desired result of the theorem can be obtained by applying Lemma 4．1in[1 7】． 
Under more specific conditions on signals and measurement noises，we can obtain a better bound for 

the tracking error． 

Theorem 2． Assume that A= 厶nn，where ∈(0，l／e)，and Assumptions 1-3 are satisfied．Then，we 
have 

G+IlIL =。( ]log 1 一 II )， 
where the positive constant oL∈(0，1)depends on{ ，k≥0}andP． 

The proof of Theorem 2 is provided in Section 4． 

According to this theorem and following similar ideas in【16]，we can further obtain the“dominant 
term”of the tracking errors because of the connectivity of the filtering network，which is not presented 

in this study because of space limitations，see[20]． 

3 Proof of Lemma 1 

To prove Lemma 1．we consider the following lemma． 

Lemma 2．Suppose that Assumption 1 holds true and that< =( )∈Rm ，k=l，⋯，佗}is 

a sequence of symmetric matrices satisfying 0≤ ≤ ， =1，．．．，几．Then， m JA·diag( 一 

1，⋯， 一 n)‘AJ≤1一(1一Agap) ，where 5=击 mi ( l+⋯+ n)and gap is defined in Remark 3． 
Remark 6．The aforementioned lemma is an improvement of the related result in[19】and clearly 
demonstrates the dependence of the upper bound of the random product on both the spectrum gap of 

the underlying network and the joint excitation of random matrices． 

Pr0of．Let al ．，Qn)be a set of orthogonal basis of IR composed of unit eigenvectors corresponding 
to{ ⋯ }，with ot1=( ⋯ ．， 1) ．Then，by the properties of Kronecker product in[21]，the 

eigenvalues of A are{ ，i=1，．．．，n}，and the eigenvectors corresponding to t are{ t o ej，J= 

l，⋯，m，，where ci is the ith row of ．For convenience，we use (1≤k≤mrt)to denote口 ／m] 

ek—mlk／m1．Then，{ ，k：l ．，m佗)is a set of orthogonal eigenvectors of A④ ． 
For any two= vectors ∈ and Y∈ ，we denote 

Y全 [A·diag(Im一 1，⋯， —Cn)·a]y x ◇Y全xrdiag(O1，⋯， ) 

Therefore，for i=1，⋯，mn，we have =(A ／ ]) fl[diag(Im一西1， 一 2，⋯ ， 一 ) = 

(A F~／ ]) (1一／3g-◇ )，and for i≠J， =(A ri／ 1)(A rj／ ])fl／diag(I．~一 1， 一西2，．．．， 一 

圣n)flj=一(A r~／m])(Atj／m]) ◇,sj．Further，for any arbitrary unit vector x∈ ，x can be written as 
x=∑ Tan1 xifli，with E mn1 X =1．Thus，it is not difficult to see that 

=  一  ∑x~(A Ft／ ])。一 
= 1 

xiA r~I ] I◇ xiA r~／m] 

We will consider l and separately．Note that A ／m]= 1 f0r 1≤i≤ m，and ／m]≤ gap for 

m 十 1≤i≤mn．Therefore，we have 

≤∑ t2+ p 
=1 

f， 一 I 
i=1 ／ 

set 全∑仁m1xiA[i／m] and =A E mnm+1xiA ri／ lfli．Then， 

： ( + ) ◇( + )：( ) ◇ +( ) ◇ +( ) ◇ +( ) ◇s雪 

The two cross terms are equal and can be managed by Schwarz inequality as follows：for any E 

we have 2( ) ◇ ≤4sI) ◇ +~-1( ) ◇ ．Consequently，substituting this into(12)， 

S2≥(1一E)(sj) ◇s3+(1一E一 )( ) ◇ ． 

(11) 

(12) 

∈(o，1)， 
we have 

～∑甜 ／，J●、＼ 

～∑ 

／ ，J ● 、

＼  
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N 协a c。 { ：：：：兰 ：． 
1 

，
．

( ⋯，Xm) 
． )．Then 

( ) ◇ I= ( ⋯， 1 
i 1 x ⋯ ) j ≥ f， 2、1 ＼

t=1 ／ 
(13) 

Next，the term ( ) ◇ is relatively easy to be managed．As 0≤diag(~1⋯ ．， )≤ n，we know 
that 

( ) ◇ l mn ≤IIS~ll。≤∑ ( 『{／ ]) ≤ 
i=m J-1 

p(1一∑ m 1 2) 

