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CONTROLLABILITY OF STOCHASTIC GAME-BASED CONTROL
SYSTEMS\ast 

RENREN ZHANG\dagger AND LEI GUO\dagger 

Abstract. It is well known that in classical control theory, the controller has a certain objective
to achieve, and the plant to be controlled does not have its own objective. However, this is not the case
in many practical situations in, for example, social, economic, and rapidly developing ""intelligent""
engineering systems. For these kinds of systems, the classical control theory cannot be applied
directly. This motivates us to introduce a new control framework called game-based control systems
(GBCSs), which has a hierarchical decision-making structure, i.e., a higher level regulator and lower
level multiple agents. The regulator is regarded as the macrocontroller that makes decisions first, and
then the agents try to optimize their respective objective functions, where a possible Nash equilibrium
may be reached as a result of a noncooperative differential game. A fundamental issue in GBCSs
is whether it is possible for the regulator to change the macrostates of the system by regulating
the Nash equilibrium formed by the agents at the lower level. The investigation of this problem
was initiated recently by the authors for deterministic systems. In this paper, we formulate this
problem in the general stochastic nonlinear framework, and then focus on linear stochastic systems
to give some explicit necessary and sufficient algebraic conditions on the controllability of the Nash
equilibrium. In contrast to the classical controllability theory on forward differential equations, we
now need to investigate the controllability of the associated forward-backward stochastic differential
equations, which involves a more complicated investigation. Moreover, in the current stochastic
case, which is more complicated than the deterministic case, we need some deep understanding of
forward-backward stochastic differential equations.
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1. Introduction. It is well known that, over the past half-century, considerable
progress has been made in control theory, where the controller usually has a certain
objective to achieve, whereas the plant to be controlled does not have its own objective,
which is usually modeled by physical laws, such as the control of a car, an airplane,
an industrial process, etc. However, the classical control framework is not applicable
to many practical situations in, for example, social, economic, and rapidly developing
``intelligent"" engineering systems [1, 9, 11, 38, 40]. The common characteristic of these
systems is that the plants to be controlled involve multiple rational agents who purse
their own objectives, which may not be the same as the macrocontroller's objective,
and hence such control systems should be described by differential games.

One concrete example comes from the problem of transboundary pollution [16,
22, 25, 6, 41]. It is well known that some pollutants, such as air pollution, can
spread across an incredible distance. Consequently, pollution in one region can impact
neighboring regions to cause transboundary pollution. Just as in the ``public goods
game,"" these negative externalities and the pursuit-of-self-interest maximization can
result in an excess of pollution. Solving the problem calls for cooperation among
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different regions. Cooperative and noncooperative stochastic differential games have
been formulated to model transboundary industrial pollution with emission permits
trading [22, 6, 41]. In fact, full cooperation and complete noncooperation are two
extreme cases. The more common situation is to introduce some mechanisms, such as
contracts, associated agencies, and reputation systems, into the noncooperative game
to promote cooperation. In the transboundary pollution problem, we can reasonably
assume that different regions can reach an agreement or contract on the distribution
of their joint net revenues through cooperation. For any given distribution contract,
they will naturally form a noncooperative game. Hence, we can take the contract as a
higher level regulator, which controls the pollution by regulating the Nash equilibrium
formed by the different regions, and the existence of such a contract can be regarded
as a controllability problem of transboundary pollution.

Another example comes from government regulation of macroeconomics. For var-
ious purposes, including remedying market failure, promoting cooperation, increasing
social welfare, and solving asymmetric information problems, a government may regu-
late macroeconomics through legislation and policies. Using game theory and dynamic
stochastic general equilibrium (DSGE) [23] instruments and methods, we can model
the macroeconomic system as a noncooperative dynamic game with a government
and multiple interest groups. The government can affect the system dynamics by
enacting certain policies and, based on these policies the interest groups pursue their
own interests. Hence, for any given government policy, the interest groups form a
stochastic differential noncooperative game. By analyzing this model, the govern-
ment may develop an appropriate policy to achieve some macroeconomic regulation
purposes. If we take the policy as a higher level regulator, then it may achieve some
satisfactory macroeconomic states by regulating the Nash equilibrium formed by the
interest groups.

Many other examples exist in social, economic, and engineering systems. More-
over, many problems that were previously investigated by using the game theoretic
framework may also be investigated by introducing a higher level regulator to induce
the Nash equilibrium to a desired value. These include, among others, distributed
game theoretic control [3, 14, 24], coverage optimization for mobile sensors [48], team
formation control [12, 2], intelligent transportation systems [8], ecological systems
[28, 47], and multiphase systems in chemical engineering [17].

In all of the above-mentioned examples, the systems to be regulated involve mul-
tiple active agents, whose behaviors are driven by their own interests. The individual
rationality may result in strategic behaviors, but if these behaviors are ignored, the
system dynamics may be seriously distorted and lead to misunderstanding; see, e.g.,
[11, 20]. Hence, it is necessary to model an individual's rational behavior by using
game theory. This leads to the introduction and investigation of the game-based con-
trol system (GBCS), which has a hierarchical decision-making structure consisting of
one regulator and multiple agents. The regulator is regarded as the macrocontroller
and makes decisions first, and then the agents try to optimize their respective objec-
tives to reach a possible Nash equilibrium as a result of a noncooperative dynamic
game. We will delineate the details of the GBCS in subsection 2.1.

It goes without saying that different inputs of the higher level regulator may
influence the Nash equilibrium of the lower level game and hence the performance
of the system state of the GBCS. There may be a large number of state variables
to represent the entire state of the GBCS, but the regulator may only care about a
small subset of these state variables, which can reflect the macrostate of the GBCS.
This phenomenon is ubiquitous in, for example, market regulation and corporate
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governance. Sometimes the state variables of the systems can be divided into macro-
and microstate variables, and it is the macrostate that the higher level regulator needs
to regulate. A fundamental issue in GBCS is the following: Is it possible for the
regulator to change the macrostate by regulating the Nash equilibrium formed at the
lower level? This leads to the investigation of controllability of the Nash equilibrium of
GBCS, which can reflect the ability of the regulator to move the macrostate around in
its entire configuration space. To the best of our knowledge, the first attempt devoted
to the introduction and investigation of GBCS was given in [26, 27], followed by a
preliminary investigation on controllability of GBCS for some special cases [44, 45, 46].

The main contributions of this paper are as follows. First, we formulate the gen-
eral stochastic GBCSs as a two-level hierarchical structure, where the lower level is
a noncooperative stochastic differential game among multiple agents, and the higher
level is a macroregulator which can intervene in the lower level differential game
to achieve a desired macrostate. Second, we introduce the concepts of exact V -
controllability and total controllability (a special exact V -controllability). The ex-
act V -controllability of general nonlinear stochastic GBCS is transformed into the
controllability of a corresponding forward-backward stochastic differential equation
(FBSDE) by using the maximum principle, which is different from the classical con-
trollability problem, and may serve as a starting point for future related investiga-
tions. Third, we obtain some necessary and sufficient algebraic conditions on the
exact V -controllability of the Nash equilibrium for general linear time-varying GBCS
by solving the controllability problem of the associated FBSDEs, which is a key tech-
nical difficulty of the current paper that makes our analysis quite different from that
in classical theory. For linear time-invariant GBCS, we give an explicit necessary and
sufficient algebraic condition on the total controllability of the Nash equilibrium.

The remainder of this paper is organized as follows. In section 2, we introduce
a general framework for GBCS and give some examples. In section 3, we will first
study the controllability of general nonlinear stochastic GBCS, and then provide a
complete solution for general linear stochastic systems. Proofs of the theorems are
given in sections 4 and 5, and we conclude the paper with some remarks.

2. Problem formulation. In this section, we will first give a general nonlinear
framework for stochastic GBCS and introduce the concept of controllability, and then
give two illustrative examples where the structure applies.

First, we introduce some notation to be used throughout this paper. All vectors
are column vectors. The identity matrix of size m \times m is denoted by Im, and the
null matrix of size m\times n is denoted by 0m\times n (or 0m if m = n). For a matrix A, the
operator rank\{ A\} means the rank of A, AT denotes the transposition of A, Im\{ A\} 
represents the image space of A, and \Lambda (A) denotes the set of all eigenvalues of A.
For any subset V \subset Rn, Span\{ V \} denotes the linear subspace in Rn generated by
V . We use the notation \langle \cdot , \cdot \rangle for the inner product in Rn, and use fx for the partial
derivative of a function f with respect to x.

2.1. Game-based control systems. Let (\Omega ,F , P ) be a complete probability
space endowed with a filtration (Ft, t \geqslant 0), and let (wt, t \geqslant 0) be a d-dimensional
standard Brownian motion:

wt = (w1
t , w

2
t , . . . , w

d
t )

T .

The filtration Ft is generated by this Brownian motion and satisfies the usual hy-
potheses (complete and right continuous). All processes mentioned here are assumed
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to be Ft-adapted and square integrable. Let L2
F (0, T ;Rn) be the set of all valued

square integrable processes, i.e.,

L2
F (0, T ;Rn) =

\Biggl\{ 
X(\cdot ) is \{ Ft\} t\geq 0-adapted : E

\int T

0

\| X(t)\| 2dt < \infty 

\Biggr\} 
.

Consider the following hierarchical control system with one regulator and L
agents:

(1)

\left\{     
dx(t) = f(t, x(t), u1(t), . . . , uL(t), u(t))dt

+ \sigma (t, x(t), u1(t), . . . , uL(t), u(t))dw(t),

x(0) = x0(\in Rn),

where ui(t) \in ADi \subset Rmi stands for the strategy or control of the agent i, and
u(t) \in AD \subset Rm is the strategy or control of the regulator.

Assume that each agent wants to minimize a payoff function Ji(ui(\cdot ), u - i(\cdot ), u(\cdot ))
by selecting ui(\cdot ) from its admissible strategy set, where u - i(\cdot ) represents the strategy
profile of all agents except agent i.

