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Analysis of Distributed Adaptive Filters Based on
Diffusion Strategies Over Sensor Networks
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Abstract—In this paper, we will analyze a basic class of
diffusion adaptive filters based on least mean squares al-
gorithms. Both stability and performance analyses will be
carried out under a general cooperative information condi-
tion, without such stringent conditions as statistical inde-
pendence and stationarity that have been used in almost all
the existing literature and, thus, makes our theory applica-
ble to stochastic systems with feedback. In comparison with
the existing work, a key theoretical difficulty that needs to
be overcome in this paper is to analyze the product of asym-
metric correlated nonstationary random matrices, which is
inherent in the structure of the diffusion-type filtering al-
gorithms. We will further demonstrate that the distributed
adaptive filters can estimate a dynamic process of interest
from noisy measurements by a set of sensors working in a
cooperative way, in the natural scenario where none of the
sensors can fulfill the estimation task individually due to
insufficient information. Finally, the necessity of our coop-
erative information condition will also be discussed in this
paper.

Index Terms—Diffusion strategies, distributed adaptive
filters, least mean squares, stochastic stability, tracking per-
formance.

I. INTRODUCTION

D ISTRIBUTED adaptive filtering algorithms can estimate
a macro unknown parameter process of interest coopera-

tively in sensor networks. This problem has recently attracted
much attention in a number of research areas, e.g., signal pro-
cessing and distributed control, see [1]–[11]. There are basi-
cally two features about adaptive filtering in sensor networks,
i.e., distributed observations and distributed processing. For
distributed observations, each sensor in the networks can only
observe partial information of the unknown parameter process,
and the sensor networks can fulfill the estimation task by shar-
ing information among the sensors. In general, there are three
different ways for processing in sensor networks, i.e., central-
ized, distributed, and the combination of both. In the centralized
processing, the observations from all sensors are gathered and
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filtered at the fusion center, which may lack robustness and need
strong communication capability over the sensor networks. Dis-
tributed processing may overcome these shortcomings, in which
all the sensors could collect noisy observations and interact with
their neighbors in a certain manner, based on the given network
topology.

There are basically three different types of decentralized
strategies for distributed adaptive filtering, namely, incremen-
tal [3], consensus [4]–[6], and diffusion [7]–[13] strategies, and
the last two are fully decentralized. In our previous work [14],
we have studied the consensus-type LMS algorithms and estab-
lished the stability result under a general cooperative informa-
tion condition. However, as shown by Tu and Sayed [15], the
diffusion networks may converge faster and reach lower mean-
square deviation than the consensus networks, because diffusion
strategies allow information to diffuse more thoroughly through
networks than the consensus strategies. Moreover, the diffu-
sion algorithms are fundamentally different from the consensus
algorithms in structure and hence in the analysis. Thus, it is
necessary to investigate the diffusion strategies and to establish
a theory.

The diffusion strategies were originally introduced for the
solution of distributed estimation and adaptation problems, in
which the sensors exchange estimates with their neighbors and
fuse the collected estimates via a linear combination. Accord-
ing to the order of adaptation and combination, there are mainly
two different types of diffusion strategies, i.e., the combine-
then-adapt (CTA) diffusion strategy and the adapt-then-combine
(ATC) diffusion strategy. We remark that almost all the existing
related literature about diffusion adaptive filtering algorithms re-
quire certain statistical independence or stationarity conditions
on the system signals in the stability and performance analyses.
For example, in [7], the regressors and noises are independently
and identically distributed (i.i.d.) in time and space, and in [8],
they investigated the performance of the distributed LMS over
sensor networks under i.i.d. regressors and Gaussian measure-
ment noises. Moreover, Khalili et al. [9] analyzed the effects
of noisy links on the steady-state performance of the diffusion
LMS under temporal and spatial independence assumptions.
Furthermore, Piggott and Solo [10] developed a theoretical per-
formance analysis of the diffusion LMS under nodewise inde-
pendence and temporal strict stationarity assumptions, Nosrati
et al. [11] studied the tracking behavior of a wide range of adap-
tive networks and analyzed the mean-square-error performance
under some time and spatial independence assumptions, Chen
and Sayed[12] studied the learning behavior of adaptive net-
works under some conditions on the conditional expectation of
the update vectors, and Gharehshiran et al. [13] studied weak
convergence of the diffusion LMS for signals with decaying
dependence [16], [17].
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To the best of our knowledge, the first step to relax the in-
dependence and stationarity conditions in diffusion adaptive
filtering algorithms is made in [18], where a CTA diffusion nor-
malized least-mean-squares (NLMS) algorithm is considered.
It has been shown that the whole sensor networks can fulfil the
estimation task under a cooperative stochastic information con-
dition. Later, the authors further refined the stability result of
[18] in [19] and gave a detailed performance analysis in [20].
However, when the sensor network degenerates to a single sen-
sor, the information condition in [18]–[20] cannot include the
weakest known information condition introduced by Guo [21]
and used in [22], indicating that there is still much room for
improvement.

In this paper, we will consider both the CTA and the ATC dif-
fusion strategies. The exponential stability of the homogenous
part of the filtering error equation will be established, under a
much more general cooperative information condition than that
previously used in [12] and [18]–[20]. Compared with the sta-
bility analysis for the consensus LMS algorithms in the previous
works [14], [23], here the random matrices in the homogenous
part of the error equation is no longer symmetric, and we need to
establish some new results on possibly asymmetric correlated
nonstationary random matrices, and make them applicable to
the analysis of the current diffusion algorithms. Under some
additional mild conditions, the performance of the filtering al-
gorithms measured by the tracking error covariance matrix will
also be provided in the paper. Furthermore, we will show that our
new cooperative information condition is also a necessary one
for a wide class of stochastic signals with decaying dependence.

In the remainder of this paper, we will present the diffusion
NLMS algorithms and introduce some useful definitions in Sec-
tions II and III, respectively. The main results will be stated in
Section IV. Section V will present the proofs of the main results,
Section VI will provide some simulation results, and Section VII
will conclude the paper with some remarks.

II. PROBLEM FORMULATION

Let us consider a sensor network consisting of n sensors.
Assume that at each time instant k, each sensor i = 1, . . . , n in
the sensor network receives a noisy scalar measurement yi

k and
an m-dimensional regressor ϕi

k ∈ Rm , where Rm denotes the
set of m × 1 column vectors with real entries. They are related
by a stochastic time-varying linear regression model

yi
k = (ϕi

k )T θk + vi
k , k ≥ 0 (1)

where (·)T denotes the transpose operator, vi
k is the scalar noise,

and θk ∈ Rm is an unknown time-varying parameter (signal)
vector whose variation at time k is denoted by Δθk , i.e.,

Δθk
�
= θk − θk−1 , k ≥ 1. (2)

Many problems from different application areas can be cast
as (1), see, e.g., [24]–[27]. Note also that when Δθk ≡ 0, θk

reduces to a constant vector.
As usual, let the communication structure among sensors be

represented by an undirected weighted graph G = (V, E ,A),
where V = {1, 2, . . . , n} is the set of sensors and E ⊆ V × V is
the set of edges. The structure of the graphG is described byA =
{aij}n×n which is called the weighted adjacency matrix, where
aij > 0 if (i, j) ∈ E and aij = 0 otherwise. In this paper, we
assume that the elements of the weighted matrix A satisfy aij =
aji , ∀i, j = 1, . . . , n, and

∑n
j=1 aij = 1, ∀i = 1, . . . , n. Thus,

the matrixA is doubly stochastic.1 Note that (i, j) ∈ E ⇔ aij >
0. The set of neighbors of the sensor i is denoted as

Ni = {l ∈ V |(i, l) ∈ E}
and the sensor i shares information with its neighboring sensors
in Ni . The Laplacian matrix L of the graph G is defined by L =
In −A, where In denotes the n-dimensional identity matrix.

The well-known LMS algorithm [26]–[29] can be used to
estimate the unknown parameter of interest and it is a type of
steepest descent algorithm that aims at minimizing the mean
square prediction error recursively. The LMS algorithm has a
number of well appreciated advantages (see in [29]): simplic-
ity, efficiency, robustness, and numerical stability, and is the
most basic adaptive algorithm in many areas, such as system
identification, adaptive control, adaptive signal processing, etc.

In the following, we present the CTA and ATC diffusion
strategies, both are based on NLMS algorithms.

Algorithm 1: CTA Diffusion NLMS Algorithm.
For any given sensor i = 1 . . . , n, begin with an initial

estimate θ̂
i,CTA
0 .

The algorithm is recursively defined for iteration k ≥ 0 as
follows:
1: Combine local estimates:

β̂i,CTA
k =

∑

l∈Ni

ali θ̂
l,CTA
k .

2: Adapt the local estimate:

θ̂i,CTA
k+1 = β̂i,CTA

k + μi
ϕi

k

1+ ‖ ϕi
k ‖2 [yi

k − (ϕi
k )T β̂i,CTA

k ]

where μi ∈ (0, 1) is a constant step-size of the sensor i.

Algorithm 2: ATC Diffusion NLMS Algorithm.
For any given sensor i = 1 . . . , n, begin with an initial

estimate θ̂
i,CTA
0 .

The algorithm is recursively defined for iteration k ≥ 0 as
follows:
1: Adapt the local estimate:

β̂i,ATC
k+1 = θ̂i,ATC

k + μi
ϕi

k

1+ ‖ ϕi
k ‖2 [yi

k − (ϕi
k )T θ̂i,ATC

k ].

2: Combine local estimates:

θ̂i,ATC
k+1 =

∑

l∈Ni

aliβ̂
l,ATC
k+1

where μi ∈ (0, 1) is a constant step-size of the sensor i.

