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Abstract This paper explores the application of noncooperative game theory together with the con-

cept of Nash equilibrium to the investigation of some basic problems on multi-scale structure, especially

the meso-scale structure in the multi-phase complex systems in chemical engineering. The basis of this

work is the energy-minimization-multi-scale (EMMS) model proposed by Li and Kwauk (1994) and

Li, et al. (2013) which identifies the multi-scale structure as a result of ‘compromise-in-competition

between dominant mechanisms’ and tries to solve a multi-objective optimization problem. However,

the existing methods often integrate it into a problem of single objective optimization, which does not

clearly reflect the ‘compromise-in-competition’ mechanism and causes heavy computation burden as

well as uncertainty in choosing suitable weighting factors. This paper will formulate the compromise in

competition mechanism in EMMS model as a noncooperative game with constraints, and will describe

the desired stable system state as a generalized Nash equilibrium. Then the authors will investigate

the game theoretical approach for two typical systems in chemical engineering, the gas-solid fluidiza-

tion (GSF) system and turbulent flow in pipe. Two different cases for generalized Nash equilibrium

in such systems will be well defined and distinguished. The generalize Nash equilibrium will be solved

accurately for the GSF system and a feasible method will be given for turbulent flow in pipe. These

results coincide with the existing computational results and show the feasibility of this approach, which

overcomes the disadvantages of the existing methods and provides deep insight into the mechanisms of

multi-scale structure in the multi-phase complex systems in chemical engineering.
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1 Introduction

This paper explores the application of noncooperative game theory to chemical engineering
and proposes a novel game theoretical approach to solve the problem on multi-scale struc-
ture in multi-phase complex systems modeled by the energy-minimization-multi-scale (EMMS)
method[1, 2]. After formulating the problem as a noncooperative game with constraints, this
paper introduces the concept of generalized Nash equilibrium (corresponding to the steady sys-
tem sate), depending on two different typical systems in chemical engineering, i.e., the gas-solid
fluidization system and the turbulent flow in pipe. The equilibrium solution coincides with the
previous related numerical results in the literature.

With obvious significance, current process industry, especially in the developing countries,
encounters serious problems with low energy conversion efficiency, high pollution and huge
waste[3–5]. One of the reasons behind is lack of deep understanding on the movement, transi-
tion and reaction of matters during physical and chemical process in the multi-phase chemical
engineering systems, especially on the meso-scale structure[6].

A typical example is the gas-solid fluidization (GSF) system, where at meso-scale, the
particle cluster and gas move together and are interacted in a complex way. This leads to a
widely recognized difficult problem to understand and compute stable states in such systems.
In addition, coupling at meso-scale exists in many other systems. Deep understanding about
the formation mechanisms of multi-scale structures in such systems may help to enhance the
capability of improving equipment productivity and developing new technologies.

The EMMS model trying to reveal the internal principle in the multi-phase complex systems
like the particle-fluid system in gas-solid fluidization was first proposed by Li[7]. To be specific,
the multi-scale structure is considered to be a result of compromise-in-competition among dif-
ferent dominant mechanisms which should be identified in different complex systems. Different
mechanisms have different individual extremum tendencies, which lead to the stability criterion
for the system. Traditionally, the EMMS method was formulated mathematically as multi-
objective optimization or multi-objective variational (MOV) problem[1, 2, 6], and was solved by
transferring the problem into a single-objective one, which leads to heavy computing burden
and uncertainty in choosing appropriate weighting factors. Furthermore, such a mathematical
treatment is elusive in characterizing the essence of mechanisms to form multi-scale structures.

Although the EMMS model was firstly proposed to a solve the gas-solid fluidized systems,
it has been successful in many other systems including gas-liquid systems and single-phase
turbulent flows[2, 6].

This paper will revisit and dig the phenomenon and principle of compromise-in-competition
between different dominant mechanisms in the EMMS model. As will be illustrated in this
paper, this principle can be captured by the idea of noncooperative games. This appears to be
a novel application of the idea of game theory.

Game theory, especially the noncooperative game theory, studies how agents make decisions
given that everyone’s payoff is influenced by actions of all others[8]. It has made great progress
and impact in the last decades. A key concept is the well-known Nash equilibrium[9, 10], which
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describes a possible stable state of the system, at which no agent will unilaterally deviate from
its action.