The commonly used payoff function is as follows for each agent i:

(2)

Ji(u1(\cdot ), u2(\cdot ), . . . , uL(\cdot ), u(\cdot ))

= EKi(x(T )) + E

\int T

0

Li(x(t), u1(t), u2(t), . . . , uL(t), u(t)) dt

for any given finite time T > 0. Alternatively, one may also consider the following
ergodic cost when T \rightarrow \infty :

(3)

Ji(u1(\cdot ), u2(\cdot ), . . . , uL(\cdot ), u(\cdot ))

= lim sup
T\rightarrow \infty 

1

T

\int T

0

Li(x(t), u1(t), u2(t), . . . , uL(t), u(\cdot )) dt.

We only consider the finite time case in this paper.
It is well known that information structures play a crucial role in differential games

[7, 13]. Here, we always assume that the information \{ f, \sigma , Ji, i = 1, 2, . . . , L\} and the
initial state x(0) of the system are ``common knowledge,"" which is the terminology
used for information in game theory [10, Chapter 14]. In GBCS, the regulator will
first make and announce its macrodecision, and then each agent makes a decision to
minimize its own payoff function. The lower level agents have access to information
about the regulator's input (i.e., they know the regulator's input) but do not know
other agents' inputs when making their own decisions. Therefore, given the decision
of the regulator, the agents in GBCS will form a noncooperative stochastic differential
game at the lower level.

Depending on the information available to the lower level agents, there are two
major cases in noncooperative differential games: open-loop information and feedback
information. Under the open-loop information structure, all agents know just the ini-
tial state, and so the strategy ui(t) (i = 1, 2, . . . , L) of agent i is only a function of
time and the initial state (open-loop strategy). In contrast, the feedback information
structure allows all agents to observe the current system state, and then the strategy
ui(t) (i = 1, 2, . . . , L) of agent i can depend on time and current state (feedback strat-
egy). In this paper, we only consider the open-loop strategy, so the Nash equilibrium
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formed by the agents is also called an open-loop Nash equilibrium [4, Definition 5.6].
Let us now define \scrU and \scrU i as the admissible control sets for the regulator and agent i,
respectively. For any control u(\cdot ) \in \scrU of the regulator, the system will form a nonco-
operative differential game. If the Nash equilibrium strategy (u\ast 

1(\cdot ), u\ast 
2(\cdot ), . . . , u\ast 

L(\cdot ))
of the agents exists, then we know that, for i = 1, 2, . . . , L,

(4) Ji(u
\ast 
i (\cdot ), u\ast 

 - i(\cdot ), u(\cdot )) = min
ui(\cdot )\in \scrU i

Ji(ui(\cdot ), u\ast 
 - i(\cdot ), u(\cdot )).

As will be shown in the next section, under some mild regularity assumptions,
given any decision of the regulator u(\cdot ) \in \scrU , the corresponding agents' decisions
u1(\cdot ) \in \scrU 1, . . . , uL(\cdot ) \in \scrU L will define a unique solution of the system dynamic
(1) denoted by t \mapsto \rightarrow xx0,u,u1,...,uL(t) on [0, T ] (in the sense of Definition 6.15 of [42,
Chapter 1]).

If the Nash equilibrium of the noncooperative stochastic differential game (1)
exists and is unique for some given input u(\cdot ) \in \scrU and x(0) = x0, then, under some
mild conditions, there is a unique state evolution process x\ast (t)(t \in [0, T ]) of the
system, satisfying the following ordinary differential equation:

(5)

\left\{     
dx\ast (t) = f(t, x\ast (t), u\ast 

1(t), u
\ast 
2(t), . . . , u

\ast 
L(t), u(t))dt

+ \sigma (t, x\ast (t), u\ast 
1(t), u

\ast 
2(t), . . . , u

\ast 
L(t), u(t))dw(t),

x\ast (0) = x0,

where (u\ast 
1, u

\ast 
2, . . . , u

\ast 
L) is the Nash equilibrium corresponding to the regulator's strat-

egy u(t)(t \in [0, T ]). Hence, the system state dynamic is essentially determined by
the regulator and thus can be regarded as a control system, where the regulator can
change the state by regulating the Nash equilibrium formed at the lower level.

The above problem formulation can be directly extended to more general settings
with hybrid dynamic and multilayers.

In many practical systems, there are macrostates and microstates. The dynamics
of the macrostates can be affected by the lower level agents' states, which stand for
the microstates but not their controls directly; i.e., the system is described by the
following stochastic differential equation (SDE):

(6)

\left\{               

dx(t) = f(t, x(t), x1(t), x2(t), . . . , xL(t), u(t))dt

+ \sigma (t, x(t), x1(t), x2(t), . . . , xL(t), u(t))dw(t),

dxi(t) = fi(t, x(t), xi(t), ui(t), u(t))dt

+ \sigma i(t, x(t), xi(t), ui(t), u(t))dw(t),

x(0) = x0, xi(0) = xi,0, i = 1, 2, . . . , L,

and the payoff function to be minimized by ui(\cdot ) of any agent i (i = 1, 2, . . . , L) is

ESi(xi(T ), T ) + E

\int T

0

Li(xi(\cdot ), ui(\cdot )) dt

when T is finite. Here x(t) \in Rn stands for the macrostate of the system, and
xi(t) \in Rni is the state of the agent i (i = 1, 2, . . . , L). In this case, the payoff
function of agent i only depends on its own state xi and input ui(\cdot ).

It is easy to transform (6) into the form of system (1) as follows:

(7)

\left\{     
dX(t) = \widetilde f(t,X(t), u1(t), u2(t), . . . , uL(t), u(t))dt

+ \widetilde \sigma (t,X(t), u1(t), u2(t), . . . , uL(t), u(t))dw(t),

X(0) = X0,
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where

X(t) = [xT (t), xT
1 (t), . . . , x

T
L(t)]

T ,\widetilde f(t,X(t), u1(t), u2(t), . . . , uL(t), u(t))

=

\left[     
f(t, x(t), x1(t), x2(t), . . . , xL(t), u(t))

f1(t, x(t), x1(t), u1(t), u(t))
...

fL(t, x(t), xL(t), uL(t), u(t))

\right]     ,

\widetilde \sigma (t,X(t), u1(t), u2(t), . . . , uL(t), u(t))

=

\left[     
\sigma (t, x(t), x1(t), x2(t), . . . , xL(t), u(t))

\sigma 1(t, x(t), x1(t), u1(t), u(t))
...

\sigma L(t, x(t), xL(t), uL(t), u(t))

\right]     .

(8)

2.2. Controllability problem. As control systems, there are many interesting
problems to be investigated. Here we are interested in whether or not the system
macrostate can be driven from any initial state to any desired macrostate by the
influence of the regulator, which can be captured by the following concept of exact
V -controllability.

Let V be the space L2(\Omega ,FT , P ;Rh) (h \leq n), and let Ph be the projection
operator from Rn to Rh such that Ph((x1, . . . , xn)

T ) = (x1, . . . , xh)
T .

Definition 2.1. The GBCS (1) is called exactly V -controllable if for any given
initial state x(0) = x0 \in Rn and any terminal state xh(T ) = xh

T = \xi \in V , there
is a strategy u(\cdot ) \in \scrU of the regulator, under which the Nash equilibrium exists and
is unique, and the solution x\ast (t) of the (5) satisfies Phx

\ast (T ) = xh
T . Moreover, if

V = L2(\Omega ,FT , P ;Rn), then we say that the GBCS is totally controllable.

We remark that the initial states include all the components of x, but in the final
states we are only interested in the partial state xh(T ) in the above definition. Just
as in the GBCS (7), Phx(T ) are the first h components of state x and represents the
macrostate.

2.3. Examples of GBCS. We will give two examples where the GBCS frame-
work may be applied.

Example 2.2. Consider the problem of transboundary industrial pollution with
emission permits trading. The dynamic of the system with two regions is described
by [6]

(9)

\left\{     
dP (t) = (E1(t) + E2(t) - \theta PP (t))dt+ \sigma PP (t)dw(t),

dS(t) = \mu SS(t)dt+ \sigma SS(t)dw(t),

S(0) = S0, P (0) = P0,

where S(t) is the emission permits price, P (t) denotes the stock of pollution in the
environment, and E1(t) and E2(t) denote the emission levels of regions 1 and 2,
respectively. Region i (i = 1, 2) chooses its strategy ECi(\cdot ) to maximize its own
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objective functional,

Ji(E1, E2, u(\cdot ))

= E

\Biggl\{ \int T

t0

zi(t)e
 - rt
\Bigl[ 
L1(t) + L2(t)

\Bigr] 
dt - zi(T )

\Bigl[ 
K1(T ) +K2(T )

\Bigr] 
erT

\Biggr\} 
,

(10)

where

Li(t) = Ai  - S(t)Ei(t) - 
1

2
E2

i (t) + S(t)Ei0  - DiP (t),

Ki(T ) = gi(P (T ) - P i)

are the running cost and the salvage cost at time T, respectively, and z = (z1, z2)
T

represents the distribution of the joint net revenue; the specific meanings of other
variables can be found in [6]. The two regions can make a collaborative contract on
the revenues assignment z(\cdot ). This model can be taken as a cooperative game, which
is a little different from that in the literature. When we let z1(t) = z2(t) \equiv c (c is
any nonzero constant), this model becomes a standard cooperative differential game
or team optimal control.

An important issue in the model is the following: Given any terminal object of
the pollution P (T ), is there an assignment contract z(\cdot ) such that the objective is
achieved? This is obviously a typical problem on the controllability of the stochastic
GBCS and has not yet been solved in the literature.

Example 2.3. Different stabilization policies have been deeply studied by econ-
omists for many years [15, 30, 31, 33, 39]. Here we consider the optimal economic
stabilization policies problem under decentralized control and conflicting objectives.
In many countries, macroeconomic policy is made and implemented by more than one
authority who may have differing objectives [33].