Let US nOW denote Y=∑ 1 ．By substituting(11)一(14)into(10)，we finally obtain X ≤[1一(1一 
E) +E一 g2 p(1一 )．Taking E= g p<1，we get 术 ≤[1-(1-Ag p) + g p(1一 )≤[1-(1一 g p)剀， 

where the monotonicity of[1一(1一 gap) +入gap(1一Y)for Y∈(0，1)is used in the last inequality． 
This completes the proof． 

Lemma 3． If Assumptions 1 and 2 are satisfied，then A ax{E[ ( +1， )圣( +1，k)I 一1])≤ 
1一 i 一1，where i =min{#l，．．．， n)and (·，·)is defined as 

(礼+1，m)=( 一A )AO(n，m) 

(m，m)= ，Vn≥m 

Pro0{．By considering the notation A—A Im{and Lemma 2，we have 

Amax{E[ ( +1， ) ( +1，尼)I 一1) 
=  {AE[(Im 一A ) f 一1]A) 

≤ {AE[(Im 一A )l 一1]A) 

{Adiag{(Im E[ 
≤ 1一 min 一1． 

．，( -#hE[ ]))A) 

(15) 

Lemma 4． For any ko≥0 and ≥ko+1，consider the equation Xk= ( +1，k)xk一1，where Xko is 

deterministic and satisfies『Ixk0 ll=1．Then，under the same conditions and notations of Lemma 3，there 

exists a sequence{ ％∈[0，1】，k≥k0+1)such that ∈ and 

xklI≤(1一 )IIxk一1ll， ≥ko+1， 

and E[ak+lI 】≥ i ，k≥ko+1． 

The proof of Lemma 4 is similar to that of Theorem 2．1 in[17]，and we omitted it because of space 
limitation． 

Proof of Lemma 1．As ≤1一 gap，then according to Lemma 2．3 in[17]，we have{ min )∈ 

S。( 一 m n)． 
By using(4)and Lemma 2．1 in[17]，we obtain{ )∈S。( )~gap m )．In addition，by Lemma 4， 

E A乃)A E忙 )1／2 
≤{E(1一 ) ⋯ (1一O!k。+1)。) ／。 

≤{E(1一OLk)⋯(1一 。+1)) ／。 

≤ § gap min( 一 
， 

where M  is a positive constant independent of k and ko 

∑ 

／，，●●、

＼  



Chen C．et a1． Sci China I Sci November 2016 Vo1．59 1 12202：8 

By using Lyapunov inequality for 1≤P≤2 and applying the inequality ll( n—A )All≤1 for 

P≥ 2， 

Ⅱ ( 一AFj)A 
j=ka-+1 

This completes the proof of Lemma 1 

4 Proof of Theorem 2 

In this section，we set = ∈(0，1)(i：1，．．．，礼)．The error iteration equation(6)can be expressed as 

@ +1=(厶 一#Fk)AOk+ ％ 一7I +1 

Next，define the matrix ( +1，i)as follows 

( +1，i)=( 一#Fk)AO(k， )， e(i，i)= n， Vk≥i≥0 

To prove Theorem 2，we must first establish some lemmas． 

Lemma 5． Under Assumptions 1 and 2，we have for P≥ 1， 

lle(k十1，i+1)11L ≤Mp(1一 p) 一 ， 

where Mp and ozp are positive constants depending on 

P Byusing(17)，we can obtain Ile(k+1， +1)l 
and = 一 for P> 2． 

{ ，J≥0)and P． 

≤ { ) ( 一 ，where 

(18) 

(19) 

{ ga for 1≤P≤2 

Note that p∈(0，1)．Then，there exists a constant oLp∈(0，1)such that =(1一 p)．According to 

Bernoulli inequality，for ∈(0，1)，we have 岩=(1一oLp) <1一 p．This completes the proof of the 
lemma． 

In the sequel，we use oL to represent p regardless of the value of P． 

W e first present the following lemma，which describes the consensus property of the product of a 

sequence of ergodic stochastic matrices． 

Lemma 6(【22])． Assume that{At∈Ⅱ 』v Ⅳ，t=1，2，．．．，n)is a sequence ofstochastic matrices，with a 

common stationary distribution 7r=(7r1，71-2，⋯ ，7rⅣ)．Set A全AnAn一1⋯A1．Then，for i=1，2，．．．，J)v， 

we have∑Ⅳ_1~．(Aij一 )。≤( 一1)兀 1 ；( )，where cr2(At)is the second largest singular value of 
the matrix At，and a2(A￡)<1 if At is ergodic． 