Despite of the widespread applications of game theory in diverse fields like economics, so-
ciology, politics, biology and military field, etc.[11, 12], to the best of our knowledge, the use
of game theory to formulate the relationship among matters in science or technology has been
rarely explored.

An initial step trying to investigate the ‘compromise-in-competition’ mechanism in EMMS
model from a noncooperative game viewpoint was made in [13]. This game-theory-based ap-
proach will clearly capture the physical meaning of the problem and might supply a promising
method to solve other related problems. This paper will further explore the approach on two
typical multi-scale systems in chemical engineering, the gas-solid fluidization (GSF) system and
turbulent flow in pipe.

By formulating the system as noncooperative game, the concept of generalized Nash equi-
librium will be introduced, in which the influential factors for the mechanisms’ objective are
related or coupled, i.e., space of the objective’s influential factors for each mechanism changes
with the choice of strategy of the other mechanism. In the gas-solid fluidization system, the
influential factors are strategies of mechanisms and the environment variables; in the turbulent
flow, the influential factors are only strategies of mechanisms. This concept is different from the
Nash equilibrium or related equilibrium concept[8] and a general theory as well as algorithms
on such games require further investigation. For the specific GSF system, we will solve the
general Nash equilibrium which include a dominant strategy for one mechanism by its special
properties; the solution coincides with previous numerical results of chemical engineers without
missing the physical meaning of the problem. For the turbulent flow system, we will supply a
feasible method to solve the generalized Nash equilibrium, by which the search space for the
problem can be reduced. Thus the game theoretical approach is believed to be a promising way
to solve the EMMS model for multi-phase complex systems in chemical engineering.

The remainder of this paper is organized as bellow. Section 2 provides some necessary pre-
liminaries for noncooperative game theory; Section 3 studies the game theoretical formulation
and solution for generalized Nash equilibrium for GSF systems; Section 4 is about the system
of turbulent flow in pipe; Section 5 concludes the paper.

2 Preliminary for Noncooperative Game Theory

The noncooperative game theory studies how rational players make decisions with the in-
teractions between each other. There are two ways to describe a game: The strategic or normal
form and the extensive form. The extensive form description of a game can explicitly model
the timing of the players’ decisions, which can be analyzed by the strategic form. Thus next
we only introduce the strategic form of a game[8].

A noncooperative game in the strategic form constitutes three elements:
(i) The players (who are actually decision makes), denoted by Pi, i = 1, 2, · · · , n, n ≥ 2;
(ii) The pure strategy space Si for each player Pi, and si ∈ Si denotes a specific strategy
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for player Pi, while s = (s1, s2, · · · , sn) ∈ S =
∏

i Si is called a strategy profile of the players;
(iii) The utility function ui for each player Pi, where ui = ui(s) depends on the strategies

of all players. This makes game theory different from optimization theory. Equally, ui can be
regarded as an objective function Ji, which will be optimized (maximized or minimized) by the
player. Through this section, we assume that the players would like to minimize ui.

When
∑

i ui(s) = 0, ∀s, the game is called zero-sum game. This is the extreme case of the
games and most games of interest are non zero-sum. Here we only consider the most basic
assumptions, i.e., the players in the game are finite, rational and have complete and perfect
information. This can be roughly understood as that all players know the structure of the game
and they know that all of them know this. Then, given three elements of a game, what will be
the outcome of the game? i.e., What strategies will all the players decide to choose? To predict
this, the most important concept is Nash equilibrium.

Definition 2.1 The strategy profile S∗ = (s∗1, s∗2, · · · , s∗n) is called a Nash equilibrium of
the game, if

ui(s∗i , s
∗
−i) ≤ ui(si, s

∗
−i), ∀i, ∀si ∈ Si, (1)

in which s−i = (s1, · · · , si−1, si+1, · · · , sn) denotes the strategy profile of the players except Pi.

From the definition, at Nash equilibrium, the strategy of every player is the best response
to the strategy profile of all the other players, thus no player would unilaterally deviate from
the equilibrium. Thus Nash equilibrium defines a reasonable prediction for the games’outcome
and players’ behavior. Nash equilibrium is the key concept in modern game theory with an
advantage that it exists in a broad class of games[9]. The definition above actually defines the
pure strategy Nash equilibrium; to assure the general existence of Nash equilibrium, mixed-
strategy Nash equilibrium needs to be defined.