The linear-quadratic difference games have been used to model these systems
around a certain nominal state [15], and some stochastic elements have also been
introduced into the model [39]. We assume that the diffusion term of the stochastic
dynamic depends on the controls, which is reasonable and realistic in many practical
systems. The continuous-time analogy of the discrete-time stochastic econometric
dynamical model in the state variable is
(11)

dx(t) =

\Biggl( 
Ax(t) +

k\sum 
i=1

Biui(t) + Cz(t)

\Biggr) 
dt+

\Biggl( 
Ax(t) +

k\sum 
i=1

Biui(t) + Cz(t)

\Biggr) 
dw(t),

where ui is the control variable of authority i (i = 1, . . . , k), who chooses ui to
minimize its own cost function

(12) Ji = E

\int T

0

\Bigl( 
xT (t)Qix(t) + uT

i (t)Riui(t)
\Bigr) 
dt.

Here, the input z(t) can be taken as a higher level regulator, such as a law, a policy,
or a contract. In different economic situations, the higher level regulator may need to
regulate the equilibrium state x(T ) to some desired values by choosing some appro-
priate inputs z(t). This is another typical problem on the controllability of GBCS,
which can be solved directly by using Theorem 3.14 in subsection 3.3.
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3. Main results. In this section, we first give an analysis of the controllability
of the Nash equilibrium of GBCS with general nonlinear dynamics, and then focus
on linear dynamic systems to give some explicit necessary and sufficient algebraic
conditions on the controllability of the Nash equilibrium.

3.1. General nonlinear systems. Consider the general nonlinear system (1).
For notational brevity, we only consider one-dimensional Brownian motion, d = 1.
The case for multidimensional Brownian motion can be treated analogously.

Given any terminal time T and any input of the regulator, each agent i (1, 2, . . . , L)
wants to minimize its own payoff function, expressed by

Ji(u1(\cdot ), u2(\cdot ), . . . , uL(\cdot ), u(\cdot ))

= EKi(x(T )) + E

\int T

0

Li(x(t), u1(t), u2(t), . . . , uL(t), u(t)) dt.
(13)

Assumption 3.1. The input signals are admissible, i.e., they are taken from the
following sets:

u(\cdot ) \in \scrU \triangleq \{ u : [0, T ] \rightarrow AD | u(\cdot ) \in L2
F (0, T ;Rm)\} 

ui(\cdot ) \in \scrU i \triangleq \{ ui : [0, T ] \rightarrow ADi| ui(\cdot ) \in L2
F (0, T ;Rmi)\} ,

(14)

where AD \subseteq Rm and ADi \subseteq Rmi , i = 1, 2, . . . , L. \{ Ft\} t\geq 0 is the natural filtration
generated by w(t), augmented by all of the P -null sets in F .

Assumption 3.2. For any u(\cdot ) \in \scrU , ui(\cdot ) \in \scrU i, i = 1, 2, . . . , L, and initial point x0,
the state equation (1) admits a unique solution x(\cdot ) \equiv x(\cdot , u1(\cdot ), . . . , uL(\cdot ), u(\cdot )) (in
the sense of Definition 6.15 of [42, Chapter 1]) on [0, T ], and the cost function (13) is
well defined for i = 1, . . . , L.

We remark that if equation (1) is linear and the cost function (13) is quadratic,
then under certain conditions on the coefficients (see Assumption (L1) in [42, p.
301]), Assumption 3.2 holds. For general nonlinear systems, Assumption 3.2 holds if
the following conditions hold [42, Chapter 1, section 6.4]: All of the functions f, \sigma ,Ki,
and Li (i = 1, . . . , L) are second-order continuous differentiable with respect to x, and
there exist a constant C > 0 and a modulus of continuity \varpi : [0,\infty ) \rightarrow [0,\infty ) such
that for any \varphi \in \{ f , \sigma , Ki, Li\} , we have

(15)

\left\{           
| \varphi (t, x, U) - \varphi (t, x, U)| \leq C| x - x| +\varpi (U  - U),

| \varphi x(t, x, U) - \varphi x(t, x, U)| \leq C| x - x| +\varpi (| U  - U | ),
| \varphi xx(t, x, U) - \varphi xx(t, x, U)| \leq \varpi (| U  - U | + | x - x| ),
| \varphi (t, 0, U)| \leq C

for any t \in [0, T ], x, x \in Rn, and U, U , where U = (uT
1 , . . . , u

T
L, u

T )T and U =
(uT

1 , . . . , u
T
L, u

T )T .
To solve the stochastic differential game defined by (1) and (13), we introduce

the generalized Hamiltonian

Gi(t, x, u1, . . . , uL, u, p, P )

\triangleq 
1

2
\sigma (t, x, u1, . . . , uL, u)

TP\sigma (t, x, u1, . . . , uL, u)

+ \langle p, f(t, x, u1, . . . , uL, u)\rangle  - Li(t, x, u1, . . . , uL, u)

\forall (t, x, u1, . . . , uL, u, P ) \in [0, T ]\times Rn \times Rm1 \times \cdot \cdot \cdot \times RmL \times Rm \times Sn,

(16)
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where Sn = \{ A \in Rn\times n : AT = A\} , i = 1, . . . , L.
Next, we define an \bfitH -function,

\bfitH i(t, x, u1, . . . , ui - 1, ui, ui, ui+1, . . . , uL, u, p, P )

\triangleq Gi(t, x, u1, . . . , ui - 1, ui, ui+1, . . . , uL, u, p, P )

+ \sigma (t, x, u1, . . . , ui - 1, ui, ui+1, . . . , uL, u)
T [q  - P\sigma ],

(17)

where \sigma = \sigma (t, x, u1, . . . , ui - 1, ui, ui+1, . . . , uL, u).

Assumption 3.3. For any (t, x) \in [0, T ] \times Rn, u(\cdot ) \in \scrU , any vectors p1, . . . , pL \in 
Rn, and any matrices P1, . . . , PL \in Sn, there exists a unique point (u\ast 

1, . . . , u
\ast 
L) \in 

AD1 \times \cdot \cdot \cdot \times ADL such that for any i = 1, 2, . . . , L,

u\ast 
i = arg min

ui\in ADi

\bfitH i(t, x, u
\ast 
1, . . . , u

\ast 
i - 1, ui, u

\ast 
i , u

\ast 
i+1, . . . , u

\ast 
L, u, pi, Pi).

The corresponding map is denoted by

(t, x, p1, . . . , pL, P1, . . . , PL, u(\cdot ))
\rightarrow (u\ast 

1(t, x, p1, . . . , pL, P1, . . . , PL, u(\cdot )), . . . , u\ast 
L(t, x, p1, . . . , pL, P1, . . . , PL, u(\cdot ))).

We remark that the above assumption can be interpreted as the existence and
uniqueness condition of the Nash equilibrium of a ``one-shot"" game, which has been
used in [5]. If the\bfitH i-function has some properties, such as concavity and coerciveness,
this assumption will be satisfied. Examples in the nonlinear case that can verify
Assumption 3.3 include affine-nonlinear systems [5].

If Assumption 3.3 holds and the Nash equilibrium of the stochastic differential
game formed by agents at the lower level exists for some u(t), t \in [0, T ], x(0) = x0,
then we can get the following equations by applying the stochastic maximum principle
[42, Chapter 3, Theorem 3.3]:

(18)

\left\{               

dx(t) = f(t, x(t), U\ast (t), u(t))dt+ \sigma (t, x(t), U\ast (t), u(t))dw(t),

dpi(t) =  - 
\Bigl\{ 
fT
x (t, x(t), U\ast (t), u(t))pi(t) + \sigma T

x (t, x(t), U
\ast (t), u(t))qi(t)

 - (Li)x(t, x(t), U
\ast (t), u(t))

\Bigr\} 
dt+ qi(t)dw(t),

x(0) = x0, pi(T ) = (Ki)x(x(T )), i = 1, . . . , L,

where U\ast (\cdot ) = (u\ast 
1(\cdot ), . . . , u\ast 

L(\cdot )) are the open-loop Nash equilibrium controls of the L
agents and they satisfy

u\ast 
i (t)

arg min
ui\in ADi

\bfitH i(t, x(t), u
\ast 
1(t), . . . , u

\ast 
i - 1(t), ui, u

\ast 
i (t), u

\ast 
i+1(t), . . . , u

\ast 
L(t), u(t), pi(t), Pi(t)),

i = 1, 2, . . . , L.

Here, pi(t) is the solution of (18), and Pi(t) is the solution of the following equations:

(19)

\left\{                     

dPi(t) =  - 
\Bigl\{ 
fT
x (t, x(t), U\ast (t), u(t))Pi(t) + Pi(t)fx(t, x(t), U

\ast (t), u(t))

+ \sigma T
x (t, x(t), U

\ast (t), u(t))Pi(t)\sigma x(t, x(t), U
\ast (t), u(t))

+ \sigma T
x (t, x(t), U

\ast (t), u(t))Qi(t) +Qi(t)\sigma x(t, x(t), U
\ast (t), u(t))

+ (Hi)xx(t, x(t), U
\ast (t), u(t), pi(t), qi(t))

\Bigr\} 
dt+Qi(t)dw(t),

Pi(T ) =  - (Ki)xx(x(T )), i = 1, . . . , L,
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where the Hamiltonian Hi is defined as follows:

Hi(t, x, U, u, p, q) = \langle p, f(t, x, U, u)\rangle + qT\sigma (t, x, U, u) - Li(t, x, U),

(t, x, U, u, p, q) \in [0, T ]\times Rn \times Rm1+\cdot \cdot \cdot +mL \times Rm \times Rn \times Rn.
(20)

Equations (18) and (19) are backward stochastic differential equations (BSDEs).
Under Assumptions 3.1--3.3, there exists a unique adapted solution (Pi(\cdot ), Qi(\cdot )) of
(19) for any given pi(t), qi(t), t \in [0, T ] [21, Theorem 4.2].

From the above analysis, we know that u\ast 
i (t), i = 1, . . . , L, is a function of

t, x(t), pi, Pi, so we can rewrite the functions in (18) and (19) as F,\Sigma ,\Lambda i,\Gamma i, which do
not have the variables u\ast 

i (t), i = 1, . . . , L.

Assumption 3.4. For any input u(\cdot ) \in \scrU of the regulator and any initial value
x0, the Nash equilibrium of the stochastic differential game defined by (1) and (13)
exists.