Lemma 7．Let Assumptions 1 and 2 hold true，and fe ∈Mr with r≥1．Then，for 8=(r一 +p一 -1 

with P≥1 and ∈(0，l／e)，we have ll∑ 0 ( +1，i+1)eillL =o( 一 ／。log丢)． 

Pr0 set s(k，i)=∑ ej，then 

k 

∑ ( +1，i+1)e 
i=0 

k 

( +1，1)S(k，0)+∑[ ( +1，i+1)一 ( +1， )】s( ， ) 
i=1 

By considering HSlder inequality for the first term on the right hand side of(20)，we have 

( +1，1)s( ，0)I1L ≤ll ( +1，1)llL lI s(k，0)ll Ll =o([1一 ] 、／ )=o( 一 )， 
where the last equality holds true because of i)of Lemma A．1 in【16]． 

Next，we analyze the second term on the right hand side of(20)．For arbitrarily large ， 

∑[ ( +1，i+1) 
=1 

( +1，i+1)[ 一( 一 )A]s(k， ) 

(20) 

(21) 

p  2  

≤  > 

l  

p  

屿 

一 一 

“ “ ‰ ∑ ll 、l， ．Z ，， S 、、， ．Z L + ， ＼ 



Chen C，et a1． Sci China Inf Sci November 2016 Vo1．59 112202．9 

k 

+ ∑ ( +1，i+1) 一( 一#Fi)A]S(k， ) 
i= 一L+1 

全 S1+ 
， 

where is an integer satisfying L = r 
log
旦
cr

业2(一)]!+ 1
． Thus，by Lemma 6．we have 

m ax I(AL)幻 I≤ cc 一 。 。≤c c ， < 
Note that ll ll≤1．From i)of Lemma A．1 in[16]，we have 

盎+ )II 、1／=。 ∑ll ( +1， +1)I J Ils(尼， )I J 1=0 一L+1 
击l。g 一 1， i=k

塞L 1 · 、1／ ——上 

(22) 

(23) 

(24) 

where the boundedness of lljmn一( _m 一 )AIl is used． 

To estimate lISlllL ，we can write it as s1=∑ 圣( +1，i+L+1)西( +L+1，i+1)．『 一 
( n—pF~)A]S(k

，

， )．For any i>0，by the fact that{ )is a bounded matrix sequence,we have 

( +L，i)=兀； 一 (厶 一 )A=(A ) +O(pL)，where we a8sume that is sufficiently small 
such that =O(#log古)≤ 1．Hence，by(ca)，we have ( +L，i)= ave +0( log告)，where 
。=limk_÷。。A with( )t =1／n．Then 

Thus，we have 

s1lIL。=0 

0 

= [(Aave~ )+。( 。g去)][ 一c 一 一 A] 
= ( — )一 一 Q )( 一 一1)A+o( log ) 

“ 

=  (Aave~ -1A N )+。( g 1) 
= 。( g )． (25) 

)=。( g k -Lc ⋯ ) 
(26) 

where the equality(26)holds true because of iii)of Lemma A．1 in[16】．Combing(21)，(24)with(26)， 
we can complete the proof of the lemma． 

Proof of Theorem 2．By using(18)and Lemmas 5 and 7，we can obtain the resuIts of The0rem 2 
immediately． 

5 Concluding remarks 

In this paper，we have established the stability and tracking performance bounds of the DLMS adaptive 

filtering algorithm，under general conditions of system signals which may be correlated and nonstatiOn
．  

ary．Furthermore，we demonstrated that general connected networks of sensors can COOperate to fulfill 

the stochastic estimation or filtering task even though any individual sensor cannot because of possible 

／ ●  
(=) (=) 

= = 

L  

 ̈

∑ 

一 

一 

／ ＼ ／  
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degeneration of covariance matrices of the regression vectors．However，many questions need to be in— 

vestigated，for example，further relaxation of the cooperative excitation assumption for the DLMS filters 

presented in this study，analysis and comparison with other types of distributed filtering algorithms in— 

cluding the Kalman filtering-based cooperative algorithm[23—25]，and the combination of the distributed 
filtering with distributed adaptive contro1． 
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