A mixed strategy σi for player Pi is a probability distribution over pure strategies of Pi,
i.e., σi = (σi(si))si∈Si ,

∑
si∈Si

σi(si) = 1. Then the utility of the player Pi becomes

ui(σ1, σ2, · · · , σn) =
∑

(s1,s2,··· ,sn)∈S

( n∏

j=1

σj(sj)
)

ui(s1, s2, · · · , sn).

Then Nash proved the theorem below by using Kakutani’s fixed point theorem[10]:
Every finite strategic form game has a mixed strategy Nash equilibrium.
To deal with more general and complicated games like dynamic game with incomplete

information, there are many extensions and refinements of Nash equilibrium, like correlated
equilibrium, subgame perfect Nash equilibrium, Bayesian equilibrium and so on. These concepts
are refered to [8] for more details.

3 Game Theoretical Approach for GSF

3.1 EMMS Model for Gas-Solid Fluidization (GSF)

Fluidization is a unit operation applied widely in different industries. In circulating fluidized
beds, particle clustering phenomenon exists and causes coexistence of dilute gas-rich and dense
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particle-rich phases due to the increasement of gas velocity, which make it challenging to analyze
the gas-solid interactions[14–16].

A gas-solid fluidization (GSF) system possesses heterogeneous structures, roughly consisting
of dense and dilute phases with interaction at their interface. To describe such a system, eight
parameters at three scales are necessary[6]:

(i) Particle scale: Voidage εf , superficial particle velocity Upf and superficial fluid velocity
Uf for the dilute phase and corresponding parameters εc, Upc and Uc respectively for the dense
phase.

(ii) Meso-scale: Cluster volume fraction f and cluster diameter dcl are used to describe the
interaction between the dense and dilute phases.

(iii) Global scale: Operating conditions (superficial gas velocity Ug and particle velocity Up)
and material properties (density ρp and diameter dp for particles, and viscosity νf and density
ρf for the fluid) are specified; average voidage ε needs to be deduced through calculation.

Then the system state can be defined to be X = (εf , Uf , Upf , εc, Uc, Upc, f, dcl) since other
parameters can be deduced by X . To solve the system state, equations involving the eight pa-
rameters in X are needed. According to fundamental physical laws, six conservation equations,
called fundamental equations in EMMS model, are available[6]:

F1(X) = mcFcf + miFi − f(1 − εc)(ρp − ρf )g = 0, (2)

F2(X) = (1 − f)mfFf − (1 − f)(1 − εf )(ρp − ρf )g = 0, (3)

F3(X) = mfFf +
miFi

(1 − f)
− mcFc = 0, (4)

F4(X) = Ug − Uf (1 − f) − Ucf = 0, (5)

F5(X) = Up − Upf (1 − f) − Upcf = 0, (6)

F6(X) = dcl −
gdp

[ Up

1−εmax
− Umf + εmf Up

1−εmf

]

Nst
ρp

ρp−ρf

−
(

Umf +
εmfUp

1 − εmf

)

g = 0. (7)

In the above systems, the theoretical extreme value for the parameter εmax is 1, which is usually
taken as εmax = 0.9997 in actual computation. Other variables are physical constants or system
variables, see [6].

Apparently, the system above with 6 equations and 8 parameters are not closed and calls
for additional conditions. To this end, the EMMS model[2, 7] tried to build stability conditions
by comprise in competition between two dominant mechanisms, which are identified for the
specific system and will affect the system stability as well as structure resolution.

For GSF, there are two dominant mechanisms, which are the extremal tendencies for gas
and solids. Concerning the gas, the extremal tendency can be expressed as to minimize energy
consumption for suspending and transporting particles per unit volume[16]:

Wst =
3
4

[

Cdc
1 − εc

dp
ρfU2

scUcf + Cdf
1 − εf

dp
ρfU2

sfUf(1 − f)

+ Cdi
f

dcl
ρfU2

siUf (1 − f)
]

→ min . (8)
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Concerning the solids, the extremal tendency is to minimize average voidage[16]:

ε = εf(1 − f) + εcf → min . (9)

Then the EMMS model claims that ‘compromise in competition between the dominant mech-
anisms’ defines the stability condition of the system. The parameters at different scales are
correlated and three regimes are generally possible to appear depending on the extent of the
relative dominance of the two mechanisms[6]:

(i) Particle-Dominated (PD) regime: When gas velocity is low, the influence of gas on system
structure is negligible, so the system is exclusively PD, which can be described by

ε → min, (10)

while Wst → min is suppressed.
(ii) Particle-Fluid-Comprising (PFC) regime: With increasing dominance of gas over solids,

the PD state is gradually suppressed while the Fluid-Dominated (FD) state is intensified, thus
the mechanism ε → min must compromise with Wst → min. The compromise in competition
between them leads to complex mesoscale phenomena and the system may be conceptually
described by

[
ε

Wst

]

→ min . (11)

(iii) Fluid-Dominated (FD) regime: When the dominance of Wst → min increases to a
critical value, ε → min is completely suppressed and the FD state dominates the system. The
system can be described by

Wst → min . (12)

In the PFC regime, by physics, the parameter satisfies

εmf ≤ εc ≤ εmax, (13)

where εmf = 0.5 is decided by physical characters of the GSF system.
The optimization problems in PD and FD regimes are regular. However, the optimization

in PFC regime appears to be a multi-objective optimization problem. In the EMMS model, it
is integrated into a single criterion

Nst =
Wst

(1 − ε)ρp
−→ min (14)

by analyzing physics of the system.
The analytical treatment above has its own weakness. The correlation of cluster diameter

needs to be improved to remove the uncertainty from εmax based on experimental data and
this problem is still unsolved, calling for fundamental research on the dynamic formation and
dissolution of clusters. The game theoretical approach below might shed some light on it.
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3.2 Game-Based Formulation and Solution for GSF

First, we note that the idea of ‘comprise in competition of dominant mechanisms’ is naturally
similar to the noncooperative game theory. This inspires us to reconsider the problem from the
prospective of game theory. Since the EMMS model must satisfy physical laws, we will be to
consider games with constraints. Next we state a general formulation for such games.

Consider a system with n players making decisions in a game. The actions of players are
denoted by ai, which is from the action space Ai of player Pi. The action profile of all players
is denoted by a = (a1, a2, · · · , an). The game is played in the environment which is denoted by
e ∈ E, and it is influenced by actions of players, which is described as e = e(a) :

∏
i Ai �→ E,

where the mapping e(a) cannot be analytically obtained often.
The objective function for each player to be minimized will not only depend on the action

profile of the players a, but also depend on the environment e. Thus we have

Ji = Ji(e, ai, a−i),

where a−i denotes the action profile of players other than that of the player Pi, i.e., a−i =
(a1, a2, · · · , ai−1, ai+1, · · · , an). This is essentially different from utility in classical games[8]

and will bring about different concept of equilibrium, which can be defined as below.

Definition 3.1 An action profile a∗ = (a∗
1, a

∗
2, · · · , a∗

n) is called generalized (pure) Nash
equilibrium based on its environment if for any i, it satisfies

Ji(e(a∗
i , a

∗
−i), a

∗
i , a

∗
−i) = min

ai∈Ai

Ji(e(ai, a
∗
−i), ai, a

∗
−i). (15)

The generalized Nash equilibrium defined above is different from the concept of Nash equi-
librium. The objective functions of mechanisms in (15) are related with both action profile a

and environment e(a), which cannot be written in the form of the objective functions in (1).
Concerning the GSF system in PFC regime, the two dominant mechanisms can be regarded

as two players, with the respective parameters being their actions. To be specific, the extremal
tendency of solids ε → min is for mechanism or player P1, and the extremal tendency of
gas Wst → min is for mechanism or player P2. According to the physics in EMMS model,
their actions are εc and εf respectively, which are independent with each other, i.e., a1 = εc,
a2 = εf . All the other 6 parameters in the system state X in EMMS model are regarded as
the environment and called environment state variables e = (Uf , Upf , Uc, Upc, f, dcl), which are
influenced by εc and εf according to the conservation equation (2).

According to the analysis in the section above, the objective function of mechanism P1 is

J1(e, a1, a2) = εf (1 − f) + εcf. (16)

Similarly, the objective function of mechanism P2 is

J2(e, a1, a2)

=
3
4

[

Cdc
1 − εc

dp
ρfU2

scUcf + Cdf
1 − εf

dp
ρfU2

sfUf(1 − f) + Cdi
f

dcl
ρfU2

siUf (1 − f)
]

, (17)
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where 0.5 ≤ εc, εf ≤ 1, dp ≤ dcl. And the mechanisms P1 and P2 would like to to minimize
their objective functions J1 and J2 respectively.