We remark that the input u(\cdot ) \in \scrU in our problem formulation is an open-loop
control, i.e., it is just a function of time t. Hence, following an argument similar to
that for the existence of optimal control of time-varying nonlinear systems in, e.g.,
[34, 35], one may investigate the existence of the Nash equilibrium. In particular,
if the payoff functions of the agents are all convex [42, Chapter 3, Theorem 5.2],
then it may be shown that the existence of the solution of the forward-backward
equation implies the existence of the Nash equilibrium in Assumption 3.4. In this
case, Assumption 3.4 is equivalent to the existence of the solution of (18), and we
can remove it from Theorem 3.6, which will be presented shortly. The well-known
dynamic programming can also be used to study the existence problem of the Nash
equilibrium by applying the method of viscosity solution to the corresponding coupled
Hamilton--Jacobi--Isaacs equation [42, Chapter 4].

When we apply the maximum principle to solve the Nash equilibrium formed
by the lower level agents, we will arrive at a forward-backward differential equation
with forward state x(t) and backward adjoint states \{ pi(t), Pi(t) : i = 1, . . . , L\} . This
motivates us to introduce the concept of exact V -controllability of an FBSDE as
follows.

Definition 3.5. The coupled FBSDE

(21)

\left\{     
dx(t) = f(t, x(t), y(t), u(t))dt+ \sigma (t, x(t), y(t), u(t))dw(t),

dy(t) = g(t, x(t), y(t), u(t))dt+ q(t)dw(t),

x(0) = x0, y(T ) = G(x(T ))

is called exactly V -controllable if for any given initial state x(0) = x0 \in Rn and any
terminal state xh(T ) = xh

T = \xi \in V , there is an admissible strategy u(\cdot ) \in \scrU of the
regulator, under which the trajectory of (21) exists on [0, T ], is unique, and satisfies
Phx(T ) = xh

T . Moreover, if V = L2(\Omega ,FT , P ;Rn), then we say that FBSDE (21) is
totally controllable.

Theorem 3.6. Suppose that Assumptions 3.1--3.4 hold; then the stochastic GBCS
defined by (1) and (13) is exactly V -controllable if the following FBSDE is exactly



CONTROLLABILITY OF GAME-BASED CONTROL SYSTEMS 3809

V -controllable:

(22)

\left\{                         

dx(t) = F (t, x(t), p1(t), . . . , pL(t), P1(t), . . . , PL(t), u(t))dt

+\Sigma (t, x(t), p1(t), . . . , pL(t), P1(t), . . . , PL(t), u(t))dw(t),

dpi(t) = \Lambda i(t, x(t), p1(t), . . . , pL(t), P1(t), . . . , PL(t), qi(t), u(t))dt

+ qi(t)dw(t),

dPi(t) = \Gamma i(t, x(t), p1(t), . . . , pL(t), P1(t), . . . , PL(t), Qi(t), u(t))dt

+Qi(t)dw(t),

x(0) = x0, pi(T ) = (Ki)x(x(T )), Pi(T ) =  - (Ki)xx(x(T )), i = 1, . . . , L.

Moreover, if FBSDE (22) admits a unique solution for any x0 \in Rn and u(\cdot ) \in \scrU ,
the reverse also holds.

Although it is not easy to get an explicit condition for the controllability of
general nonlinear GBCS in terms of the system structure, Theorem 3.6 may provide
a necessary basis for further study of nonlinear GBCS, reminiscent of the roles played
by the general maximum principle and dynamic programming in optimal nonlinear
control. As in optimal control theory, explicit conditions for controllability may be
obtained for linear GBCS with quadratic payoff functions of the agents. This is the
content of the next section.

3.2. General linear-quadratic systems. Consider the following general non-
cooperative linear-quadratic differential game with one regulator and L agents:

(23)

\left\{                 

dx(t) =

\Biggl( 
A(t)x(t) +

L\sum 
i=1

Bi(t)ui(t) +B(t)u(t)

\Biggr) 
dt

+

\Biggl( 
C(t)x(t) +

L\sum 
i=1

Di(t)ui(t) +D(t)u(t)

\Biggr) 
dw(t),

x(0) = x0.

Let Ui = L2
F (0, T ;Rmi) and U = L2

F (0, T ;Rm). The payoff function to be minimized
by ui(\cdot ) of any agent i (i = 1, 2, . . . , L) is

Ji(u1(\cdot ), u2(\cdot ), . . . , uL(\cdot )) =
1

2
ExT (T )QiTx(T )

+
1

2
E

\int T

0

[xT (t)Qi(t)x(t) + uT
i (t)Ri(t)ui(t)] dt,

(24)

where for any t \in [0, T ], R - 1
i (t) exists, Ri(t), Qi(t), and QiT are symmetric, and all

entries of the matrices A(t), B(t), C(t), D(t), Bi(t), Ci(t), Di(t), Qi(t), Ri(t), R
 - 1
i (t),

i = 1, 2, . . . , L, are piecewise smooth functions of time. Here, we only consider the
deterministic matrices, but many of the results of this paper can be easily extended
to random matrices.

From Theorem 3.6, we know that the exact V -controllability of GBCS is equiv-
alent to the exact V -controllability of the corresponding FBSDE (22). In order
to rewrite (22) of the linear-quadratic GBCS in a compact form, we introduce the
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following notation:

(25) X(t) =

\left[     
x(t)
p1(t)
...

pL(t)

\right]     , p(t) =

\left[     
p1(t)
p2(t)
...

pL(t)

\right]     , q(t) =

\left[     
q1(t)
q2(t)
...

qL(t)

\right]     
and

(26)

S(t) =
\bigl[ 
B1(t)R

 - 1
1 (t)BT

1 (t), . . . , BL(t)R
 - 1
L (t)BT

L (t)
\bigr] 
,

T (t) =
\bigl[ 
D1(t)R

 - 1
1 (t)DT

1 (t), . . . , DL(t)R
 - 1
L (t)DT

L(t)
\bigr] 
,

M(t) =
\bigl[ 
B1(t)R

 - 1
1 (t)DT

1 (t), . . . , BL(t)R
 - 1
L (t)DT

L(t)
\bigr] 
,

N(t) =
\bigl[ 
D1(t)R

 - 1
1 (t)BT

1 (t), . . . , DL(t)R
 - 1
L (t)BT

L (t)
\bigr] 
,

Q(t) =
\bigl[ 
QT

1 (t), . . . , QT
L(t)

\bigr] T
,

QT =
\bigl[ 
 - QT

1T , . . . ,  - QT
LT

\bigr] T
,

A(t) =

\biggl[ 
A(t) S(t)
 - Q(t)  - IL \otimes AT (t)

\biggr] 
, A1(t) =

\biggl[ 
C(t) T (t)
0 0

\biggr] 
,

B(t) =
\bigl[ 
BT (t), 0, . . . , 0

\bigr] T
, B1(t) =

\bigl[ 
DT (t), 0, . . . , 0

\bigr] T
,

C(t) =

\biggl[ 
M(t)

 - IL \otimes CT (t)

\biggr] 
, C1(t) =

\biggl[ 
N(t)
InL

\biggr] 
,

\widehat C(t) =
\bigl[ 
0, InL

\bigr] 
\in RLn\times (L+1)n.

The corresponding stochastic equation (22) of the linear-quadratic stochastic
GBCS is a linear forward-backward equation, which has the following form:

(27)

\left\{         
dX(t) =

\Bigl( 
A(t)X(t) +B(t)u(t) + C(t)q(t)

\Bigr) 
dt

+
\Bigl( 
A1(t)X(t) +B1(t)u(t) + C1(t)q(t)

\Bigr) 
dw(t),

x(0) = x0, p(T ) = QTx(T ).

Hence, the matrices A(t) and A1(t) defined above are just the system matrices of
(22), and the matrices B(t) and B1(t) are the control matrices.

Assumption 3.7. The following FBSDE admits a unique solution:

(28)

\left\{         
dX(t) =

\Bigl( 
A(t)X(t) + C(t)q(t)

\Bigr) 
dt

+
\Bigl( 
A1(t)X(t) + C1(t)q(t)

\Bigr) 
dw(t),

x(0) = 0, p(T ) = QTx(T ),

where X(t) = (xT (t), pT (t))T .

Assumption 3.8. The following Riccati differential equations have a set of strongly
regular solutions Kj on [0, T ] for j = 1, 2, . . . , L:

(29)

\left\{     
\.Kj(t) =  - ATKj  - KjA - Qj  - CTKjC

+ (BT
j Kj +DT

j KjC)T (Rj +DT
j KjDj)

 - 1(BT
j Kj +DT

j KjC),

Kj(T ) = QjT ,
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where the strong regularity of Kj means that there is a positive number \lambda > 0, which
satisfies the following condition [36]:

(30) Rj(t) +DT
j (t)Kj(t)Dj(t) \geq \lambda I a.e. t \in [0, T ].

We remark that if the matrices Qi(t), QiT (i = 1, 2, . . . , L) are positive semidef-
inite and Ri(t) > 0, which is the standard condition of stochastic linear quadratic
optimal control, then Assumption 3.8 holds automatically [42].

We are now in a position to state our main results on controllability of general
linear-quadratic stochastic GBCS; proofs are deferred to section 4. We first present
a necessity theorem.

Theorem 3.9. If the stochastic GBCS (23)--(24) is exactly V -controllable, then
the following two conditions hold:

1. For any set N of zero-measure, we have

(31) V \subseteq Span

\Biggl\{ \bigcup 
t\in [0,T ] - N

Im(D(t))

\Biggr\} 
,

where V = \{ v \in Rn : vi = 0, h < i \leq n\} .
2. The matrix

(32)

\biggl[ \biggl[ 
0n\times nL

InL

\biggr] 
,\Phi TQT

\biggl[ 
0h\times (n - h)

In - h

\biggr] 
,M(T )

\biggr] 
is of full rank, where

M(T ) = E

\int T

0

\Phi (t)B(t)B(t)T\Phi T (t) dt,

\Phi T = E\Phi (T ), QT =

\biggl[ 
In
QT

\biggr] 
\in R(L+1)n\times n,

(33)

and the matrix \Phi (t) is defined by

(34)

\Biggl\{ 
d\Phi (t) =  - \Phi (t)A(t)dt - \Phi (t)C(t) \widehat C(t)dw(t),

\Phi (0) = I(L+1)n\times (L+1)n.