For convenience of analysis, we introduce the following no-
tations:

Y k
�
= col{y1

k , . . . , yn
k }, (n × 1)

Φk
�
= diag{ϕ1

k , . . . ,ϕn
k }, (mn × n)

1A matrix is called doubly stochastic, if all elements are nonnegative, both
the sum of each row and the sum of each column equal to 1.
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V k
�
= col{v1

k , . . . , vn
k }, (n × 1)

ΔΘk
�
= col{Δθk , . . . ,Δθk︸ ︷︷ ︸

n

}, (mn × 1)

Θk
�
= col{θk , . . . ,θk︸ ︷︷ ︸

n

}, (mn × 1)

Θ̂
CTA
k

�
= col{θ̂1,CTA

k , . . . , θ̂
n,CTA
k }, (mn × 1)

Θ̃
CTA
k

�
= col{θ̃1,CTA

k , . . . , θ̃
n,CTA
k }, (mn × 1)

where θ̃
i,CTA
k = θ̂

i,CTA
k − θk ,

Θ̂
ATC
k

�
= col{θ̂1,ATC

k , . . . , θ̂
n,ATC
k }, (mn × 1)

Θ̃
ATC
k

�
= col{θ̃1,ATC

k , . . . , θ̃
n,ATC
k }, (mn × 1)

where θ̃
i,ATC
k = θ̂

i,ATC
k − θk ,

B̂CTA
k

�
= col{β̂1,CTA

k , . . . , β̂
n,CTA
k }, (mn × 1)

B̂ATC
k

�
= col{β̂1,ATC

k , . . . , β̂
n,ATC
k }, (mn × 1)

Lk
�
= diag

{
ϕ1

k

1+ ‖ ϕ1
k ‖2 , . . . ,

ϕn
k

1+ ‖ ϕn
k ‖2

}

, (mn × n)

F k
�
= LkΦT

k , (mn × mn)

Λ
�
= diag{μ1Im , . . . , μnIm}, (mn × mn)

L
�
= L ⊗ Im , (mn × mn)

where col{· · · } denotes a vector by stacking the specified vec-
tors, diag{· · · } is used in a nonstandard manner which means
that m × 1 column vectors are combined “in a diagonal manner”
resulting in a mn × n matrix, and ⊗ is the Kronecker product.
Note also that ΔΘk and Θk mean just the n-times replication
of vectors Δθk and θk , respectively. By (1) and (2), we have

Y k = ΦT
k Θk + V k (3)

and

ΔΘk+1 = Θk+1 − Θk . (4)

For the CTA diffusion NLMS algorithm, we have
⎧
⎨

⎩

B̂CTA
k = (A⊗ Im )Θ̂CTA

k

Θ̂CTA
k+1 = B̂CTA

k + ΛLk (Y k − ΦT
k B̂CTA

k )
(5)

where A is the adjacency matrix. Denoting Θ̃
CTA
k = Θ̂

CTA
k −

Θk , substituting (3) into (5), and noticing (4), we can get

Θ̃
CTA
k+1 = (A⊗ Im )Θ̂

CTA
k − Θk − ΔΘk

+ ΛLk [ΦT
k Θk + V k − ΦT

k (A⊗ Im )Θ̂
CTA
k ].

Because (A⊗ Im )Θk = Θk , we have

Θ̃
CTA
k+1 = (Imn − ΛF k )(A⊗ Im )Θ̃

CTA
k

+ ΛLkV k − ΔΘk+1 .

Since A⊗ Im = Imn − (L ⊗ Im ) = Imn − L , we can obtain
the CTA diffusion NLMS error equation as follows:

Θ̃
CTA
k+1 = (Imn − [ΛF k + L − ΛF kL ])Θ̃

CTA
k

+ ΛLkV k − ΔΘk+1 . (6)

Obviously, its homogeneous equation is

Xk+1 = (Imn − [ΛF k + L − ΛF kL ])Xk , k ≥ 0 (7)

which will be analyzed in the following sections.
In a similar way, we can obtain the ATC diffusion NLMS

error equation

Θ̃
ATC
k+1 = (Imn − [ΛF k + L − ΛL F k ])Θ̃

ATC
k

+ Λ(A⊗ Im )LkV k − ΔΘk+1 (8)

together with its homogeneous equation

Y k+1 = (Imn − [ΛF k + L − ΛL F k ])Y k , k ≥ 0 (9)

which can be analyzed in a similar way as (7). In the sequel, we
will mainly focus on the analysis of the CTA diffusion NLMS
algorithms.

Note that by the stochastic internal–external stability results in
[21] (see Propositions 2.1 and 2.2 there), it is easy to see from the
above distributed filtering error (6) that the tracking error hinges
on the exponential stability of (7), which depends essentially on
the properties of product of random matrices. We remark that,
compared with the consensus NLMS error equation in [14],
here the random matrices ΛF k + L − ΛF kL and ΛF k +
L − ΛL F k are asymmetric, and hence, the method used in
[14] is no longer applicable. In order to obtain the exponential
stability of (7) and (9), we need to generalize the results in [21]
for symmetric random matrices to possible asymmetric random
matrices, and make them applicable to the current proofs of the
diffusion algorithms. Before that, we first give some definitions
in the following section.

III. SOME DEFINITIONS

In the sequel, the set of m × n matrices with real entries is
denoted by Rm×n . Let X ∈ Rn×n and Y ∈ Rn×n be two sym-
metric matrices, then X ≥ Y means that X − Y is a positive
semidefinite matrix and X > Y means that X − Y is a positive
definite matrix. Also, let λmax(·) and λmin(·) denote the largest
and the smallest eigenvalues of a matrix (·), respectively. For
any random matrix X ∈ Rm×n , its Euclidean norm is defined
as its maximum singular value, i.e., ‖ X ‖= {λmax(XXT )} 1

2 ,
and its Lp -norm is defined as ‖ X ‖Lp

= {E[‖ X ‖p ]} 1
p , where

E[·] denotes the expectation operator. Also, we use Fk =
σ{ϕj

i , ωi, v
j
i−1 , j = 1, . . . , n, i ≤ k} to denote the σ-algebra

generated by {ϕj
i , ωi, v

j
i−1 , j = 1, . . . , n, i ≤ k}, where the def-

inition of σ-algebra together with that of conditional mathemat-
ical expectation operator E[·|Fk ] to be used later can be found in
[30]. To proceed with further discussions, we need the following
definitions introduced in [21].

Definition 3.1: For a random matrix sequence {Ak , k ≥ 0}
defined on the basic probability space (Ω,F , P ), if

sup
k≥0

E[‖ Ak ‖p ] < ∞



3646 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 63, NO. 11, NOVEMBER 2018

holds for some p > 0, then {Ak} is called Lp -bounded. Fur-
thermore, if {Ak} is a solution of a random difference equation,
then {Ak} is called Lp -stable.

Definition 3.2: For a sequence of d × d random matrices
A = {Ak , k ≥ 0}, if it belongs to the following set with p ≥ 0,

Sp(λ) =
{

A :
∥
∥
∥
∥

k∏

j=i+1

(I − Aj )
∥
∥
∥
∥

Lp

≤ Mλk−i

∀k ≥ i + 1 ∀i ≥ 0, for some M > 0
}

(10)

then {I − Ak , k ≥ 0} is called Lp -exponentially stable with
parameter λ ∈ [0, 1).

As pointed out in [21], (10) is in some sense the necessary and
sufficient condition for stability of random linear equations of
the form xk = (I − Ak )xk + ξk+1 , k ≥ 0, and it is well known
that the analysis of such a random matrix product is a mathe-
matically difficult problem. However, as demonstrated by Guo
[21], for linear random equations arising from adaptive filtering
algorithms, it is possible to transfer the product of the random
matrices to that of a certain class of scalar sequences, and the
later can be further analyzed based on some excitation or in-
formation conditions on the regressors. This paper will follow
a similar line of arguments for distributed algorithms. To this
end, we introduce the following subclass of S1(λ) for a scalar
sequence a = {ak , k ≥ 0}

S0(λ) =

⎧
⎨

⎩
a : ak ∈ [0, 1], E

⎡

⎣
k∏

j=i+1

(1 − aj )

⎤

⎦ ≤ Mλk−i

∀k ≥ i + 1 ∀i ≥ 0, for some M > 0} (11)

where λ ∈ [0, 1). This definition will be used when we transfer
the product of random matrices to that of a scalar sequence.

Definition 3.3: A random sequence x = {xk} is called an
element of the weakly dependent set Mp(p ≥ 1) , if there exists
a constant Cx

p depending only on p and the distribution of {xk}
such that for any k ≥ 0 and h ≥ 1,

∥
∥
∥
∥

k+h∑

i=k+1

xi

∥
∥
∥
∥

Lp

≤ Cx
p h

1
2 . (12)

Remark 3.1: It is known that many typical random se-
quences, such as the martingale difference, zero mean φ- and
α-mixing sequences, and the linear process driven by white
noises, all belong to Mp (see [22]).

Definition 3.4: Let {Ak , k ≥ 0} be a matrix sequence and
{bk , k ≥ 0} be a positive scalar sequence. Then, by Ak = O(bk )
we mean that there exists a constant M > 0 such that

‖Ak‖ ≤ Mbk ∀k ≥ 0. (13)

IV. MAIN RESULTS

A. Stability and Performance Results

In this section, we study the stability of the error (6) and first
give an exponential stability result for the homogeneous part
(7) in the following theorem. For that, we need the following
conditions.

Condition 4.1 (Network Topology): The graph G is con-
nected and contains a self-loop at each node.

Remark 4.1: It is known that the eigenvalues of the Lapla-
cian matrix L of the graph G can be arranged in a nondecreas-
ing order 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn (L) ≤ 2. The small-
est eigenvalue λ1(L) always equals to zero, with 1√

n
(1, . . . , 1)T

being the corresponding unit eigenvector. Under Condition 4.1,
we know that λ2(L) > 0 and λn (L) < 2, see [31].

Condition 4.2 (Cooperative Information Condition): For
the adapted sequences {ϕi

k ,Fk , k ≥ 0}(i = 1, . . . , n), there
exists an integer h > 0 such that {λk , k ≥ 0} ∈ S0(λ) for some
λ ∈ (0, 1), where λk is defined by

λk
�
= λmin

{

E

[
1

n(h + 1)

n∑

i=1

k+h∑

j=k+1

ϕi
j (ϕ

i
j )

T

1 + ‖ϕi
j‖2

∣
∣
∣Fk

]}

(14)

where E[·|Fk ] is the conditional mathematical expectation op-
erator and Fk = σ{ϕi

j ,ωj , v
i
j−1 , i = 1, . . . , n, j ≤ k}.

Remark 4.2: Most of the existing theories on distributed
adaptive filters require that the regressors satisfy some statistical
independence and stationarity conditions, which are rather strin-
gent and cannot be satisfied for stochastic signals generated from
feedback systems. This conditional mathematical expectation-
based information condition was first introduced by Guo in [32]
and then refined in [21] for the traditional single sensor case,
which is quite general and even necessary for exponential sta-
bility (see [21]). Our Condition 4.2 is a natural generalization of
the information condition from single sensor to sensor networks.
We remark that, by properties of the conditional mathematical
expectation, Condition 4.2 implies that the system signals will
have some kind of “persistent excitations” since the predic-
tion of the “future” is nondegenerate given the “past,” which
is required to track constantly changing unknown signals. We
remark also that the information condition used in [18] is only
a special case of Condition 4.2 with h = 1. Moreover, under
Condition 4.2, the distributed filtering network can be shown
to fulfil the estimation task cooperatively even if any individual
filter cannot.