Assume that (ε∗c , ε
∗
f ) is the generalized Nash equilibrium based on environment, whose

existence is assumed. Then, according to the definition, we have

J1(e(ε∗c , ε
∗
f ), ε∗c , ε

∗
f) ≤ J1(e(εc, ε

∗
f ), εc, ε

∗
f). (18)

By (16),
dJ1(e(εc, ε

∗
f ), εc, ε

∗
f )

dεc
= f |(εc,ε∗

f ) + (εc − ε∗f )
∂f

∂εc

∣
∣
∣
∣
(εc,ε∗

f )

.

First, we have the physical fact that 0 < f < 1 and εc ≤ εf . On the other hand, by the physics
in EMMS model, we have ∂f

∂εc
|(εc,εf ) ≤ 0 (see [2]), Thus we get

dJ1(e(εc, ε
∗
f ), εc, ε

∗
f )

dεc
> 0,

which means that the objective J1(e(εc, ε
∗
f), εc, ε

∗
f ) increases with εc strictly. Remind (13), we

know that to minimize J1(e(εc, ε
∗
f ), εc, ε

∗
f), the mechanism P1 must take ε∗c = εmf = 0.5. Note

that this strategy ε∗c = 0.5 is a dominant strategy[8] for P1, i.e., it is independent of P2’s choice
of εf . Thus in the fundamental equations and the objective function J2, the parameter εc can
be regarded as a constant value ε∗c = 0.5.

Now consider P2. Given ε∗c = 0.5, the corresponding objective function is

J2 =
3
4

[

Cdc0

(
1
2

)−4.7 1
2dp

ρf (Uc − Upc)2Ucf

+ Cdf0(εf )−4.7 1 − εf

dp
ρf

(

Uf − εfUpf

1 − εf

)2

Uf(1 − f)

+ Cdi0(1 − f)−4.7 f

dcl
ρf (Uf − 2εfUpc)2(1 − f)2Uf(1 − f)

]

. (19)

Apparently, the value of J2 depends on both εf and the environment state variables e =
(Uf , Upf , Uc, Upc, f, dcl). Thus, to get the optimal strategy ε∗f for minimizing J2, P2 equally
needs to solve a conditional extreme value problem:

min
εf ,e

J2 (20)

s.t. Fi(εf , e) = 0, i = 1, 2, · · · , 6;

εf , e ≥ 0.

By writing all the variables out, we can see that in the above constrained optimization
problem (20), there is an external variable Ug which can be regulated and controlled. Along
with the change of Ug, the solution to the problem (20) will definitely change too. For each
fixed Ug, the problem can be solved theoretically by Lagrangian multiplier method. Next, the
optimization problem (20) is calculated numerically for the EMMS model with FCC catalyst/air
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system, see [1]. The physical parameters needed during the optimization process are taken as
below: dp = 54μm, ρp = 929.5kg/m3

, εmf = 0.5, Umf = 0.002m/s, ρf = 1.1795kg/m3
, μf =

1.8872∗10−5kg/(m.s), Gs = 50kg/(m.s). Then, by computing ε∗f numerically along with feasible
Ug which can be controlled to take different values, we can build the relationship between Ug

and the optimal solution ε∗f , and the result is shown in Figure 1 as below.

f

Ug

Figure 1 The relation between ε∗f and Ug

From Figure 1, we can see that to minimize J2, ε∗f ≈ 1, i.e., the theoretical value of εmax,
which hardly changes with Ug.

Thus for the game formulated from the GSF system, we obtain the generalized Nash equi-
librium to be (ε∗c = 0.5, ε∗f = 1). And the environment state e = (Uf , Upf , Uc, Upc, f, dcl)
corresponding to Nash equilibrium can also be computed, which however changes with the
specific value of Ug.

The result of generalized Nash equilibrium (ε∗c = 0.5, ε∗f = 1) just coincides with the previous
computational results of ε∗f and ε∗c which is shown in Figure 2. Figure 2 (see [1]) is obtained
by solving the single-criterion optimization problem to compute the steady state with eight
variables X = (εf , Uf , Upf , εc, Uc, Upc, f, dcl) by general reduced gradient method (GRG). The
abscissa axis also denotes the value of Ug.