We remark that the first necessary condition (31) is about the diffusion term,
and the second condition (32) is, in some sense, about the controllability of the ``ex-
pectation system."" It is worth mentioning that for deterministic GBCS, the second
condition is not only necessary but also sufficient for total controllability [44].

Theorem 3.10. Assume that Assumptions 3.7--3.8 hold. If the GBCS defined by
(23)--(24) is exactly V -controllable, then for any xh \in L2(\Omega ,FT , P ;Rh), there exist
xF \in L2(\Omega ,FT , P ;Rn - h) and u(\cdot ) \in U such that the following BSDE has a solution:

(35)

\left\{         
dX(t) =

\Bigl( 
A(t)X(t) +B(t)u(t) + C(t)q(t)

\Bigr) 
dt

+
\Bigl( 
A1(t)X(t) +B1(t)u(t) + C1(t)q(t)

\Bigr) 
dw(t),

x(T ) = xT , p(T ) = QTx(T ),
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where xT =

\biggl[ 
xh

xF

\biggr] 
\in L2(\Omega ,FT , P ;Rn). Moreover, if the BSDE (35) has a solution for

any xT \in L2(\Omega ,FT , P ;Rn) and any u(\cdot ) \in U , then the stochastic GBCS (23)--(24) is
exactly V -controllable if and only if the matrix

(36)

\biggl[ \biggl[ 
0

InL

\biggr] 
,\Phi TQT

\biggl[ 
0h\times (n - h)

In - h

\biggr] 
,M(T )

\biggr] 
,

which is the same as the matrix in Theorem 3.9, is of full rank.

Note that by the definition of B1(t) and C1(t), if rank(D(t)) = n for any t \in [0, T ],

then we can deduce that m \geq n, and the matrix \widetilde B1(t) = [B1(t), C1(t)] is of full rank
for any t \in [0, T ]. In this case, we can find an invertible (Ln+m)\times (Ln+m)-matrix

H(t) such that \widetilde B1(t)H(t) = [I(L+1)n, 0], and a matrix K(t) such that \widetilde B1(t)K(t) =

 - A1(t).
We now introduce the transition matrix \Phi (t) defined by

(37)

\Biggl\{ 
d\Phi (t) =  - \Phi (t) \widehat A(t)dt - \Phi (t) \widehat A1(t)dw(t),

\Phi (0) = I(L+1)n\times (L+1)n,

together with the controllability matrix M(T ) defined by

M(T ) =E

\int T

0

\Phi (t) \widehat B(t) \widehat B(t)T\Phi T (t) dt \in R(L+1)n\times (L+1)n,(38)

where \widehat A(t) = A(t) + \widetilde B(t)K(t) \in R(L+1)n\times (L+1)n,

\widehat A1(t) = \widetilde B(t)H(t)

\biggl[ 
I(L+1)n

0

\biggr] 
\in R(L+1)n\times (L+1)n,

\widehat B(t) = \widetilde B(t)H(t)

\biggl[ 
0

Im - n

\biggr] 
\in R(L+1)n\times (m - n),

\widetilde B(t) = [B(t), C(t)], \widetilde B1(t) = [B1(t), C1(t)].

(39)

Theorem 3.11. Under Assumptions 3.7--3.8 with rank(D(t)) = n for any t \in 
[0, T ], the stochastic GBCS defined by (23)--(24) is totally controllable if and only if
the following matrix is of full rank:

(40)

\biggl[ \biggl[ 
0

InL

\biggr] 
, M(T )

\biggr] 
.

The condition rank(D(t)) = n for any t \in [0, T ] in Theorem 3.11 seems to be
restricted. It means that the dimension of the input of the regulator is greater than
or equal to the dimension of the system state. But for some special case, we can show
that this condition is necessary for the controllability of the GBCS.

Assumption 3.12. The matrix D(t) is time-invariant, i.e., D(t) \equiv D.

Theorem 3.13. Suppose that Assumptions 3.7, 3.8, and 3.12 hold. Then, the sto-
chastic GBCS defined by (23)--(24) is totally controllable if and only if the following
two conditions hold:
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1. rank(D) = n.
2. The following matrix is of full rank:

\biggl[ \biggl[ 
0

InL

\biggr] 
, M(T )

\biggr] 
.

We remark that we only consider the energy-finite control of the regulator; i.e.,
the admissible control of the regulator belongs to L2. In this case, the condition
rank(D) = n is necessary, but it does not hold if we take the regulator's control in L1

space [19].

3.3. Time-invariant linear-quadratic system. When the GBCS (23)--(24)
is time-invariant, i.e., the matrices A(t), B(t), C(t), D(t), Bi(t), Di(t), Qi(t), Ri(t)
(i = 1, 2, . . . , L) are independent of time t, we can denote them by A,B,C, D, Bi, Di,
Qi, Ri (i = 1, 2, . . . , L), respectively, and get a simpler and more explicit criterion for
controllability.

Theorem 3.14. Assume that the stochastic GBCS defined by (23)--(24) is time-
invariant and Assumptions 3.7--3.8 hold. Then, the GBCS is totally controllable if
and only if the following rank conditions hold:

1. rank(D) = n,
2. rank(QC) = n,

where

QC = [In, 0]
\Bigl[ \widehat B, \widehat A \widehat B, \widehat A1

\widehat B, \widehat A \widehat A1
\widehat B, \widehat A1

\widehat A \widehat B, . . .
\Bigr] 
,

in which the matrices \widehat A, \widehat A1, and \widehat B are time-invariant matrices corresponding to the

matrices \widehat A(t), \widehat A1(t), and \widehat B(t) defined in (39).

The proof of this theorem is deferred to section 4.
We remark that the computation of the rank of the seemingly infinite many-

column matrix QC in the above theorem can be completed within finite steps, because
the matrices involved are finite dimensional.

Let us now illustrate the main results of Theorem 3.14 by a numerical example.
Consider Example 2.3 in section 2.3. For simplicity, we assume that there are two
authorities, x(t) \in R2, and the matrices in (11) and (12) have the following forms:

A =

\biggl[ 
1 0
0 1

\biggr] 
, A =

\biggl[ 
1 0
0 1

\biggr] 
,

B1 =

\biggl[ 
1
0

\biggr] 
, B2 =

\biggl[ 
0
1

\biggr] 
, B1 =

\biggl[ 
2
0

\biggr] 
, B2 =

\biggl[ 
0
2

\biggr] 
,

Q1 =

\biggl[ 
1 0
0 0

\biggr] 
, Q2 =

\biggl[ 
0 0
0 1

\biggr] 
, R1 = 1, R2 = 1,

C =

\biggl[ 
1 1 0
1 1 1

\biggr] 
, C =

\biggl[ 
1 0 1
0 1 1

\biggr] 
.
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We can calculate the corresponding matrices defined in (39) as

\widehat A =

\left[        
2 0 5 0 0 0
1 2 4 0 0 5
 - 1 0  - 1 0 0 0
0 0 0  - 1 0 0
0 0 0 0  - 1 0
0  - 1 0 0 0  - 1

\right]        , \widehat A1 =

\left[        
1 1
1 1

 - 1 0
0  - 1

 - 1 0
0  - 1

\right]        ,

\widehat B =
\bigl[ 
0  - 1 0 0 0 0

\bigr] T
,

where the values of the blank positions in the matrices are 0. Because\widehat A1
\widehat B =

\bigl[ 
 - 1  - 1 0 0 0 0

\bigr] T
,

we can get rank(QC) = 2. By Theorem 3.14, we know that the GBCS is totally
controllable.

We remark that here we have just used some fictitious datum to illustrate the
verification of the controllability of GBCS. It would be interesting to use the concept
of structure controllability [18] to simplify the verification when the values of the
system matrices are not exactly known, which is a topic for future investigation.

4. Proofs of the theorems. In this section, we present the main proofs of the
theorems; auxiliary material is given in the appendix.

To start, let us temporarily assume that for any u(t)(t \in [0, T ]) and any initial
states x0, xi,0 (i = 1, 2, . . . , L), the open-loop Nash equilibrium (u\ast 

1(\cdot ), u\ast 
2(\cdot ), . . . , u\ast 

L(\cdot ))
exists and is unique, so u\ast 

i (\cdot ) is the unique solution of the following stochastic linear-
quadratic optimal control problem for any i \in \{ 1, . . . , L\} :

(41)

\left\{                   

dx(t) =

\Biggl( 
A(t)x(t) +

\sum 
j \not =i

Bj(t)u
\ast 
j (t) +Bi(t)ui(t) +B(t)u(t)

\Biggr) 
dt

+

\Biggl( 
C(t)x(t) +

\sum 
j \not =i

Dj(t)u
\ast 
j (t) +Di(t)ui(t) +D(t)u(t)

\Biggr) 
dw(t),

x(0) = x0,

and the payoff function to be minimized by ui(\cdot ) is

Ji(u1(\cdot ), u2(\cdot ), . . . , uL(\cdot ))

=
1

2
E

\int T

0

\Bigl[ 
xT (t)Qi(t)x(t) + uT

i (t)Ri(t)ui(t)
\Bigr] 
dt+ ExT (T )QiTx(T ).