Without loss of generality, we express the step-size at each
node i as μi = σiμ

∗, where μ∗ = max{μ1 , . . . , μn} ∈ (0, 1), σi

∈ (0, 1]. The main results of the paper are as follows.
Theorem 4.1: Consider the model (1) and the estimation er-

ror (6). Suppose that Conditions 4.1 and 4.2 are satisfied. Then
for any p ≥ 1, there exists a constant μ∗ ∈ (0, 1), such that for
any 0 < Λ ≤ μ∗Imn ,

{Imn − [ΛF k + L − ΛF kL ], k ≥ 1}
is Lp -exponentially stable (p ≥ 1).

The detailed proof of Theorem 4.1 is given in Section V,
and the precise value of μ∗ ∈ (0, 1) can be found in (41). By
Theorem 4.1, we can obtain a preliminary tracking error bound
in the following theorem.

Theorem 4.2: Consider the model (1) and the estimation er-
ror (6). Suppose that Conditions 4.1 and 4.2 are satisfied. If for
some p ≥ 1 and β > 1,

σp
�
= sup

k
‖ξk logβ (e + ξk )‖Lp

< ∞

‖Θ̃CTA
0 ‖Lp

< ∞
hold, where ξk = ‖V k‖ + ‖ΔΘk+1‖, then there exists a con-

stant μ∗ ∈ (0, 1), such that for any 0 < Λ ≤ μ∗Imn , {Θ̃CTA
k ,
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k ≥ 1} is Lp -stable and

lim sup
k→∞

‖Θ̃CTA
k ‖Lp

≤ c[σplog(e + σ−1
p )] (15)

where c is a positive constant.
Remark 4.3: Since the upper bound for the error can be de-

rived in a similar way as that of [21, Th. 4.2], details will be
omitted here. From this theorem, we know that when both the
observation noises vi

k and parameter variation Δθk are small in
the “Lp sense,” σp will be small, and consequently, the tracking
error will also be small in the Lp sense.

Remark 4.4: The result of Theorem 4.1 also holds similarly
for the ATC diffusion NLMS algorithm, namely, for any p ≥ 1,
there exists a constant μ∗ ∈ (0, 1), such that for any 0 < Λ ≤
μ∗Imn ,

{Imn − [ΛF k + L − ΛL F k ], k ≥ 1}

is Lp -exponentially stable (p ≥ 1). Also, Theorem 4.2 holds for

{Θ̃ATC
k , k ≥ 1}.

To obtain a more accurate tracking error bound, we assume
that the variation Δθk+1 has the following form:

Δθk+1
�
= γωk+1 , k ≥ 1 (16)

where γ is a nonnegative number reflecting the speed of param-
eter variation and ωk is an as yet undefined vector. Henceforth,

we denote Ωk
�
= col{ωk , . . . ,ωk}.

Condition 4.3: For some p ≥ 1, the initial estimation error
is bounded, i.e., ‖Θ̃0‖L2 p

< ∞. Furthermore, {LkV k} ∈ M2p

and {Ωk} ∈ M2p .
Remark 4.5: This condition simply implies that both the

noises and parameter variations are weakly dependent with cer-
tain bounded moments.

Theorem 4.3: Assume that Conditions 4.1–4.3 are satisfied.
For any p ≥ 1, there exists a constant μ∗ ∈ (0, 1), such that for
any 0 < Λ ≤ μ∗Imn , we have for all k ≥ 0,

‖Θ̃CTA
k+1 ‖Lp

= O

([√
μ∗ +

γ√
μ∗

]

log
1
μ∗ + (1 − α2pμ

∗)k+1
)

(17)
where α2p ∈ (0, 1) is a constant which is defined as in
Lemma 5.11, “O” is a constant depends only on α.

The detailed proof of Theorem 4.3 is given in Section V.
Rather than giving upper bounds only, we may further get the
approximate value of the mean square tracking error matrix by
strengthening the conditions used in Theorem 4.3. Now, to
approximate the true mean square tracking error matrix

ΠCTA
k = E[Θ̃

CTA
k (Θ̃

CTA
k )T ]

we define the following linear deterministic difference equation

for Π̂
CTA
k [22]:

Π̂
CTA
k+1 = (Imn − E[Ak ])Π̂

CTA
k (Imn − E[Ak ])T

+ Λ2E[T k ] + γ2Qω (k + 1) (18)

where

Ak = ΛF k + L − ΛF kL

T k = LkV kV T
k LT

k

Qω (k + 1) = E[Ωk+1ΩT
k+1]

Π̂
CTA
0 = E[Θ̃

CTA
0 (Θ̃

CTA
0 )T ].

Note that Π̂
CTA
k can easily be calculated and examined, which

will be used to approximate the mean square tracking error
matrix ΠCTA

k . For this, we need the following additional con-
ditions.

Condition 4.4: Let Fk = σ{ϕi
j ,ωj , v

i
j−1 , i = 1, . . . , n, j ≤

k}, and assume that Λ = μImn and for all k ≥ 1,

E[V k |Fk ] = 0, E[Ωk+1 |Fk ] = 0, E[Ωk+1V
T
k |Fk ] = 0

E[V kV T
k |Fk ] = P v (k) ≥ 0

E[Ωk+1ΩT
k+1] = Qω (k + 1) ≥ 0

sup
k

(‖V k‖L8 + ‖Ωk‖L8 ) < ∞ (19)

and that there exists a bounded function φ̄(t, μ) ≥ 0 with
limt→∞,μ→0 φ̄(t, μ) log 1

μ = 0 such that ∀k ≥ 0 ∀t and μ ∈
(0, 1),

‖E[F k |Fk−t ] − E[F k ]‖L4 ≤ φ̄(t, μ). (20)

Remark 4.6: If we are only interested to get an upper bound
of Θ̃k , then some moment conditions on V k and Ωk are suf-
ficient, see Theorem 4.1. A refined upper bound can also be
obtained under the additional Conditions 4.3, see Theorem 4.3.
Moreover, the stronger Condition 4.4 will be only used to ob-
tain an approximate tracking performances as will be shown
in the following Theorem 4.4. Conditions 4.4 means that the
measurement noise V k and the parameter variation Ωk+1 are
of white noise characters, which are commonly used in many
works [11] and is a worst-case analysis since the future behavior
of the model is unpredictable, as mentioned in [33]. This con-
dition also means that the observation noise and the parameter
variations are uncorrelated given the past signals, but spatial
correlations of the noises are allowed. Also, (20) describes the
decaying correlation between F k and Fk−t , which can be guar-
anteed by imposing certain weak dependence conditions on the
regressor {ϕi

k}, e.g., φ-mixing property (see [22]).
Theorem 4.4: Let Conditions 4.1–4.4 be satisfied. Then,

there exists a constant μ∗ ∈ (0, 1), such that for any 0 < μ ≤ μ∗,
we have for all k ≥ 1,

‖ΠCTA
k+1 − Π̂

CTA
k+1 ‖ ≤ cδ̄(μ)

[

μ +
γ2

μ
+ (1 − αμ)k+1

]

(21)

where c > 0, α ∈ (0, 1) are constants and

δ̄(μ)
�
= min

t≥1

{

t
√

μ log3 1
μ

+ φ̄(t, μ) log
1
μ

}

,

which tends to zero as μ approaches to zero.
The proof of Theorem 4.4 is given in Section V. Theorem 4.4

provides a good approximation of the mean square tracking

error matrix ΠCTA
k by Π̂

CTA
k for small parameter variation γ

and small adaptation gain μ, since δ̄(μ) tends to zero as μ
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tends to zero. Π̂
CTA
k can be further simplified in the wide-sense

stationary case, as demonstrated in the following theorem.
Theorem 4.5: Let

F = E[F k ] = diag{F 1 , · · · ,F n}, with F i = F j

T = E[T k ] = E[LkV kV T
k LT

k ]

Qω ≡ Qω (k + 1).

Under the conditions of Theorem 4.4, we have k → ∞,

ΠCTA
k = μR̄v +

γ2

μ
R̄ω + O

(

δ̄(μ)
[

μ +
γ2

μ

])

+ o(1)

where the term o(1) tends to 0 as k → ∞, and

R̄v =
∫ ∞

0
e−F tAaveTAavee

−F tdt

R̄ω =
∫ ∞

0
e−F tAaveQω Aavee

−F tdt

and Aave = (limk→∞Ak ) ⊗ Im with (limk→∞Ak )ij = 1
n for

all i, j = 1, . . . , n.
Remark 4.7: Since the proof of Theorem 4.5 is similar to

[20, Th. 15], here we omit it. Note that limμ→0 δ̄(μ) = 0. As a
result, we have for all small μ and large k

ΠCTA
k ∼ μR̄v +

γ2

μ
R̄ω .

Consequently, by taking “trace,” i.e., Tr(·), on both sides and
noticing the definition of ΠCTA

k , we have

n∑

i=1

E[‖θ̃i,CTA
k ‖2 ] ∼ μTr(R̄v ) +

γ2

μ
Tr(R̄ω ) (22)

which indicates that μ should be proportional to γ, and by
minimizing the right-hand side, we get the “optimal” choice

μO = γ
√

Tr(R̄ω )/Tr(R̄v )

with the corresponding minimum value

n∑

i=1

E[‖θ̃i,CTA
k ‖2 ] ∼ 2γ

√
Tr(R̄ω ) · Tr(R̄v ).

Remark 4.8: In a similar way, one can show that Theorem 4.4

and Theorem 4.5 hold for {Θ̃ATC
k , k ≥ 1} under the same con-

ditions. In particular, Π̂ATC
k provides a good approximation of

the mean square tracking error matrix ΠATC
k , where

ΠATC
k = E[Θ̃

ATC
k (Θ̃

ATC
k )T ]

Π̂
ATC
k+1 = (Imn − E[Bk ])Π̂

ATC
k (Imn − E[Bk ])T

+ Λ2(A⊗ Im )E[T k ](A⊗ Im ) + γ2Qω (k + 1)

and

Bk = ΛF k + L − ΛF kL .

B. Necessity of the Information Condition

In this section, we will further show that Condition 4.2 used
in this paper is not only sufficient but also necessary for the sta-
bility of the distributed algorithm under some extra conditions
on dependence, for example, the φ-mixing condition. A ran-
dom process {ξk} is called φ-mixing, if there exists a sequence
φ(n) → 0 as n → ∞, such that

sup
A∈F∞

t + s ,B∈F t
0

|P (A|B) − P (A)| ≤ φ(s) ∀t, s

where F s
t = σ{ξ(u), t ≤ u ≤ s}. As is well known, the φ-

mixing process includes a large class of important processes, for
examples, deterministic processes, M -dependent processes, and
processes generated from bounded white noise filtered through
a stable finite-dimensional linear filter (see [21]).