In addition, if we make a rough use of the physical meanings of environment variables
e = (Uf , Upf , Uc, Upc, f, dcl) as in [13], then the influence of P2’s action εf to e is tiny and thus
we can regard e as constants, then J2 only depends on the middle term of (19), which is always
non-negative and will reach its minimum value 0 at ε∗f = 1.
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Figure 2 The previous computational results of ε∗f and ε∗c in [1]

Remark 3.2 The game theoretical formulation of the problem is not unique. Strategy
space of each mechanism can be decided in different ways, leading to different understanding of
the system and different difficulties in analysis. For specific systems, it seems worthy to explore
the most suitable game model.

To sum up, in the EMMS model for the GSF system, two dominant mechanisms compromise
in competition, which may be captured by the idea of game theory. This inspires us to formulate
the problem to be a noncooperative game with constraints. For such games, we define the
generalized Nash equilibrium based on environment in general. Then for the GSF system, we
compute the generalized Nash equilibrium, which coincides with computational result obtained
before. Furthermore, the formulation does not damage the physical meaning of the problem,
and implies deeper understanding on the essence inside the emergence of multi-scale structures.

4 Game Theoretical Views for Turbulent Flow in Pipe

4.1 The Turbulent Flow in Pipe

The well-known Reynolds experiment[17] in 1883 revealed two distinct types of flow: Laminar
flow and turbulent flow. In laminar flow, the fluid follows a clear and regular movement law. On
the contrary, turbulent flow implies randomness or irregularity in time or space, and large scale
swirls inside. So far, the general mechanism for turbulent flow is still an open and challenging
scientific problem. Some review about four main theories to study turbulent flow are referred
to [18].

In this paper we consider the simplest case: The turbulent flow in pipe. In this case, by
physical experiment, the velocity with respect to the distance from the pipe center can be
chosen as

u(r) = a1

[

1 −
(

r

R

)n1]

+ a2

[

1 − r

R

]1/n2

, (21)

where a1, a2 are respectively the weight factors of the non-turbulent and turbulent flows, n1

and n2 are integers to be decided, and R is radius of the pipe.
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4.2 EMMS Model of Turbulent Flow

In chemical engineering, turbulent flow emerges often and interact with droplet, bubbles
or particles in a complex way. That will greatly affect the chemical processes in multi-phase
systems. On the other hand, turbulent and nonturbulent fluids (laminar flow) often coexist in
the fluid. However, traditional turbulence models often neglect the laminar portion of the fluid,
which leads to inaccuracies in modeling practical engineering flows.

To this end, [19] extended the idea of EMMS model to turbulent flow by taking the turbulent
flow as a type of nonlinear non-equilibrium complex system. In the model, turbulent flow is
thought as the result of the compromise in competition between viscosity and inertia, the
two different dominant mechanisms in turbulent flow which come from their corresponding
extremum tendencies. Then from that the turbulence stability criterion can be derived.

In the fluid flow, both the inertial and viscous forces are important to form complex tur-
bulent flows[20]. When either viscosity or inertia dominates the system exclusively, there is
no inhomogeneous flow structure formed. To be specific, when the viscous force dominates
the system, the effect of inertia can be neglected and the flow is laminar flow, which is single
phase; when both play roles in the system, an inhomogeneous flow structure occurs, and with
increasing inertia a greater number of complex inhomogeneous flow structures form; when the
effects of viscosity can be neglected in fluid flows, the flow is fully developed turbulent flow[21].

Now consider the extremum tendencies. If a flow is single-phase and dominated exclusively
by viscosity, it aims to minimize the viscous mean shear dissipation rate[19]

W υ = 2π

∫ R

0

rWυ(r)dr,

in which Wυ(r) = μ
(du(r)

dr

)2, μ is the fluid viscosity.
By (21), we get

du(r)
dr

= −n1a1
rn1−1

Rn1
− a2

n2R

(

1 − r

R

) 1
n2

−1

,

and thus

Wυ(r) = μ

[
du(r)

dr

]2

= μ

[

− n1a1
rn1−1

Rn
1

− a2

n2R

(

1 − r

R

) 1
n2

−1]2

.