(42)

According to the maximum principle, the control u\ast 
i (\cdot ) satisfies

(43)

\left\{                                 

u\ast 
i (t) = R - 1

i (t)
\Bigl( 
BT

i (t)pi(t) +DT
i (t)qi(t)

\Bigr) 
,

dx(t) =

\Biggl( 
A(t)x(t) +

L\sum 
j=1

Bj(t)u
\ast 
j (t) +B(t)u(t)

\Biggr) 
dt

+

\Biggl( 
C(t)x(t) +

L\sum 
j=1

Dj(t)u
\ast 
j (t) +D(t)u(t)

\Biggr) 
dw(t),

dp(t) =  - 
\Bigl( 
Qi(t)x(t) - AT (t)pi(t) - CT (t)qi(t)

\Bigr) 
dt+ qi(t)dw(t),

x(0) = x0, pi(T ) =  - QiTx(T ), i = 1, 2, . . . , L.
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Using the notation defined by (25) and (26), we can rewrite (43) as follows:

(44)

\left\{                 

dx(t) =
\Bigl( 
A(t)x(t) + S(t)p(t) +M(t)q(t) +B(t)u(t)

\Bigr) 
dt

+
\Bigl( 
C(t)x(t) + T (t)p(t) +N(t)q(t) +D(t)u(t)

\Bigr) 
dw(t),

dp(t) =
\Bigl( 
Q(t)x(t) - IL \otimes AT (t)p(t) - IL \otimes CT (t)q(t)

\Bigr) 
dt+ q(t)dw(t),

x(0) = x0, p(T ) = QTx(T ).

We note that in (44), the terminal condition of process p(t) rather than the initial
condition is given (this is a BSDE), and (44) is a coupled FBSDE. For more details
about BSDE, we refer the reader to the original paper by Pardoux and Peng [29]. Such
FBSDEs have been studied by many researchers; see, e.g., [42, 43]. Equation (44) can
also be rewritten more compactly as (27).

4.1. Proof of Theorem 3.9. To prove Theorem 3.9, we first give some lemmas
and claims.

Lemma 4.1. If Assumption 3.8 holds, then for any given input u(t) (t \in [0, T ])
of the regulator and any initial state x0, the noncooperative differential game defined
by (23)--(24) admits an open-loop Nash equilibrium if and only if the FBSDE (44)
has a solution. Moreover, if both Assumption 3.7 and Assumption 3.8 hold, then the
solution is unique.

Proof. See Appendix A.

The following lemma can be found in [32].

Lemma 4.2. It is impossible to find (a, b) \in L2
F (0, T ;R)\times L2

F (0, T ;R) and x \in R
with

lim
t\rightarrow T

E\| b(t) - b(T )\| 2 = 0

such that

\zeta = x+

\int T

0

a(s)ds+

\int T

0

b(s)dw(s),

where

\zeta =

\int T

0

\varphi (s)dw(s),

\varphi (t) =

\Biggl\{ 
+1 when t \in [(1 - 2 - 2i)T, (1 - 2 - 2i - 1)T ), i = 0, 1, . . . ,

 - 1 otherwise.

Consider the BSDE\Biggl\{ 
dx(t) = b(x(t), v(t), t)dt+ \sigma (x(t), v(t), t)dw(t),

x(T ) = xT .
(45)

We assume that (45) satisfies the following conditions: For any (x, v) \in Rn \times Rm,

b(x, v, \cdot ) \in L2
F (0, T ;Rn),

\sigma (x, v, \cdot ) \in L2
F (0, T ;Rn),

lim
t\rightarrow T

E\| \sigma (x, v, t) - \sigma (x, v, T )\| 2 = 0,
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the functions b(x, v, t), \sigma (x, v, t) satisfy the linear growth with respect to (x, v) uni-
formly in t \in [0, T ], and \sigma (x, v, t) is Lipschitzian with respect to x uniformly in (v, t).

Similarly to [32], we can define the V -E-well-posedness of (45), where V is a linear
subspace of space L2(\Omega ,FT , P ;Rn).

Definition 4.3. The system (45) is called V -E-well-posed if for any terminal
state xh(T ) = xh

T = \xi \in V , there exists at least one v(t) \in L2
F (0, T ;Rm), under which

the solution x(t) of (45) satisfies the condition Phx(T ) = xh
T .

In Definition 4.3, we only require that the terminal state satisfies some conditions,
but if we want to know which initial states can get to the desired terminal state, then
we should consider a related definition of exactly controllable.

Definition 4.4. The system (45) is called exactly W-V-controllable if for any
initial state x(0) = x0 \in W \subseteq Rn and any terminal state xh(T ) = xh

T = \xi \in V , there
exists at least one v(t) \in L2

F (0, T ;Rm), under which the solution x(t) of (45) satisfies
the condition x(0) = x0 and Phx(T ) = xh

T .

If we let v(t) = [uT (t), qT (t)]T , then (46) can be transformed into the form of
(45) as follows:

(46)

\left\{         
dX(t) =

\Bigl( 
A(t)X(t) + \widetilde B(t)v(t)

\Bigr) 
dt

+
\Bigl( 
A1(t)X(t) + \widetilde B1(t)v(t)

\Bigr) 
dw(t),

x(0) = x0, p(T ) = QTx(T ),

where

\widetilde B(t) =
\bigl[ 
B(t), C(t)

\bigr] 
, \widetilde B1(t) =

\bigl[ 
B1(t), C1(t)

\bigr] 
.

From the definitions, we see that the GBCS (23)--(24) is exactly V -controllable
if and only if there exists a subspace W of R(L+1)n such that Pn(W ) = Rn, (46) is
exactly W -V -controllable, and the terminal condition p(T ) = QTx(T ) is satisfied. It
means that (46) is V -E-well-posed.

Claim 4.5. Let V be the space L2(\Omega ,FT , P ;Rh) (0 < h \leq n). A necessary
condition for the V -E-well-posedness of (45) is that for any a \in Rm, b \in V = \{ v \in 
Rn : \| v\| = 1, vi = 0, h < i \leq n\} , there exists (x, v) \in Rn \times Rm such that

(47) bT (\sigma (x, v, t) - \sigma (x, a, t)) \not \equiv 0 for almost all t \in [0, T ].

Proof. We know that any solution (x(t), v(t)) of (46) satisfies

lim
t\rightarrow T

E\| \sigma (x(t), a, t) - \sigma (x(T ), a, T )\| 2 = 0,

b(x(\cdot ), v(\cdot ), \cdot ) \in L2
F (0, T ;Rn),

\sigma (x(\cdot ), v(\cdot ), \cdot ) \in L2
F (0, T ;Rn).

If condition (47) is false, then we can find a \in Rm, b \in V such that for any (x, v),

bT (\sigma (x, v, t) - \sigma (x, a, t)) = 0.

Let \^xT = \xi = \zeta b (\zeta is defined in Lemma 4.2). Because (46) is V -E-well-posed, there
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exists a vector xF \in L2(\Omega ,FT , P ;Rn - h) such that for the terminal state

xT = \^xT + \^xF = \^xT +

\biggl[ 
0
xF

\biggr] 
= \zeta 

\left[     
b1
...
bh
0

\right]     +

\biggl[ 
0
xF

\biggr] 
=

\left[     
\zeta b1
...

\zeta bh
xF

\right]     \in L2(\Omega ,FT , P ;Rn),

(46) admits a solution (x(t), v(t)), i.e.,

xT = \^xT + \^xF = x0 +

\int T

0

b(x(s), v(s), s)ds+

\int T

0

\sigma (x(s), v(s), s)dw(s),

which yields

\zeta = \zeta bT b = \zeta bT b+ bT \^xF = bT (\zeta b+ \^xF ) = bTxT

= bTx0 +

\int T

0

bT b(x(s), v(s), s)ds+

\int T

0

bT\sigma (x(s), v(s), s)dw(s)

= bTx0 +

\int T

0

bT b(x(s), v(s), s)ds+

\int T

0

bT\sigma (x(s), a, s)dw(s)

= bTx0 +

\int T

0

a(s)ds+

\int T

0

b(s)dw(s).

This contradicts Lemma 4.2, so the proof is complete.

Similarly to [32], we consider the special case

\sigma (x, v, t) = \sigma 1(x, t) +G1(t)v,

where G1 is an n\times m time-variant matrix and \sigma 1(x, t) is uniformly Lipschitzian with
respect to x. We can give a simple necessary condition for the V -E-well-posedness of
(46) for this special case.

Claim 4.6. A necessary condition for the V -E-well-posedness of (46) is that for
any zero-measure set I \subseteq [0, T ], we have

(48) V \subseteq Span

\Biggl\{ \bigcup 
t\in [0,T ] - I

Im(G1(t))

\Biggr\} 
,

where V = \{ v \in Rn : \| v\| = 1, vi = 0, h < i \leq n\} .
Proof. We know that any solution (x(t), v(t)) of (46) satisfies

lim
t\rightarrow T

E\| \sigma (x(t), a, t) - \sigma (x(T ), a, T )\| 2 = 0,

b(x(\cdot ), v(\cdot ), \cdot ) \in L2
F (0, T ;Rn),

\sigma (x(\cdot ), v(\cdot ), \cdot ) \in L2
F (0, T ;Rn).

If condition (48) is false, then there exists a nonzero vector b \in V such that bTG1(t) =
0 for almost all t \in [0, T ], so for any pair (x, v), we have

bT (\sigma (x, v, t) - \sigma (x, a, t)) = bT (G1(t)(v  - a)) = 0.

This contradicts Claim 4.5. The proof is complete.
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Claim 4.7. If we define the linear space

(49) W =

\Biggl\{ 
E

\int T

0

\Phi (t)B(t)u(t) dt : u(t)(t \in [0, T ]) \in L2
F (0, T ;Rm)

\Biggr\} 

and matrix

(50) M = E

\int T

0

\Phi (s)B(s)BT (s)\Phi T (s) ds,

where \Phi (\cdot ) \in L2
F (0, T ;Rn\times n) and B(\cdot ) \in L2

F (0, T ;Rn\times m), then we have

Im(M) = W.

Proof. The proof is divided into two steps.
(1) First, we show that Im(M) \subseteq W .
Let \{ ei, i = 1, 2, . . . , n\} be a basis of the space Rn. Then

Mei = E

\int T

0

\Phi (t)B(t)BT (t)\Phi T (t) dtei = E

\int T

0

\Phi (t)B(t)BT (t)\Phi T (t)ei dt

= E

\int T

0

\Phi (t)B(t)u(t) dt,

where we have taken u(t) = BT (t)\Phi T (t)ei \in L2
F (0, T ;Rm). Thus, we have Mei \in W

for any i = 1, 2, . . . , n, and Im(M) \subseteq W holds.
(2) Second, we prove that Im(M) = W .
We use a contradiction argument and assume that this does not hold, i.e., Im(M) \subsetneq 

W . Then, there is a nonzero vector 0 \not = z \in W and zTMz = 0, so we have

0 = zTE

\int T

0

\Phi (t)B(t)BT (t)\Phi T (t) dtz = E

\int T

0

\| zT\Phi (t)B(t)\| 2 dt,

which means that

zT\Phi (t)B(t) = 0 a.e. 0 \leqslant t \leqslant T.