Theorem 4.6: Consider the model (1) and the estimation
error (6). Let {ϕi

k} be φ-mixing processes and suppose that
Condition 4.1 is satisfied. Then, there exists a constant μ∗ ∈
(0, 1), such that for any 0 < Λ ≤ μ∗Imn , {Imn − [ΛF k +
L − ΛF kL ], k ≥ 1} is Lp -exponentially stable (p ≥ 1)
if andonly if Condition 4.2 holds.

Remark 4.9: The detailed proof will be given in the follow-
ing section. Note that the φ-mixing property used in the above
theorem is just for simplicity, which can be further relaxed, see
[34] for related discussions. Similarly, for the ATC diffusion
NLMS algorithm, Theorem 4.6 is also true.

V. PROOFS OF THE MAIN THEOREMS

A. Proof of Theorem 4.1

Before proving the theorem, we first list and prove some
lemmas. The first one is about Kronecker product.

Lemma 5.1 ([35]): Let the eigenvalues of matrices X ∈
Rn×n and Y ∈Rm×m are λX

i (i = 1, . . . , n), λY
j (j =1, . . . ,m),

respectively. Then, the eigenvalues of matrix X ⊗ Y are
λX

i λY
j , i = 1, . . . , n, j = 1, . . . ,m. Furthermore, if x1 , . . . , xp

are linearly independent right eigenvectors of X corresponding
to λX

1 , . . . , λX
p (p ≤ n) and y1 , . . . , yq are linearly independent

right eigenvectors of Y corresponding to λY
1 , . . . , λY

q (q ≤ m),
then xi ⊗ yj is a right eigenvector of X ⊗ Y corresponding to
λX

i λY
j , and {xi ⊗ yj , i = 1, . . . , n, j = 1, . . . , m} are indepen-

dent.
The following three lemmas are all about the properties of S0

defined by (11), which can be found in [21].
Lemma 5.2 ([21]): If two sequences αk and βk satisfy 0 ≤

αk ≤ βk ≤ 1 ∀k ≥ 0, then {αk} ∈ S0(λ) implies {βk} ∈
S0(λ).

Lemma 5.3 ([21]): Let {αk} ∈ S0(λ) and αk ≤ α∗ < 1 ∀k
≥ 0 where α∗ is a constant. Then, for any ε ∈ (0, 1), {εαk} ∈
S0(λ(1−α∗)ε).

Lemma 5.4 ([21]): Let α = {αk ,Fk} and β = {βk ,Fk} be
adapted processes, such that

αk ∈ [0, 1], E[αk+1 |Fk ] ≥ βk , k ≥ 0.

Then, {β} ∈ S0(λ) implies that {α} ∈ S0(
√

λ).
The next three lemmas improve the results on symmetric

random matrices established in [21], and provide some further
results on asymmetric matrices, which will be shown to be
satisfied by the random matrices in (6) and (8), see Lemmas 5.8
and 5.9.
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Lemma 5.5: Let {Ak} be a sequence of random matrices
which is adapted to {Fk}, and there exist a constant ε ∈ (0, 1),
such that AT

k Ak ≤ (1 − ε)(Ak + AT
k ), a.s. For any fixed inte-

ger h > 0, denote

γk = λmin

{

E

[
1

1 + 4(1 − ε)h

(k+1)h∑

i=kh+1

(Ai + AT
i )|Fkh

]}

(23)

then for k = sh + 1, s ≥ 1, we have

λmax{E[ΨT (k + h, k)Ψ(k + h, k)|Fk−1 ]}
≤ 1 − εγs

1 + 4(1 − ε)h
(24)

where Ψ(·, ·) is defined as

Ψ(t + 1, s) = (I − At)Ψ(t, s), Ψ(s, s) = I ∀t ≥ s.

Proof: For simplicity, we omit a.s. for sample paths in the
following proof. By AT

k Ak ≤ (1 − ε)(Ak + AT
k ), we know that

for all k ≥ 0,

‖Ak‖2 = λmax(AT
k Ak )

≤ (1 − ε)λmax(Ak + AT
k )

≤ (1 − ε)‖Ak + AT
k ‖

≤ 2(1 − ε)‖Ak‖
then we have ‖Ak‖ ≤ 2(1 − ε). From this, we know that

γk ∈
[

0,
4(1 − ε)h

1 + 4(1 − ε)h

]

.

We denote zk−1 as the unit eigenvector corresponding to the
largest eigenvalue ρk−1 of the matrix E[ΨT (k + h, k)Ψ(k +
h, k)|Fk−1 ] and recursively define {zj , j ≥ k} by

zj = (I − Aj )zj−1 , j ≥ k. (25)

Then, zk+h−1 = Ψ(k + h, k)zk−1 . Hence, we have

E[‖zk+h−1‖2 |Fk−1 ]

= zT
k−1E[ΨT (k + h, k)Ψ(k + h, k)|Fk−1 ]zk−1

= ρk−1‖zk−1‖2

= ρk−1 . (26)

By (25), we have

zj = zk−1 −
j∑

i=k

Aizi−1 ∀j ∈ [k, k + h − 1].

Hence, by AT
k Ak ≤ (1 − ε)(Ak + AT

k ) and the Cr-inequality,

E[‖zj−1 − zk−1‖2 |Fk−1 ]

= E

[∥
∥
∥
∥

j−1∑

i=k

Aizi−1

∥
∥
∥
∥

2

|Fk−1

]

≤ E

[( j−1∑

i=k

‖Aizi−1‖
)2

|Fk−1

]

≤ (j − k)E
[ j−1∑

i=k

‖Aizi−1‖2 |Fk−1

]

≤ hE

[ j−1∑

i=k

zT
i−1A

T
i Aizi−1 |Fk−1

]

≤ h(1 − ε)E
[ j−1∑

i=k

zT
i−1(Ai + AT

i )zi−1 |Fk−1

]

≤ h(1 − ε)E
[ j−1∑

i=k

‖(Ai + AT
i )1/2zi−1‖2 |Fk−1

]

. (27)

By the definition of λs , the Minkowski inequality, ‖Ai + AT
i ‖ ≤

4(1 − ε) and (27), we can obtain

√
[1 + 4(1 − ε)h]γs

≤
{

zT
k−1E

[ (s+1)h∑

i=sh+1

(Ai + AT
i )|Fsh

]

zk−1

} 1
2

≤
{

E

[ k+h−1∑

i=k

‖(Ai + AT
i )1/2zk−1‖2 |Fk−1

]} 1
2

≤
{

E

[ k+h−1∑

i=k

‖(Ai + AT
i )1/2zi−1‖2 |Fk−1

]} 1
2

+
{

E

[ k+h−1∑

i=k

‖(Ai + AT
i )1/2(zi−1 − zk−1)‖2 |Fk−1

]} 1
2

≤ [1 +
√

4(1 − ε)h ·
√

h(1 − ε)]

×
{

E

[ k+h−1∑

i=k

‖(Ai + AT
i )1/2zi−1‖2 |Fk−1

]} 1
2

< [1 + 4(1 − ε)h]

×
{

E

[ k+h−1∑

i=k

‖(Ai + AT
i )1/2zi−1‖2 |Fk−1

]} 1
2

. (28)

Then, we have

E

[ k+h−1∑

i=k

zT
i−1(Ai + AT

i )zi−1 |Fk−1

]

≥ γs

1 + 4(1 − ε)h
.

(29)
By (25) again, we have

‖zk+h−1‖2

= zT
k+h−2(I − Ak+h−1)T (I − Ak+h−1)zk+h−2

= zT
k+h−2(I + AT

k+h−1Ak+h−1 − Ak+h−1 − AT
k+h−1)zk+h−2

≤ ‖zk+h−2‖2 − εzT
k+h−2(Ak+h−1 + AT

k+h−1)zk+h−2
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≤ ‖zk−1‖2 − ε
k+h−1∑

i=k

zT
i−1(Ai + AT

i )zi−1

≤ 1 − ε

k+h−1∑

i=k

zT
i−1(Ai + AT

i )zi−1 .

Combining this with (26) and (28), we can obtain

ρk−1 = E[‖zk+h−1‖2 |Fk−1 ]

≤ 1 − εE

[ k+h−1∑

i=k

zT
i−1(Ai + AT

i )zi−1 |Fk−1

]

≤ 1 − εγs

1 + 4(1 − ε)h
.

This completes the proof. �
Lemma 5.6: Under the same conditions and notations of

Lemma 5.5, consider the equation

xk = Ψ(kh + 1, (k − 1)h + 1)xk−1 , k ≥ k0 + 1 (30)

where xk0 is deterministic and satisfies ‖xk0 ‖ = 1. Then,
there exists a sequence {αk ∈ [0, 1], k ≥ k0 + 1} such that
αk ∈ Fkh , and

‖xk‖ ≤ (1 − αk )‖xk−1‖, k ≥ k0 + 1 (31)

and

E[αk+1 |Fkh ] ≥ εγk

2[1 + 4(1 − ε)h]
, k ≥ k0 + 1. (32)

Proof: For simplicity, we omit a.s. for sample paths in the
following proof. Let us set for any k ≥ k0 + 1,

αk =

{
1 − ‖Ψ(kh+1,(k−1)h+1)xk −1 ‖

‖xk −1 ‖ , if ‖xk−1‖ �= 0
1, otherwise.

(33)

By the conditions in Lemma 5.5 and ‖Ak‖ ≤ 2(1 − ε), we know
that for any k ≥ 0,

‖I − Ak‖2 = λmax[(I − Ak )T (I − Ak )]

= λmax(I + AT
k Ak − Ak − AT

k )

≤ λmax[I − ε(Ak + AT
k )]

= 1 − ελmin(Ak + AT
k ) ≤ 1

then we have ‖Ψ(t, s)‖ ≤ 1 ∀t ≥ s ≥ 0. It is clear that αk ∈
[0, 1], αk ∈ Fkh and (31) is true.

Now, consider the set Ωk = {ω : ‖xk‖ = 0}. Then, Ωk ∈
Fkh and

IΩk
E[αk+1 |Fkh ] = E[IΩk

αk+1 |Fkh ] = IΩk
.