Then we get

W υ =2πμ

∫ 0.9999R

0

[

n1a1
rn1−1

Rn
1

+
a2

n2R

(

1 − r

R

) 1
n2

−1]2

rdr + 2πμ

∫ 0.9999R

0

[
du(r)

dr

∣
∣
∣
R

]2

rdr

=2πμ

[
n1a

2
1

2
+

2n1a1a2

n2

∫ 0.9999R

0

xn1(1 − x)
1

n2
−1dx +

a2
2

n2
2

∫ 0.9999R

0

x(1 − x)
2

n2
−2dx

]

+ 2πμ10000[a1(1 − 0.9999n1) + a20.00011/n2]2, (22)

where it is assumed that the area in the pipe from 0.999R to R is the viscous sublayer, which
is very thin relative to R according to previous study[22].
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If a flow is fully developed turbulent flow and dominated exclusively by inertia, it aims to
maximize the total energy dissipation rate of turbulence[19]

WT = −2πRuμ
du(r)

dr

∣
∣
∣
R
,

where u is the cross-sectional average fluid velocity

u =
2

R2

∫ R

0

ru(r)dr =
2

R2

∫ R

0

ra1

[

1 −
(

r

R

)n1
]

dr +
∫ R

0

ra2

[

1 − r

R

]1/n2

dr

=
n1a1

n1 + 2
+

2n2
2a2

(n2 + 1)(2n2 + 1)
. (23)

Thus, we get

WT = −2πRμu
du(r)

dr

∣
∣
∣
R

≈ 2πμR
u(r)|0.9999R − 0
R − 0.9999R

= 2πμu10000[a1(1 − 0.9999n1) + a20.00011/n2]. (24)

In its EMMS model, the turbulent flow is a result of compromise in competition between
these two dominant mechanisms, leading to the stability criterion, which can be expressed as

[
W υ

−WT

]

→ min .

In an early work, Wang[22] decomposed WT into the sum of W υ and the dissipation rate
of fluctuation W te, i.e., WT = W υ + W te, and thought the latter one decides the tendency of
WT , thus the mechanism of turbulent flow becomes

[
W υ

−W te

]

→ min .

Apparently, the mechanism of turbulent flow above is a multi-objective variational (MOV)
problem. As in EMMS model for GSF system, previous work in the field of chemical engineering
changes the MOV problem to a single-objective problem. By introducing the weight factor
α = W te

W T
denoting the weight of inertia in turbulent flows, a single objective can be obtained

to be

F = W te − W υ = αWT − W υ → max . (25)

However, α at the stable sate cannot be solved even it has a clear meaning in physics. To
decide α, the most commonly used approach is to find the corresponding optimum parameters
n1, n2, a1, a2 by computing optimum of F via choosing α ergodicly. Then the velocity of flow
can be obtained and can be compared with the empirical formula. The α leading to the
velocity which is most close to empirical formula is the desired α, under which the optimum of
parameters n1, n2, a1, a2 have already been computed. Obviously, such an approach takes a big
detour and results in heavy computing burden. Moreover, in physics, F is not as clear as W υ

or W te.
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4.3 The Game-Based Formulation and Solution for Turbulent Flow

Similar to our analysis in the GSF system, we can formulate the compromise in competition
between viscosity mechanism and inertia mechanism in turbulent flow as a noncooperative
game.

Here the game is between the viscosity and inertia mechanisms. The parameters n1, n2, a1, a2

constitute their strategies or actions (they are the same here), where the viscosity mechanism
controls its action S1 = (a1, n1) and the inertia mechanism controls S2 = (a2, n2).

For the viscosity mechanism, it aims to minimize J1; and for the inertia mechanism, it aims
to minimize J2; their respective objective functions are

J1 = W υ, J2 = −W te.

From the EMMS model described above, we get

J1 = 2πμ

[
n1a

2
1

2
+

2n1a1a2

n2

∫ 0.9999R

0

xn1(1 − x)
1

n2
−1dx +

a2
2

n2
2

∫ 0.9999R

0

x(1 − x)
2

n2
−2dx

]

+ 2πμ10000[a1(1 − 0.9999n1) + a20.00011/n2]2,

J2 = −(WT − W υ), (26)

where WT , W υ are computed by (22) and (24).
First, note that there exist some physical constraints on the values of a1, a2, n1, n2. By (21)

and (23), we can get a dimensionless value

u(r)
u

= a1

[

1 −
(

r

R

)n1
]

+ a2

[

1 − r

R

]1/n2

.