Because of z \in W , there is u(t) such that z = E
\int T

0
\Phi (t)B(t)u(t) dt, so we have

\| z\| 2 = zT z = zTE

\int T

0

\Phi (t)B(t)u(t) dt = E

\int T

0

zT\Phi (t)B(t)u(t) dt = 0,

which contradicts z \not = 0, and so the proof is complete.
Now, we give the proof of Theorem 3.9.
Proof. (1) Proof of the first condition.We know that any solution (x(t), v(t)) of

(46) satisfies

lim
t\rightarrow T

E\| \sigma (x(t), a, t) - \sigma (x(T ), a, T )\| = 0,

b(x(\cdot ), v(\cdot ), \cdot ) \in L2
F (0, T ;Rn),

\sigma (x(\cdot ), v(\cdot ), \cdot ) \in L2
F (0, T ;Rn).
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Because the V -E-well-posed condition of (46) is necessary for the exactly V-controllability
of GBCS (23)--(24), from Claim 4.6, we have for any zero-measure set N \subseteq [0, T ],

V (L+1)n \subseteq Span

\Biggl\{ \bigcup 
t\in [0,T ] - N

Im

\biggl( \biggl[ 
D(t) N(t)
0 ILn

\biggr] \biggr) \Biggr\} 
,

where V (L+1)n = \{ v \in R(L+1)n : \| v\| = 1, vi = 0, h < i \leq (L+1)n\} . The last (L+1)n

components of any vector in V (L+1)n are zero, so

V \subseteq Span

\Biggl\{ \bigcup 
t\in [0,T ] - N

Im(D(t))

\Biggr\} 
,

where V = \{ v \in Rn : \| v\| = 1, vi = 0, h < i \leq n\} . The proof is complete.
(2) Proof of the second condition. Applying the Ito formula to \Phi (t)X(t), where

\Phi (t) and X(t) are defined by (34) and (27), respectively, we have

\Phi (T )X(T )

= X(0) +

\int T

0

\Phi (t)dX(t) +

\int T

0

(d\Phi (t))X(t)

+

\int T

0

 - \Phi (t)C(t) \widehat C(t)
\Bigl( 
A1(t)X(t) +B1(t)u(t) + C1(t)q(t)

\Bigr) 
dt

= X(0) +

\int T

0

\Phi (t)
\Bigl( 
A(t)X(t) +B(t)u(t) + C(t)q(t)

\Bigr) 
dt

+

\int T

0

\Phi (t)
\Bigl( 
A1(t)X(t) +B1(t)u(t) + C1(t)q(t)

\Bigr) 
dw(t)

 - 
\int T

0

\Phi (t)A(t)X(t)dt  - 
\int T

0

\Phi (t)C(t) \widehat C(t)X(t)dw(t)

 - 
\int T

0

\Phi (t)C(t) \widehat C(t)
\Bigl( 
A1(t)X(t) +B1(t)u(t) + C1(t)q(t)

\Bigr) 
dt.

By simple algebraic manipulations and using the relations \widehat C(t)C1(t) = ILn,

C(t) \widehat C(t) B1(t) = 0, and C(t) \widehat C(t)A1(t) = 0, we can get

\Phi (T )X(T ) = X(0) +

\int T

0

\Phi (t)B(t)u(t)dt

+

\int T

0

\Phi (t)
\Bigl( 
A1(t)X(t) +B1(t)u(t) + C1(t)q(t)

\Bigr) 
dw(t)

 - 
\int T

0

\Phi (t)C(t) \widehat C(t)X(t)dw(t).

Taking expectation on both sides of the above relation yields

E\Phi (T )X(T ) = EX(0) + E

\int T

0

\Phi (t)B(t)u(t)dt.(51)

If the GBCS (23)--(24) is exactly V -controllable, then for any initial state x0, there is
an input u(t), under which the solution of (27) exists and Ph(x(T )) = 0; i.e., for any
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x0, there are p(0) \in RLn, u(t) such that

E\Phi (T )QT

\biggl[ 
0h\times 1

xF

\biggr] 
= E

\biggl[ 
x0

p0

\biggr] 
+ E

\int T

0

\Phi (t)B(t)u(t)dt,

where xF \in L2(\Omega ,FT , P ;Rn - h) is some vector. By simple algebraic manipulations,
we get that for any x0 \in Rn, there are a vector p0 and a control u(\cdot ) such that\biggl[ 

x0

0

\biggr] 
= E

\biggl[ 
0
p0

\biggr] 
+ E

\int T

0

\Phi (t)B(t)u(t)dt+ E\Phi (T )QT

\biggl[ 
0h\times 1

xF

\biggr] 
.

This leads to

Im

\Biggl( \biggl[ 
In
0

\biggr] \Biggr) 
\subseteq Im

\Biggl( \biggl[ \biggl[ 
0

ILn

\biggr] 
, W , \Phi TQT

\biggl[ 
0

In - h

\biggr] \biggr] \Biggr) 
,

where W is a basis matrix of linear subspace W . Thus, the matrix\biggl[ \biggl[ 
0

ILn

\biggr] 
, W , \Phi TQT

\biggl[ 
0

In - h

\biggr] \biggr] 
is of full rank. By Claim 4.7, we know that the following matrix is also full rank:\biggl[ \biggl[ 

0
ILn

\biggr] 
, M(T ), \Phi TQT

\biggl[ 
0

In - h

\biggr] \biggr] 
,

so the proof is complete.

4.2. Proof of Theorem 3.10.

Proof. The first part of this theorem can be derived directly from the definition
of V -controllability. Now we only need to prove the second part.

By Lemma 4.1, we know that for any input u(\cdot ), the existence of a unique Nash
equilibrium is equivalent to the existence of a unique solution of the corresponding
FBSDE (44). Then, by Theorem 3.6, we only need to study the exact V -controllability
of FBSDE (44).

The necessity is just the result of Theorem 3.9, so we only need to prove the
sufficiency.

For any initial state x0 \in Rn and terminal state xh \in L2
FT

(Rh), by the existence

of the solution of BSDE (35), we know that there exist xxh

F \in L2(\Omega ,FT , P ;Rn - h)

and uxh

(\cdot ) \in U such that BSDE (35) admits a solution (Xxh

(\cdot ), qxh

(\cdot )), and because
of Assumption 3.7 and Assumption 3.8, the solution is unique.

If the matrix (36) is of full rank and BSDE (35) admits a solution for any terminal
state, then for any given initial state x \in Rn, there exists an input u(x)(\cdot ) \in U such

that FBSDE (44) admits a unique solution for x(0) = x and x(T ) =

\biggl[ 
0
x0

\biggr] 
for some

x0 \in L2(\Omega ,FT , P ;Rn - h).

If we let u(\cdot ) = u(x0 - xxh
(0)) + uxh

, where xxh

(0) are the first n components of

Xxh

(0), then we can easily verify that, under this input, the FBSDE (44) admits a

unique solution for x(0) = x0 and x(T ) =

\biggl[ 
xh

xF

\biggr] 
, so the GBCS is V -controllable.
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4.3. Proof of Theorem 3.11.

Proof. Under the assumptions of Theorem 3.11, we can use the linear transfor-
mation

(52) v(t) = H(t)

\biggl[ 
Z(t)
U(t)

\biggr] 
+K(t)X(t)

to transform (46) into the following equivalent form:

(53)

\left\{   dX(t) =
\Bigl( \widehat A(t)X(t) + \widehat A1(t)Z(t) + \widehat B(t)U(t)

\Bigr) 
dt+ Z(t)dw(t),

x(0) = x0, p(T ) = QTx(T ).

The equivalence between (46) and (53) is that if there is a pair (Z(\cdot ), U(\cdot )) such that
(53) has a solution X(\cdot ), then we can construct a v(t) such that (46) has the same
solution X(\cdot ) and vice versa.

The sufficiency and necessity will be proved separately.
(1) Necessity. Applying the Ito formula to \Phi (t)X(t), where \Phi (t) and X(t) are

defined by (37) and (53), respectively, we have

\Phi (T )X(T )

= X(0) +

\int T

0

\Phi (t)dX(t) +

\int T

0

(d\Phi (t))X(t) +

\int T

0

 - \Phi (t) \widehat A1(t)Z(t)dt

= X(0) +

\int T

0

\Phi (t)
\Bigl( \widehat A(t)X(t) + \widehat A1(t)Z(t) + \widehat B(t)U(t)

\Bigr) 
dt +

\int T

0

\Phi (t)Z(t)dw(t)

 - 
\int T

0

\Phi (t) \widehat A(t)X(t)dt  - 
\int T

0

\Phi (t) \widehat A1(t)X(t)dw(t)  - 
\int T

0

\Phi (t) \widehat A1(t)Z(t)dt

= X(0) +

\int T

0

\Phi (t) \widehat B(t)U(t)dt+

\int T

0

\Phi (t)
\Bigl( 
Z(t) - \widehat A1(t)X(t)

\Bigr) 
dw(t).

Taking expectation on both sides of the above relation yields

E\Phi (T )X(T ) = EX(0) + E

\int T

0

\Phi (t) \widehat B(t)U(t)dt.(54)

Consider the following BSDE:

(55)

\Biggl\{ 
dX(t) = ( \widehat A(t)X(t) + \widehat A1(t)Z(t) + \widehat B(t)U(t))dt+ Z(t)dw(t),

X(T ) = 0,

where x \in L2
FT

(Rn). According to [32], for each U(t) \in L2
F (0, T ;Rm), there exists a

unique pair (X(\cdot ), Z(\cdot )) \in L2
F (0, T ;R(2L+1)n) satisfying the above BSDE. We denote

this pair by (XU,x(\cdot ), ZU,x(\cdot )).
Define the spaces

S0 = \{ XU,0(0) : U(t) \in L2
F (0, T ;Rm)\} ,

Sx0
= \{ xU,0(0) : XU,0(0) \in S0\} ,

(56)

where xU,0(0) are the first n components of XU,0(0). The space Sx0
consists of the

initial states which can be controlled to zero; i.e., if the initial state of the GBCS
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(23)--(24) is x0 \in Sx0
, then there is an input of the regulator, under which the state

of the system will reach 0 at time T .
If the GBCS (23)--(24) is totally controllable, then for any initial state x0, there

is an input U(t), under which the solution of (55) exists and x(0) = x0, where x(0)
are the first n components of X(0), which means that Sx0 = Rn.