Hence, by noting γk < 1 and ε ∈ (0, 1), we know that (32)
is true on the set Ωk . Then, consider the set Ωc

k , we have by
Lemma 5.5

E[‖Ψ((k + 1)h + 1, kh + 1)xk‖|Fkh ]

≤ {E[‖Ψ((k + 1)h + 1, kh + 1)xk‖2 |Fkh ]}1/2

≤ {xT
k E[ΨT ((k + 1)h + 1, kh + 1).

Ψ((k + 1)h + 1, kh + 1)|Fkh ]xk}1/2

≤
{

xT
k

[

1 − εγk

1 + 4(1 − ε)h

]

xk

}1/2

≤
{

1 − εγk

2[1 + 4(1 − ε)h]

}

‖xk‖.

Consequently, by (33) we have

IΩ c
k
E[αk+1 |Fkh ] ≥ IΩ c

k

{

1 −
(

1 − εγk

2[1 + 4(1 − ε)h]

)}

=
εγk

2[1 + 4(1 − ε)h]
IΩ c

k
.

Hence, (32) is also true on the set Ωc
k . This completes the

proof. �
Lemma 5.7: Let {Ak} be a sequence of random matrices

which is adapted to {Fk}, and there exist a constant ε ∈ (0, 1),
such that AT

k Ak ≤ (1 − ε)(Ak + AT
k ), a.s. If there exists an

integer h > 0 such that {γk} ∈ S0(γ), γ ∈ (0, 1) where γk is
defined by (23), then {Ak} ∈ Sp(γα ), where

α =

{
ε

8h [1+4(1−ε)h ]2 , 1 ≤ p ≤ 2;
ε

4h [1+4(1−ε)h ]2 p , p > 2.
(34)

Proof: Now, for any t > s + h, let us define

k0 = min{k : s ≤ kh + 1 ≤ t}
k1 = max{k : s ≤ kh + 1 ≤ t}.

Then, it is clear that

(k1 + 1)h + 1 > t, (k0 − 1)h + 1 < s

and

E[‖Ψ(t, s)‖2 ] ≤ E[‖Ψ(k1h + 1, k0h + 1)‖2 ]

where Ψ(t, s) is defined in Lemma 5.5. Hence, for {Ai} ∈
S2(γβ ) and β = ε

8h [1+4(1−ε)h ]2 , it suffices to find a constant
c which is free of k1 and k0 such that, for all k1 ≥ k0 ,

E[‖Ψ(k1h + 1, k0h + 1)‖2 ] ≤ cγ2βh(k1 −k0 +1) . (35)

Now, consider (30), we have

xk1 = Ψ(k1h + 1, k0h + 1)xk0 .

To prove this, we need only to prove that for any deterministic
xk0 with ‖xk0 ‖ = 1,

E[‖xk1 ‖2 ] ≤ cγ2hβ (k1 −k0 ) (36)

where c is independent of k0 , k1 , and xk0 .
Since γk ∈ [0, 4(1−ε)h

1+4(1−ε)h ] and{γk} ∈ S0(γ), γ ∈ (0, 1), then
by Lemma 5.3 we know that

{
εγk

2[1 + 4(1 − ε)h]

}

∈ S0(γ4hβ ).

From this, (32), Lemma 5.4 and its proof in [21], we know that

E

[ k1∏

k=k0 +1

(1 − αk )
]

≤ cγ2hβ (k1 −k0 )

for some constant c independent of k0 , k1 and xk0 . Then, by
(31) we know that (36) is true. Hence, {Ak} ∈ S2(γβ ).
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For 1 ≤ p ≤ 2, we use the monotonicity of the norm ‖ · ‖Lp
,

while for p > 2, we apply the inequality ‖I − Aj‖ ≤ 1, then
we have

∥
∥
∥
∥

k∏

j=i+1

(I − Aj )
∥
∥
∥
∥

Lp

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∥
∥
∥
∥
∏k

j=i+1(I − Aj )
∥
∥
∥
∥

L2

, 1 ≤ p ≤ 2
∥
∥
∥
∥
∏k

j=i+1(I − Aj )
∥
∥
∥
∥

2/p

L2

, p > 2.

Consequently, {Ak} ∈ Sp(γα ) where α is defined in (34). This
completes the proof. �

Remark 5.1: Note that Lemma 5.7 will be used to connect
the Condition 4.2 with the Lp -exponential stability of the ho-
mogeneous part of the error (6).

In the following two lemmas, we will prove that the ran-
dom matrices {ΛF k + L − ΛF kL , k ≥ 0} and {ΛF k +
L − ΛL F k , k ≥ 0} satisfy the inequality in Lemma 5.5.

Lemma 5.8: Consider the distributed filtering error (6), and
denote Ak = ΛF k + L − ΛF kL . Then under Condition 4.1,
there exist constants μ∗ ∈ (0, 1) and ε ∈ (0, 1), such that for any
0 < Λ ≤ μ∗Imn ,

AT
k Ak ≤ (1 − ε)(Ak + AT

k ), a.s. (37)

Proof: By the symmetrical and doubly stochastic property
of the matrix A and Lemma 5.1, we know that there exists a con-
stant δ ∈ (0, 1) such that 0 ≤ L ≤ 2(1 − δ)Imn . In addition,
we know that 0 ≤ F k ≤ Imn .

For simplicity, we omit the subscript k, the dimension mn,
and a.s. for sample paths hereafter. We first have

AT A = (ΛF + L − ΛFL )T (ΛF + L − ΛFL )

= Λ2F 2 + ΛFL − Λ2F 2L + L FΛ + L 2

− 2L ΛFL − L F 2Λ2 + L Λ2F 2L .

Since L Λ2F 2L − 2L ΛFL ≤ 0, we can obtain

AT A ≤ Λ2F 2 + L 2 + ΛFL + L FΛ

− Λ2F 2L − L F 2Λ2 .

Also, we have

A + AT = 2(ΛF + L ) − (ΛFL + L FΛ).

From this, to prove (37), we need only to prove that there exist
constants μ∗ ∈ (0, 1) and ε ∈ (0, 1), such that for any 0 < Λ ≤
μ∗Imn ,

Λ2F 2 + L 2 ≤ 2(1 − ε)(ΛF + L )+(Λ2F 2L + L F 2Λ2)

− (2 − ε)(ΛFL + L FΛ). (38)

Denote μ1 = 2(1 − δ), since 0 ≤ F k ≤ I , then for any 0 <
Λ ≤ μ1Imn , we have

Λ2F 2 + L 2 ≤ Λ2F + 2(1 − δ)L ≤ 2(1 − δ)(ΛF + L )

= 2
(

1 − δ

2

)

(ΛF + L ) − δ(ΛF + L ).

Now, we choose ε = δ
2 . To prove (38), we need only to prove

that there exists a constant μ∗ ∈ (0, 1), such that for any 0 <

Λ ≤ μ∗Imn ,

(2 − ε)(ΛFL + L FΛ) − (Λ2F 2L + L F 2Λ2)

≤ δ(ΛF + L ). (39)

In fact, for any mn-dimensional unit column vector x with
‖x‖ = 1, we have by noting ‖F ‖ ≤ 1 and ‖L ‖ ≤ 2,

xT [(2 − ε)(ΛFL + L FΛ) − (Λ2F 2L + L F 2Λ2)]x

= 2(2 − ε)xT ΛFL x − 2xT Λ2F 2L x

≤ 2(2 − ε)‖xT Λ
1
2 FΛ

1
2 ‖ · ‖L x‖

+ 2‖xT Λ
1
2 F 2Λ

3
2 ‖ · ‖L x‖

≤ 2(2 − ε)‖xT Λ
1
2 F

1
2 ‖ · ‖F 1

2 ‖ · ‖Λ 1
2 ‖ · ‖L 1

2 ‖ · ‖L 1
2 x‖

+ 2‖xT Λ
1
2 F

1
2 ‖ · ‖F 3

2 ‖ · ‖Λ 3
2 ‖ · ‖L 1

2 ‖ · ‖L 1
2 x‖

≤
√

2(2 − ε)‖Λ 1
2 ‖(2‖xT Λ

1
2 F

1
2 ‖ · ‖L 1

2 x‖)
+
√

2‖Λ 3
2 ‖(2‖xT Λ

1
2 F

1
2 ‖ · ‖L 1

2 x‖)

≤
√

2
[
(2 − ε)‖Λ 1

2 ‖ + ‖Λ 3
2 ‖

]
(xT ΛFx + xT L x). (40)

Here, if we choose μ to satisfy
√

2(2 − ε)‖Λ 1
2 ‖ ≤ δ

2 and√
2‖Λ 3

2 ‖ ≤ δ
2 , then (39) holds. Hence, we can choose

μ∗ = min
{

2(1 − δ),
δ2

2(4 − δ)2 ,
δ2/3

2

}

(41)

where δ ∈ (0, 1) is a constant which is related to the Laplacian
matrix L of the network graph. Consequently, there exists a
constant μ∗ ∈ (0, 1) such that for any 0 < Λ ≤ μ∗Imn , (37)
holds. This completes the proof. �

In a similar way, one can prove the following lemma.
Lemma 5.9: Consider the distributed filtering error (8), de-

note Bk = ΛF k + L − ΛL F k . Then, there exist constants
μ∗ ∈ (0, 1) and ε ∈ (0, 1), such that for any 0 < Λ ≤ μ∗Imn ,

BT
k Bk ≤ (1 − ε)(Bk + BT

k ), a.s. (42)

To accomplish the proof of Theorem 4.1, we need the follow-
ing lemma.

Lemma 5.10: Denote Ak = ΛF k + L − ΛF kL and
σmin = min{σ1 , . . . , σn}, and suppose that Conditions 4.1
and 4.2 are satisfied. Then, there exist constants μ∗ ∈ (0, 1)
and ε ∈ (0, 1), such that for any 0 < Λ ≤ μ∗Imn ,, we have
γk ∈ S0(γ), where

γk
�
= λmin

{

E

[
1

1 + 4(1 − ε)h

k+h∑

j=k+1

(Aj + AT
j )

∣
∣
∣Fk

]}

(43)

and γ = λν , ν = 0.5hlm + 1 σm in μ∗

(2+ lm + 1 )(1+h)[1+4(1−ε)h ] , lm+1 is the (m +
1)th smallest eigenvalue of matrix L , which equals to the sec-
ond smallest eigenvalue of matrix L.

Remark 5.2: The detailed proof is given in Appendix A. Note
that the constant ν determines the rate of exponential conver-
gence of the homogeneous part of (6). Note also that λ of Condi-
tions 4.2 can be regarded as a measure of the cooperativity of the
system information, and that lm+1 can be regarded as a measure
of the connectivity of the graph G; hence, the formula γ = λν

shows explicitly how the stability of the distributed algorithms is
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connected with the cooperativity of the system information, the
connectivity of the network topology, as well as the step-size.