Obviously, a1, a2 must be dimensionless.
According to the physically evolutional process of the velocity of the flow in pipe, we have

1 ≤ u(r)
u

∣
∣
∣
r=0

= a1 + a2 ≤ 2. (27)

On the other hand, it has u = 1, then we get

n1a1

n1 + 2
+

2n2
2a2

(n2 + 1)(2n2 + 1)
= 1. (28)

Thus in this problem, the strategies (S1, S2) must satisfy two constraints (27) and (28), which
can be resettled in a general form as

Fj(S1, S2) = 0, j = 1; Gk(S1, S2) ≤ 0, k = 1, 2. (29)

And the game becomes a noncooperative game with constraints on strategies (29). Thus we
can define generalized Nash equilibrium with constraints as below:

Definition 4.1 (S∗
1 ; S∗

2) is called the generalized Nash equilibrium of the game formulated
above if for any i, it satisfies

Ji(S∗
i , S∗

−i) = min
Si∈Ai(S∗

−i)
Ji(Si, S

∗
−i),
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where Ai(S∗
−i) = {Si : (Si, S

∗
−i) satisfies (29)} denotes the strategy space of one mechanism

given that its opponent chooses S∗
−i.

For this specific problem, we supply a possible method to solve Nash equilibrium (a∗
1, n

∗
1, a

∗
2, n

∗
2)

below.
Step 1 Fix a2 to be a reasonable value â2 according to (27).
Step 1.1 Reformulate the feasible strategy for mechanism P2 by (29) to be a function

n∗
2(a1, n1), which is just a singleton given the opponent’s strategy a1, n1.

Step 1.2 Substitute n∗
2(a1, n1) into J1 and solve the optimization problem with constraints

of P1, denote the solution by (â∗
1, n̂

∗
1).

Step 1.3 Check whether the strategy profile (â∗
1, n̂

∗
1; â2, n

∗
2(â∗

1, n̂
∗
1)) is a Nash equilibrium.

Step 2 Change to another a2 and back to Step 1.
The method above will avoid choosing α in (25). Additionally, we only need to find a suitable

a2, (whose range can be narrowed by J1) rather than choosing optimal a1, n1, n2 ergodicly[22].
Thus potentially this method can considerably reduce the computation cost. However, we must
note that the existence and uniqueness of generalized Nash equilibrium in the game above are
open.

Remark 4.2 Note that the game models for GSF system and for turbulent flow are
different. Surely this difference comes from the different features of the specific systems. From
the view of game theory, in the game for GSF system, the influential factors beside strategies of
mechanisms are described as environment which is hardly analytically expressed by the strategy
profile, while the strategy space of each other is still independent. However, in the game for
turbulent flow in pipe, the strategy spaces of mechanisms are correlated, i.e., if one mechanism
changes his strategy, the space of available strategy for the other mechanism will change too.
Thus in both cases, the influential factors for the mechanisms’ payoffs are correlated or coupled,
i.e., space of the payoff’s influential factors for each mechanism changes with the choice of the
other mechanism’s strategy. Both of them are well defined in this paper and are different from
classical game models. There is no doubt that more general cases exist and make sense. Thus,
a great challenge on analysis and algorithms for generalized Nash equilibrium is posed too.

5 Conclusions

The understanding of the mechanisms and evolution of multi-scale structures in multi-phase
complex systems is a fundamental problem in chemical engineering. This paper has made an at-
tempt to apply the idea of noncooperative game theory to the energy-minimization multi-scale
(EMMS) model. We formulate the ‘compromise-in-competition’ between the dominant mech-
anisms as a noncooperative game with constraints, where the stable system state corresponds
naturally to a generalized Nash equilibrium. This paper investigates this game theoretical for-
mulation and its solution for two typical multi-phase complex systems in chemical engineering,
i.e., the gas-solid fluidization system and turbulent flow, and shows the feasibility of this novel
idea and approach. Furthermore, the concepts of generalized Nash equilibrium in these two
systems are distinguished, while both of which are well defined.
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Further investigation is necessary in the future, including the verification of this game the-
oretical approach to other multi-phase complex systems in chemical engineering like gas-liquid
systems. Important further work also include the investigation of general theory and algorithms
for generalized Nash equilibrium in noncooperative game with constraints.
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