If we can prove that S0 = Im(M(T )), then Sx0
= Rn can imply the full rank of

the matrix in Theorem 3.11, and so the proof of necessity is completed.
Now we prove the equality S0 = Im(M(T )).
Upon substituting the terminal state X(T ) = 0 into (54), we get

X(0) =  - E

\int T

0

\Phi (t) \widehat B(t)U(t)dt.(57)

By Claim 4.7, we obtain S0 = Im(M(T )).
(2) Sufficiency. If the matrix in Theorem 3.11 is of full rank, then Sx0

= Rn; i.e.,
for any initial state x0, there is an input U(t), under which the solution of (55) exists
and x(0) = x0. Denote the corresponding regulator input Ux0(\cdot )

For the given terminal state xT \in L2
FT

(Rn), we know that there is a unique pair

(XXT (\cdot ), ZXT (\cdot )), which solves the following BSDE:

(58)

\Biggl\{ 
dX(t) = ( \widehat A(t)X(t) + \widehat A1(t)Z(t))dt+ Z(t)dw(t),

x(T ) = xT , p(T ) = QTx(T ).

For the given initial state x0 \in Rn, let the input of the regulator be Ux0 - xxT (0)(\cdot );
then (53) is solvable and x(T ) = xT .

The above analysis shows that under the conditions of Theorem 3.11, for any given
initial state x0 \in Rn and terminal state xT \in L2

FT
(Rn), we can construct an input

of the regulator, under which the solution of (53) is solvable and x(T ) = xT . This is
just the definition of total controllability of GBCS, and so the proof of sufficiency is
complete.

4.4. Proof of Theorem 3.13. From Theorem 3.11, we know that the con-
dition of Theorem 3.13 is sufficient. We only need to prove that the condition
rank(D) = n is necessary, which can be obtained from Theorem 3.9, and so the proof is
complete.

4.5. Proof of Theorem 3.14. To prove Theorem 3.14, we need the following
claim, which can be found in [32].

Claim 4.8 ([32]). Consider the following BSDE:

(59)

\Biggl\{ 
 - dx(t) = (Ax(t) +A1z(t) +Bu(t))dt - z(t)dw(t),

x(T ) = 0.

For each u(\cdot ) \in L2
F (0, T ;Rm), there exists a unique pair (x(\cdot ), z(\cdot )) \in L2

F (0, T ;R2n)
satisfying the above BSDE. We denote this pair by (xu(\cdot ), zu(\cdot )). Then we have the
following relation:

(60) \{ xu
0 : u(\cdot ) \in L2

F (0, T ;Rm)\} = Im([B,AB,A1B,AA1B,A1AB, . . .]).

Proof. From Theorem 3.13, we know that if we have the relation Im(M(T )) =
Im(QC), then the theorem holds. In fact, this relation can be deduced from (55)--(57),
the relation S0 = Im(M(T )) (see the proof of Theorem 3.11), and Claim 4.8. Hence,
the proof is complete.
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5. Conclusions. In this paper, we have investigated the controllability of the
Nash equilibrium of a class of stochastic game-based control systems (GBCSs). The
motivation for studying GBCSs comes from rich situations in the real world, where
the global-regulator can change the macrostates of the system by regulating the Nash
equilibrium formed by the agents at the lower level via noncooperative differential
games. This framework extends the classical framework of control theory and can
be applied in the regulation of a wider class of practical complex systems. We have
first introduced a general framework for the controllability of stochastic GBCSs and
transformed the controllability problem of stochastic GBCSs into the controllability
problem of corresponding forward-backward stochastic differential equations, and then
presented some necessary and sufficient conditions for the controllability of linear-
quadratic stochastic GBCSs. Compared with the controllability of classical control
systems, the key difficulty in this work is that we have to analyze the controllability
of the associated forward-backward stochastic differential equations, which has rarely
been explored in the literature. For future investigation, it would be interesting to
generalize the results of this paper to more complicated situations or to investigate
other important control problems, such as robust and adaptive control.

Appendix A. Proof of Lemma 4.1. We believe that the result of the lemma
is not new. Since we cannot find an exact reference, for convenience we sketch a proof
here.

The necessity of the lemma is obvious. Now, we give the proof of sufficiency.
For any fixed input u(t), t \in [0, T ], suppose that the FBSDE (44) admits a solution

(x(\cdot ), p(\cdot ), q(\cdot )); we can prove that the strategy profile

(61)
\Bigl\{ 
u\ast 
i (t) = R - 1

i (t)
\Bigl( 
BT

i (t)pi(t) +DT
i (t)qi(t)

\Bigr) 
, i = 1, . . . , L

\Bigr\} 
is a Nash equilibrium.

The fact that u\ast 
i (\cdot )(i = 1, . . . , L) is an open-loop admissible strategy for agent

i is the consequence of the boundedness of R - 1
i (t), Bi(t), Di(t) and the fact that

pi(\cdot ) \in L2
F (0, T ;Rn), qi(\cdot ) \in L2

F (0, T ;Rn).
Now, we choose any agent i, without loss of generality, assume i = 1, and fix the

strategies of the other L - 1 agents as the control in (61). If we can prove that u\ast 
1(\cdot )

is the optimal control of agent 1, then (61) is a Nash equilibrium. We do this next.
Substituting u\ast 

i (\cdot ) (i = 2, . . . , L) for ui(\cdot ) (i = 2, . . . , L) in systems (23) and (24),
we solve the following minimization problem for agent 1:

(62) min
u1(\cdot )\in U1

J1(u1(\cdot ), u\ast 
2(\cdot ), . . . , u\ast 

L(\cdot )),

where

(63)

\left\{                 

dx(t) =

\Biggl( 
A(t)x(t) +B1(t)u1(t) +

L\sum 
i=2

Bi(t)u
\ast 
i (t) +B(t)u(t)

\Biggr) 
dt

+

\Biggl( 
C(t)x(t) +D1(t)u1(t) +

L\sum 
i=2

Di(t)u
\ast 
i (t) +D(t)u(t)

\Biggr) 
dw(t),

x(0) = x0.

If Assumption 3.8 holds, i.e., equations (29) have a set of strongly regular solu-
tions, then the minimization problem has a unique open-loop optional control, and
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the map u1(\cdot ) \rightarrow J0(u1(\cdot )) = J0
1 (u1(\cdot ), u\ast 

2, . . . , u
\ast 
L) is uniformly convex [36], where

(64)

J0(u1(\cdot )) =
1

2
E

\Biggl\{ \int T

0

\Bigl( 
xT
1 (t)Q1(t)x1(t) + uT

1 (t)R1(t)u1(t)
\Bigr) 
dt+ xT

1 (T )Q1Tx1(T )

\Biggr\} 
,

and x1(\cdot ) is the solution to the following SDE:

(65)

\left\{   dx1(t) =
\Bigl( 
A(t)x1(t) +B1(t)u1(t)

\Bigr) 
dt+

\Bigl( 
C(t)x1(t) +D1(t)u1(t)

\Bigr) 
dw(t),

x1(0) = 0, t \in [0, T ].

The uniform convexity implies that for any u1(\cdot ) \in U1, J
0(u1(\cdot )) \geq 0.

For any \lambda \in R and v(\cdot ) \in U1, using a method similar to that in [37], we have

J1(u
\ast 
1(\cdot ) + \lambda v(\cdot ), u\ast 

2, . . . , u
\ast 
L) - J1(u

\ast 
1(\cdot ), u\ast 

2, . . . , u
\ast 
L)

= \lambda 2J0(v(\cdot )) \geq 0,

so u\ast 
1(\cdot ) is the unique open-loop optimal control.
From the proof above, we know that for any solution (x(\cdot ), p(\cdot ), q(\cdot )) of FBSDE

(44), we can construct a Nash equilibrium and vice versa, and so there is a 1-1 relation
between the solution of (44) and the Nash equilibrium of the stochastic differential
game (23)--(24) formed by the L lower level agents.

If both Assumption 3.7 and Assumption 3.8 hold, then we will prove that for any
input u(\cdot ) of the regulator, the Nash equilibrium is unique. We use a contradiction
argument and assume that this does not hold, i.e., for some input u(\cdot ), there are
at least two different Nash equilibria; then we know that (44) admits at least two
different solutions (x1(\cdot ), p1(\cdot ), q1(\cdot )) and (x2(\cdot ), p2(\cdot ), q2(\cdot )), and we can conclude that
the tuple (x(\cdot ), p(\cdot ), q(\cdot )) = (x1(\cdot ) - x2(\cdot ), p1(\cdot ) - p2(\cdot ), q1(\cdot ) - q2(\cdot )) \not = 0 is a solution
of the following FBSDE:

(66)

\left\{                 

dx(t) =
\Bigl( 
A(t)x(t) + S(t)p(t) +M(t)q(t)

\Bigr) 
dt

+
\Bigl( 
C(t)x(t) + T (t)p(t) +N(t)q(t)

\Bigr) 
dw(t),

dp(t) =
\Bigl( 
Q(t)x(t) - IL \otimes AT (t)p(t) - IL \otimes CT (t)q(t)

\Bigr) 
dt+ q(t)dw(t),

x(0) = 0, p(T ) = QTx(T ).

It is obvious that (0, 0, 0) is also a solution of FBSDE (66). We obtain that there are
at least two different solutions of (66). This contradicts Assumption 3.7, and so the
proof of Lemma 4.1 is completed.
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