Proof of Theorem 4.1: By Lemmas 5.7 and 5.10, we know
that there exists a constant μ∗ ∈ (0, 1), such that for any 0 <
Λ ≤ μ∗Imn ,

{ΛF k + L − ΛF kL } ∈ Sp(γα )

where α is defined by (34). Then by Definition 3.2, it is
obvious that {Imn − (ΛF k + L − ΛF kL ), k ≥ 1} is Lp -
exponentially stable (p ≥ 1).

Remark 5.3: Since Lemma 5.10 also holds for random ma-
trices ΛF k + L − ΛL F k in the ATC diffusion NLMS algo-
rithm, we know that {Imn − (ΛF k + L − ΛL F k ), k ≥ 1}
is also Lp -exponentially stable (p ≥ 1).

B. Proof of Theorem 4.3

Before establishing further performance results, we first have
the following lemma.

Lemma 5.11: Suppose that Conditions 4.1 and 4.2 are satis-
fied. Then for any p ≥ 2, there exist constants μ∗ ∈ (0, 1), ε ∈
(0, 1) and M > 0, such that for all 0 < Λ ≤ μ∗Imn and ∀k ≥
i + 1 ≥ 0
∥
∥
∥
∥

k∏

j=i+1

(Imn − [ΛF j + L −ΛF jL ])
∥
∥
∥
∥

Lp

≤ Mp(1 − μ∗αp)k−i

(44)
where Mp and αp are positive constants depending on {F j , j >
0},L and p.

Proof: Denote

b =
0.5hlm+1σmin

(2 + lm+1)(1 + h)[1 + 4(1 − ε)h]
.

By the proof of Theorem 4.1, we have

{ΛF k + L − ΛF kL } ∈ Sp(λbαμ∗
)

where α is defined in Lemma 5.7. Then by the definition of Sp ,
we know that
∥
∥
∥
∥

k∏

j=i+1

(Imn − [ΛF j + L − ΛF jL ])
∥
∥
∥
∥

Lp

≤ M{βp}μ∗(k−i)

where

βp = λ
b ε

4 h [ 1 + 4 ( 1−ε )h ] 2 p

and lm+1 is the second smallest eigenvalue of matrix L.
Note that βp ∈ (0, 1). Then, there exists a constant αp ∈

(0, 1) such that αp = 1 − βp = 1 − λ
b ε

4 h [ 1 + 4 ( 1−ε )h ] 2 p . Accord-
ing to the Bernoulli inequality and since μ∗ ∈ (0, 1), we have
βμ∗

p = (1 − αp)μ∗
< 1 − μ∗αp . This completes the proof. �

The following proof of Theorem 4.3 is similar to [19, Th. 2.2],
and we omit it here.

C. Proof of Theorem 4.4

Before proving the theorem, we first give the following
lemma.

Lemma 5.12: Let {Ak} be a sequence of random matrices
which is adapted to {Fk}, and there exists a constant ε ∈ (0, 1),
such that AT

k Ak ≤ (1 − ε)(Ak + AT
k ), a.s. If {Ak} ∈ S1(λ)

for some λ ∈ [0, 1), then there exists an integer h > 0 such that

inf
k

λmin

⎧
⎨

⎩

(k+1)h∑

j=kh+1

E[Aj + AT
j ]

⎫
⎬

⎭
> 0. (45)

Proof: For simplicity, we omit a.s. for sample paths in the
following proof. By the conditions, we know that there exists a
suitably large integer h ≥ 2 such that

E

∥
∥
∥
∥

k+h∏

j=k+1

(Imn − Aj )
∥
∥
∥
∥ ≤ Mλh <

1
2

∀k ≥ 0. (46)

By Lemma 5.8 we know that ‖Ak‖ ≤ 2(1 − ε) ∀k ≥ 0. Let
us denote

γk = λmin

{

E

[ k+h∑

j=k+1

(Aj + AT
j )

]}

and let αk be the unit eigenvector corresponding to γk . Then,
we have γk = E

[∑k+h
j=k+1 αT

k (Aj + AT
j )αk

]
.

Hence, if t ≥ 2, we have for any integers js ∈ [k + 1, k +
h], s = 1, . . . , t, t ≤ h,

E[αT
k Aj1 · · · · ·Ajt

αk ]

≤ E[‖αT
k Aj1 ‖·‖Aj2 · · ·Ajt−1 ‖·‖Ajt

αk‖]
≤ [2(1 − ε)]t−2E[‖αT

k Aj1 ‖·‖Ajt
αk‖]

≤ [2(1 − ε)]t−2{E[‖αT
k Aj1 ‖2 ]·E[‖Ajt

αk‖2 ]} 1
2

= [2(1 − ε)]t−2{E[αT
k AT

j1
Aj1 αk ]·E[αT

k AT
jt

Ajt
αk ]} 1

2

≤ [2(1 − ε)]t−2 max
k+1≤j≤k+h

E[αT
k AT

j Ajαk ]

≤ [2(1 − ε)]t−2(1 − ε) max
k+1≤j≤k+h

E[αT
k (AT

j + Aj )αk ]

≤ [2(1 − ε)]t−2(1 − ε)γk

where we have used Lemma 5.8. If t = 1, we have for any integer
j1 ∈ [k + 1, k + h],

E[αT
k Aj1 αk ] ≤ E[‖αT

k ‖·‖Aj1 αk‖] ≤ E‖Aj1 αk‖
≤ {E‖Aj1 αk‖2} 1

2 ≤ max
k+1≤j≤k+h

{E[αT
k AT

j Ajαk ]} 1
2

≤ (1 − ε)
1
2 max

k+1≤j≤k+h
{E[αT

k (AT
j + Aj )αk ]} 1

2

≤ (1 − ε)
1
2 γ

1
2
k .

Consequently, by (46) we have

1
2

> E

[

αT
k

{ k+h∏

j=k+1

(Imn − Aj )
}

αk

]

= 1 −
∑

k+1≤j1 ≤k+h

E[αT
k Aj1 αk ]

−
h∑

t=2

∑

k+1≤j1 <...<jt ≤k+h

E[αT
k Aj1 · · ·Ajt

αk ]

≥ 1 − h(1 − ε)
1
2 γ

1
2
k
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−
h∑

2=1

∑

k+1≤j1 <...<jt ≤k+h

[2(1 − ε)]t−2(1 − ε)γk

≥ 1 − h(1 − ε)
1
2 γ

1
2
k −

h∑

t=2

(
h
t

)

[2(1 − ε)]t−2(1 − ε)γk .

Let us denote

a1 =
h∑

t=2

(
h
t

)

[2(1 − ε)]t−2(1 − ε) > 0, a2 = h(1 − ε)
1
2 > 0

then we have a1γk + a2
√

γk ≥ 1
2 , which implies that

γ
1
2
k ≥

√
a2

2 + 2a1 − a2

2a1
∀k

or

γk ≥
(√

a2
2 + 2a1 − a2

2a1

)2

∀k. (47)

Hence, Lemma 5.12 is true. �
Lemma 5.13: Suppose that Conditions 4.1 and 4.2 are sat-

isfied. Then, there exist constants M > 0, β ∈ (0, 1) and μ∗ ∈
(0, 1), such that for any 0 < Λ ≤ μ∗Imn and ∀k ≥ i ≥ 0
∥
∥
∥
∥

k∏

j=i+1

(Imn − E[ΛF j + L − ΛF jL ])
∥
∥
∥
∥≤ M(1 − μ∗β)k−i .

(48)
Proof: By Lemma 5.12 and Theorem 4.1, there exist con-

stants h0 > 0 and ξ > 0 which depend on sequence {Ak}, such
that

(k+1)h0∑

j=kh0 +1

E[Aj + AT
j ] ≥ μ∗ξImn ∀k ≥ 0

where Aj = ΛF j + L − ΛF jL .
Hence, by Lemma 5.5, for the deterministic sequence {E[Λ

F k + L − ΛF kL ], k ≥ 0}, we have

∥
∥
∥
∥

(k+1)h0∏

j=kh0 +1

(Imn − E[ΛF j + L − ΛF jL ])
∥
∥
∥
∥

≤
{

1 − μ∗εξ
1 + 4(1 − ε)h0

}1/2

.

It is easy to know that there exist constants β ∈ (0, 1) and M > 0
such that
∥
∥
∥
∥

k∏

j=i+1

(Imn − E[ΛF j + L − ΛF jL ])
∥
∥
∥
∥≤ M(1 − μ∗β)k−i .

This completes the proof. �
Proof of Theorem 4.4: Let us define the following new se-

quence

Θ̄CTA
k+1 = (Imn − E[ΛF k + L − ΛF kL ])Θ̄CTA

k

+ ΛLkV k − γΩk+1 (49)

with Θ̄CTA
0 = Θ̃

CTA
0 . By (49), it is evident that

Π̂
CTA
k = E[Θ̄CTA

k (Θ̄CTA
k )T ] k ≥ 0.

Hence, by the Schwarz inequality

‖ΠCTA
k+1 − Π̂

CTA
k+1 ‖

= ‖E[Θ̃
CTA
k+1 (Θ̃

CTA
k+1 )T − Θ̄CTA

k+1 (Θ̄CTA
k+1 )T ]‖

≤ ‖Θ̃CTA
k+1 − Θ̄CTA

k+1 ‖L2 (‖Θ̃
CTA
k+1 ‖L2 + ‖Θ̄CTA

k+1 ‖L2 ). (50)

Similar to the proof of Theorem 4.3, and using Lemma 5.13, it
is easy to obtain

‖Θ̄CTA
k+1 ‖L2 = O

([√
μ +

γ√
μ

]

log
1
μ

+ (1 − αμ)k+1
)

(51)
where α ∈ (0, 1) is a constant (without loss of generality, it may
be taken as the same as that in Theorem 4.3).

The remaining proof is similar to [20, Th. 13], and is omitted
here. Thus, we know that by Conditions 4.1–4.4, (21) holds.
We remark that for random matrices {ΛF k + L − ΛL F k}
in the ATC diffusion NLMS algorithm, Lemma 5.13 also holds.

Therefore, Theorems 4.4 and 4.5 hold for {Θ̃ATC
k , k ≥ 1} under

the same conditions.

D. Proof of Theorem 4.6

Lemma 5.14: Let Condition 4.1 be satisfied. If there ex-
ists a constant μ∗ ∈ (0, 1), such that for any 0 < Λ ≤ μ∗Imn ,
{ΛF k + L − ΛF kL } ∈ S1 , then there exists h > 0 such that

inf
k

λmin

{ n∑

i=1

k+h∑

j=k+1

E

[
ϕi

j (ϕ
i
j )

T

1+ ‖ ϕi
j ‖2

]}

> 0. (52)

The detailed proof of Lemma 5.14 is given in Appendix B.
We remark that the converse assertion of Lemma 5.14 may not
be true in general and this can be seen from [21, Example 2.1].
However, it will be true if we impose additional assumptions on
{ϕi

k}, for example, the φ-mixing condition.
Next, we prove Theorem 4.6.
Sufficiency: By Theorem 4.1, we know that {Imn − [ΛF k +

L − ΛF kL ], k ≥ 1} is Lp -exponentially stable (p ≥ 1).
Necessity: By Lemma 5.14, we can obtain (52). Since {ϕi

k}
is φ-mixing, we know that {∑n

i=1
ϕi

k (ϕi
k )T

1+‖ϕi
k ‖2 } is also φ-mixing.

Then by (52), the φ-mixing property and [21, Th. 2.3], we know
that Condition 4.2 holds. This completes the proof.

VI. SIMULATION RESULTS

In this section, we will construct a simulation example to il-
lustrate that for regression vectors that are generated by linear
stochastic state space models (where the regressors are strongly
correlated and satisfy our cooperative information condition),
even none of the sensors can estimate the parameters individu-
ally, the whole sensor network can still fulfill the filtering task
cooperatively and effectively. Let us take n = 3 with the fol-
lowing adjacency matrix:

A =

( 2/3 1/3 0
1/3 1/2 1/6
0 1/6 5/6

)

then the corresponding graph is connected. We will estimate or
track an unknown 3-D signal θk . Let us consider two cases:
γ = 0 (θk is time-invariant) and γ = 0.1 (θk is time-varying)
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Fig. 1. Estimation errors of the three sensors with γ = 0.

with the parameter variation ωk ∼ N(0, 0.3, 3, 1) (Gaussian
distribution) in (2). In both cases, the observation noises
{vi

k , k ≥ 1, i = 1, 2, 3} are i.i.d. with vi
k ∼ N(0, 0.3, 1, 1) in

(1), where ϕi
k (i = 1, 2, 3) are generated by a state space model

{
xi

k = Aix
i
k−1 + Biξ

i
k

ϕi
k = Cix

i
k

where {ξi
k , k ≥ 1, i = 1, 2, 3} are i.i.d. with ξi

k ∼ N(0, 0.3,
1, 1), and

A1 = A2 =

( 1/2 0 0
0 1/3 0
0 0 1/5

)

, A3 =

(4/5 0 0
4/5 0 0
4/5 0 0

)

B1 = (1, 0, 0)T , B2 = (1, 0, 0)T , B3 = (1, 0, 0)T

C1 =

(1 0 0
0 0 0
0 0 0

)

, C2 =

( 0 0 0
1 0 0
0 0 0

)

, C3 =

( 0 0 0
0 1 0
0 0 1

)

.

It can be verified that Condition 4.2 is satisfied with h = 2.
Moreover, it is not difficult to verify that the necessary informa-
tion condition in [21] is not satisfied for any individual sensor,
since the three subsystems are not observable.

For numerical simulations, let x1
0 = x2

0 = x3
0 = (1, 1, 1)T ,

θ0 = (1, 1, 1)T , θ̂
i

0 = (0, 0, 0)T (i = 1, 2, 3), μ = 0.3. Here,
we repeat the simulation for m = 500 times with the same initial
states. Then, for sensor i(i = 1, 2, 3), we can get m sequences

{‖θ̂i,j

k −θj
k‖2 , k=1, 100, 200, . . . , 2000}(j =1, . . . ,m), where

the superscript j denotes the jth simulation result. We use
1
m

∑m
j=1 ‖θ̂

i,j

k − θj
k‖2(i = 1, 2, 3, k = 1, 100, 200, . . . , 2000)

to approximate the estimation or tracking errors with γ = 0 in
Fig. 1 and with γ = 0.1 in Fig. 2.

When θk is time-invariant, the upper one in Fig. 1 is the
noncooperative NLMS algorithm in which the estimation errors
of the three sensors are all quite large because all the sensors
do not satisfy the information condition in [21]. The lower one
in Fig. 1 is the CTA diffusion NLMS algorithms in which all
the estimation errors converge to a small neighborhood of zero

Fig. 2. Tracking errors of the three sensors with γ = 0.1.

as k increases, since the whole system satisfies Condition 4.2.
In Fig. 2, θk is time-varying. The upper one is the individual
situation in which the tracking errors of the three sensors keep
large, and the lower one is the distributed situation in which
all the mean square tracking errors converge nicely as k in-
creases. Moreover, we can obtain some similar results for the
ATC diffusion NLMS algorithm, which are omitted here.

VII. CONCLUDING REMARKS

This paper has established the stability and performance of
a basic class of distributed adaptive filtering algorithms based
on diffusion strategies, under a general stochastic cooperative
information condition on the system regressor processes. This
condition is not only sufficient for stability, but also necessary
in a certain sense, which is a natural generation of the weakest
known conditional information condition for single sensor case
introduced by Guo [21], [32]. In fact, due to the difficulty in
analyzing product of random matrices, almost all of the existing
theory and analyses on distributed adaptive filtering algorithms
require such stringent signal conditions as independence and
stationarity, and thus exclude applications to feedback control
systems. Moreover, our main results also demonstrate a desired
but rarely rigorously established fact: the distributed adaptive
filters can track a dynamic process of interest from noisy mea-
surements by a set of sensors working cooperatively, in the
natural scenario where none of the sensors can fulfill the es-
timation task individually. Of course, there are still a number
of interesting problems for further investigation, for examples,
how to establish similar theoretical results for other filtering al-
gorithms, and how to combine distributed adaptive filters with
distributed control problems, etc.

APPENDIX A
PROOF OF LEMMA 5.10

For simplicity, we omit a.s. for sample paths in the following
proof. By Lemma 5.8, we know that there exist constants μ∗ ∈
(0, 1) and ε = δ/2, such that for any 0 < Λ < μ∗Imn , (37)
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holds. Then by the proof of Lemma 5.5, we know that for any
μ ∈ (0, μ∗), γk ∈ [0, 1] holds.

By the notations in Lemma 5.8, we then have

Aj + AT
j = 2(ΛF j + L ) − (ΛF jL + L F jΛ).

Similar to the proof of (40), we have

ΛF jL + L F jΛ ≤
√

2‖Λ 1
2 ‖(ΛF j + L ).

Then, we can obtain

Aj + AT
j ≥ (2 −

√
2‖Λ 1

2 ‖)(ΛF j + L )

≥ 0.5(ΛF j + L )

≥ 0.5(σminμ∗F j + L )

≥ 0.5σminμ∗(F j + L )

where σmin = min{σ1 , . . . , σn}. Denote

ρk
�
= λmin

{

E

[
0.5σminμ∗

1 + 4(1 − ε)h

k+h∑

j=k+1

(F j + L )
∣
∣
∣Fk

]}

. (53)

Since 0 ≤ ρk ≤ γk ≤ 1, by Lemma 5.2 we know that to prove
γk ∈ S0(λν ), we need only to prove ρk ∈ S0(λν ).

According to Condition 4.1, L has only one zero eigenvalue
whose unit eigenvector is 1√

n
(1, . . . , 1)T , i.e., 1√

n
1 where 1 =

(1, . . . , 1)T
n×1 . Correspondingly, by Lemma 5.1, L has m zero

eigenvalues whose orthogonal unit eigenvectors are

ξ1 =
1√
n
1 ⊗ e1 , . . . , ξm =

1√
n
1 ⊗ em

where ei is a unit column vector with the ith element is 1 and the
dimension is m. The other eigenvalues of L are lm+1 ≤ · · · ≤
lmn arranged in a nondecreasing order whose orthogonal unit
eigenvectors are denoted as ξm+1 , . . . , ξmn correspondingly.
Here, for an arbitrary unit vector η ∈ Rmn , it can be expressed
as

η =
m∑

j=1

xjξj +
mn∑

j=m+1

xjξj
�
= η1 + η2

where
∑m

j=1 x2
j +

∑mn
j=m+1 x2

j = 1. Now, let

H i
k

�
=

k+h∑

j=k+1

ϕi
j (ϕ

i
j )

T

1 + ‖ϕi
j‖2

Hk
�
= diag{H1

k , . . . ,Hn
k }.

By the definition of F j and denote

a
�
=

0.5σminμ∗

1 + 4(1 − ε)h

we have ah ≤ 1 and

Δk
�
= E

[
0.5σminμ∗

1 + 4(1 − ε)h

k+h∑

j=k+1

(F j + L )
∣
∣
∣Fk

]

= E[aHk + ahL |Fk ]. (54)

Note that

Γk
�
= E

[
1

n(h + 1)

n∑

i=1

k+h∑

j=k+1

ϕi
j (ϕ

i
j )

T

1 + ‖ϕi
j‖2

∣
∣
∣Fk

]

= E

[
1

n(h + 1)

n∑

i=1

H i
k

∣
∣
∣Fk

]

. (55)

Let us now consider the following quadratic form of (54):

ηT Δkη = (η1 + η2)T Δk (η1 + η2)

= aηT
1 E[Hk |Fk ]η1 + aηT

2 E[Hk |Fk ]η2

+ 2aηT
1 E[Hk |Fk ]η2

+ ahηT
1 L η1 + ahηT

2 L η2

+ 2ahηT
1 L η2

�
= s1 + s2 + s3 + s4 + s5 + s6 . (56)

By [14, Proof of Th. 1], we have

ηT Δkη ≥ (1 − δ)s1 +
(

1 − 1
δ

)

s2 + s4 + s5 + s6 (57)

where δ > 0 can be any constant. Now, we proceed to estimate
si one by one.

Note that

s1 = aE[ηT
1 Hkη1 |Fk ]

= aE

[( m∑

j=1

xjξj

)T

Hk

( m∑

j=1

xjξj

)∣
∣
∣Fk

]

= aE[XT ΞT HkΞX|Fk ] (58)

where X = [x1 , . . . , xm ]T ,Ξ = [ξ1 , . . . , ξm ]. By [14, Proof of
Th. 1], we have

E[ΞT HkΞ|Fk ] = E

[
1
n

n∑

i=1

H i
k |Fk

]

= (h + 1)Γk . (59)

Substitute (59) into (58), it can be deduced that

s1 ≥ a(h + 1)XT ΓkX ≥ a(h + 1)λk

m∑

j=1

x2
j ≥ ahλk

m∑

j=1

x2
j .

(60)
Notice that

|s2 | ≤ ah‖η2‖2 = ah

mn∑

j=m+1

x2
j . (61)

Since η1 =
∑m

j=1 xjξj and ξj (1 ≤ j ≤ m) is the eigenvector
corresponding to the zero eigenvalue, we have

s4 = s6 = 0. (62)

For s5 , we know that

s5 = ah

mn∑

j=m+1

lj x
2
j ≥ ahlm+1

mn∑

j=m+1

x2
j . (63)
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Denote y
�
=

∑m
j=1 x2

j . Since ρk = λmin(Δk ) and here we
choose δ ∈ (0, 1), we have by (56)

ρk ≥ (1 − δ)ahλky +
(

1 − 1
δ

)

ah(1 − y) + ahlm+1(1 − y)

=
[

(1 − δ)ahλk −
(

lm+1 + 1 − 1
δ

)

ah

]

y

+
(

lm+1 + 1 − 1
δ

)

ah, y ∈ [0, 1]. (64)

Here we choose δ = 1/(1 + 0.5lm+1) and since λk ∈ [0, 1],
then we have for y ∈ [0, 1]

ρk ≥
[

0.5lm+1ah

1 + 0.5lm+1
λk − 0.5lm+1ah

]

y + 0.5lm+1ah. (65)

It is easy to obtain

ρk ≥ 0.5lm+1ah

1 + 0.5lm+1
λk =

lm+1ah

2 + lm+1
λk = cλk

where 0 < c = lm + 1 ah
2+ lm + 1

< 1.

By Lemma 5.3 and since λk ∈ [0, α∗], α∗ = h
h+1 and {λk} ∈

S0(λ), we have {ρk} ∈ S0(ρ), where ρ = λν and

ν = (1 − α∗)c =
0.5hlm+1σminμ∗

(2 + lm+1)(1 + h)[1 + 4(1 − ε)h]
> 0

where ε = δ/2. This completes the proof.

APPENDIX B
PROOF OF LEMMA 5.14

For simplicity, we omit a.s. for sample paths in the following
proof. Let Ak = ΛF k + L − ΛF kL and denote

γk = λmin

{

E

[ k+h∑

j=k+1

(Aj + AT
j )

]}

.

Then since 0 < Λ ≤ μ∗Imn and by Lemma 5.12, we know that

γk ≥
(√

a2
2 + 2a1 − a2

2a1

)2

> 0 ∀k. (66)

Similar to the proof of (40), for any mn-dimensional unit
column vector x, we can obtain

xT (Aj + AT
j )x

= xT [2(ΛF j + L ) − (ΛF jL + L F jΛ)]x

= 2xT (ΛF j + L )x − 2xT ΛF jL x

≤ 2xT (ΛF j + L )x + 2‖xT Λ
1
2 F jΛ

1
2 ‖ · ‖L x‖

≤ 2xT (ΛF j + L )x +
√

2‖Λ 1
2 ‖ · xT (ΛF j + L )x

≤ (2 +
√

2‖Λ 1
2 ‖) · xT (ΛF j + L )x

≤ (2 +
√

2)xT (F j + L )x

then we have

Aj + AT
j ≤ (2 +

√
2)(F j + L ).

Denote

ρk = λmin

{

E

[ k+h∑

j=k+1

(F j + L )
]}

.

Then by the definition of γk , we have

ρk ≥ γk

2 +
√

2
> 0 (67)

which means that infk ρk > 0 by (66). We next show that there
exists a positive constant δ such that

E

[ n∑

i=1

k+h∑

j=k+1

ϕi
j (ϕ

i
j )

T

1+ ‖ ϕi
j ‖2

]

≥ δIm

for all k ≥ 0. We first prove that for any k ≥ 0, the eigen-

values of matrices E
[∑n

i=1
∑k+h

j=k+1
ϕi

j (ϕi
j )T

1+‖ϕi
j ‖2

]
are all positive.

This can be done through contradiction by assuming that there
exists a time instant k∗ such that the smallest eigenvalue of ma-

trix E
[∑n

i=1
∑k ∗+h

j=k ∗+1
ϕi

j (ϕi
j )T

1+‖ϕi
j ‖2

]
is 0. Denote the corresponding

unit eigenvector as βk ∗ , then we have

βT
k ∗

( n∑

i=1

k ∗+h∑

j=k ∗+1

E

[ n∑

i=1

k+h∑

j=k+1

ϕi
j (ϕ

i
j )

T

1+ ‖ ϕi
j ‖2

])

βk ∗ = 0. (68)

Similar to the proof of Lemma 5.9, we know that L has
only one zero eigenvalue whose unit eigenvector is 1√

n
1 where

1 = (1, . . . , 1)T
n×1 . Correspondingly,L ⊗ Im has m zero eigen-

values whose orthogonal unit eigenvectors are

ξ1 =
1√
n
1 ⊗ e1 , . . . , ξm =

1√
n
1 ⊗ em

where ei is a unit column vector with the ith element is 1
and the dimension is m. The other eigenvalues of L ⊗ Im are
lm+1 , . . . , lmn whose orthogonal unit eigenvectors are denoted
as ξm+1 , . . . , ξmn , respectively. Note that for an arbitrary unit
vector η ∈ Rmn , it can be expressed as

η =
m∑

j=1

xjξj +
mn∑

j=m+1

xjξj
�
= η1 + η2

where
∑m

j=1 x2
j +

∑mn
j=m+1 x2

j = 1. Now, let

H i
k ∗ =

k ∗+h∑

j=k ∗+1

ϕi
j (ϕ

i
j )

T

1 + ‖ϕi
j‖2

Hk ∗ = diag{H1
k ∗ , . . . ,Hn

k ∗}.
By the definition of F j , we have

Δk ∗
�
= E

[ k ∗+h∑

j=k ∗+1

(F j + L )
]

= E[Hk ∗ + hL ]. (69)
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Note that

Γk ∗
�
= E

[ n∑

i=1

k ∗+h∑

j=k ∗+1

ϕi
j (ϕ

i
j )

T

1 + ‖ϕi
j‖2

]

= E

[ n∑

i=1

H i
k ∗

]

. (70)

Let us consider the following quadratic form of (69):

ηT Δk ∗η

= (η1 + η2)T Δk ∗(η1 + η2)

= ηT
1 E[Hk ∗ ]η1 + ηT

2 E[Hk ∗ ]η2 + 2ηT
1 E[Hk ∗ ]η2

+ hηT
1 L η1 + hηT

2 L η2 + 2hηT
1 L η2

�
= sk ∗

1 + sk ∗
2 + sk ∗

3 + s4 + s5 + s6 . (71)

For matrices ζ1 and ζ2 , we have following inequality:

2ζT
1 ζ2 ≤ δζT

1 ζ1 +
1
δ
ζT

2 ζ2 (72)

where δ > 0 can be any constant. Let

ζ1
�
= (E[Hk ∗ ])1/2η1 , ζ2

�
= (E[Hk ∗ ])1/2η2

and substitute this into (72), it is easy to have

2ζT
1 ζ2 = 2ηT

1 E[Hk ∗ ]η2 ≤ δζT
1 ζ1 +

1
δ
ζT

2 ζ2

= δηT
1 E[Hk ∗ ]η1 +

1
δ
ηT

1 E[Hk ∗ ]η1 .

Then, we can obtain

sk ∗
3 = 2ηT

1 E[Hk ∗ ]η2 ≤ δηT
1 E[Hk ∗ ]η1 +

1
δ
ηT

2 E[Hk ∗ ]η2

= δsk ∗
1 +

1
δ
sk ∗

2 . (73)

From (71) and (73), it is obvious that

ηT Δk ∗η ≤ (1 + δ)sk ∗
1 +

(

1 +
1
δ

)

sk ∗
2 + s4 + s5 + s6 . (74)

Now, we will estimate sk ∗
1 , sk ∗

2 , s4 , s5 and s6 . By Lemma 5.4,
we know that

sk ∗
1 = ηT

1 E[Hk ∗ ]η1

= E

[( m∑

j=1

xjξj

)T

Hk ∗

( m∑

j=1

xjξj

)]

= E[XT ΞT Hk ∗ΞX]

= E

[
1
n

XT

( n∑

i=1

H i
k ∗

)

X

]

=
1
n
· XT Γk ∗X (75)

where X = [x1 , . . . , xm ]T ∈ Rm ,Ξ = [ξ1 , . . . , ξm ].

Notice that

|sk ∗
2 | ≤ h‖η2‖2 = h

mn∑

j=m+1

x2
j . (76)

Since η1 =
∑m

j=1 xjξj and ξj (1 ≤ j ≤ m) is the eigenvec-
tor corresponding to the zero eigenvalue, we have

s4 = s6 = 0. (77)

For s5 , we know that

s5 = h

mn∑

j=m+1

lj x
2
j ≤ hlmn

mn∑

j=m+1

x2
j . (78)

Denote

y
�
=

m∑

j=1

x2
j ∈ [0, 1].

By (74)–(78) and since ρk ∗ = λmin(Δk ∗), we know that for any
y ∈ [0, 1],

ρk ∗ ≤ 1 + δ

n
· XT Γk ∗X +

(

1 +
1
δ

)

h(1 − y)

+ hlmn (1 − y). (79)

We can take X = βk ∗ , then we have y = 1 and

ρk ∗ ≤ 1 + δ

n
· XT Γk ∗X = 0

which contradicts with ρk > 0 ∀k ≥ 0.
In a similar way, we can prove that all of the eigenvalues

of the above matrix must have a uniform lower bound δ > 0
with respect to k ≥ 0. This is done through contradiction by
assuming that there exist unit eigenvectors βk and a sequence
{ks}∞s=1 such that

lim
s→∞βT

ks

{

E

[ n∑

i=1

k ∗+h∑

j=ks +1

ϕi
j (ϕ

i
j )

T

1+ ‖ ϕi
j ‖2

]}

βks

= lim
s→∞βT

ks
σks

βks
= 0 (80)

where σks
is the eigenvalue corresponding to the eigenvector

βks
. Similar to the above proof, we can take X = βks

, then it
is obvious that

lim
s→∞ ρks

≤ 1 + δ

n
· lim

s→∞βT
ks

Γks
βks

= 0

which contradicts with infk ρk > 0. Therefore, we conclude that
there exists a positive constant δ such that

E

[ n∑

i=1

k+h∑

j=k+1

ϕi
j (ϕ

i
j )

T

1+ ‖ ϕi
j ‖2

]

≥ δIm

for all k ≥ 0. This completes the proof.
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