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Abstract

Dynamical systems with binary-valued observations are widely used in information industry, technology of biological pharmacy
and other fields. Though there have been much efforts devoted to the identification of such systems, most of the previous
investigations are based on first-order gradient algorithm which usually has much slower convergence rate than the Quasi-
Newton algorithm. Moreover, persistence of excitation(PE) conditions are usually required to guarantee consistent parameter
estimates in the existing literature, which are hard to be verified or guaranteed for feedback control systems. In this paper,
we propose an online projected Quasi-Newton type algorithm for parameter estimation of stochastic regression models with
binary-valued observations and varying thresholds. By using both the stochastic Lyapunov function and martingale estimation
methods, we establish the strong consistency of the estimation algorithm and provide the convergence rate, under a signal
condition which is considerably weaker than the traditional PE condition and coincides with the weakest possible excitation
known for the classical least square algorithm of stochastic regression models. Convergence of adaptive predictors and their
applications in adaptive control are also discussed.
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1 Introduction

1.1 Background

The purpose of this paper is to study parameter esti-
mation and adaptation for stochastic systems, in which
the system output cannot be measured accurately, and
the only available information is whether or not the out-
put belongs to some set (Wang et al. (2003)). Specifi-
cally, consider the following standard stochastic regres-
sion model:

yk+1 = ϕTk θ + vk+1, k = 0, 1, 2, . . . (1)

where yk+1 ∈ R1, vk+1 ∈ R1, ϕk ∈ Rp(p ≥ 1) represent
the system output, random noise and regression vector,
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respectively, and θ ∈ Rp is an unknown parameter vector
to be estimated. The system output yk+1 can only be
observed with binary-valued measurements:

sk+1 = I (yk+1 ≥ ck) =

{
1, yk+1 ≥ ck;

0, otherwise,
(2)

where {ck} denotes a given threshold sequence, and I(·)
is the indicator function.

This type of observations emerges widely in practical
systems with the development of science and technol-
ogy. One example comes from neuron systems (Ghysen
(2003)) where, instead of measuring exact internal po-
tential, the systems only provide information of states
(excitation or inhibition). When the potential is smaller
than the potential threshold, the neuron shows the inhi-
bition state, otherwise shows the excitation state. The
objective of classification via neural network is to learn
the system parameters based on states of neurons only.
Another example comes from sensor networks (Zhang
et al. (2021)) where, for set-valued sensor networks,
the information from each sensor turns out to be quan-
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tized observations with finite number of bits or even 1
bit. Specifically, each sensor only provide information
whether the measured value is larger than a designed
threshold or not. Usually, such sensors are more cost
effective than regular sensors. Besides, there are also
numerous other examples such as ATM ABR traffic
control; gas content sensors (CO2, H2, etc.) in gas and
oil industry and switching sensors for shift-by-wire in
automotive applications (Wang et al. (2003)).

1.2 Related works

Due to the widely use of systems with quantized obser-
vations, a number of basic problems concerning iden-
tification and control emerge, which need theoretical
investigations. In fact, the estimation of quantized out-
put systems has constituted a vast literature recently.
Wang et al. (2003); Wang and Yin (2007); Wang et al.
(2006); Zhao et al. (2007) gave a strongly consistent
identification algorithm under periodic signals. Jafari
et al. (2012) proposed a recursive identification algo-
rithm for FIR systems with binary-valued observations,
and proved its convergence under α-mixing property
of the signals. Later, Guo and Zhao (2013) proposed
a recursive projection algorithm for FIR systems with
binary-valued observations and fixed thresholds. The
paper established the convergence rate O

(
log k
k

)
un-

der the following strongly persistent excitation con-
dition

∑k+N−1
l=k ϕlϕ

T
l ≥ εI, k = 1, 2, . . ., for some

fixed N and constant ϵ > 0. Besides, Marelli et al.
(2013) considered ARMA systems with time-varying K
- level scalar quantizer also random packet dropouts,
and gave the consistence result under independent and
identically distributed(i.i.d.) conditions. The adaptive
quantizer is considered in You (2015) for FIR systems,
provided that the signals satisfy i.i.d conditions with
E[ϕiϕTi ] = H > 0. Moreover, under some persistent
excitation conditions, Zhao et al. (2016) introduced an
EM-type algorithm, and proved that the maximum like-
lihood criterion can be achieved as the number of itera-
tions goes to infinity. Song (2018) presented a strongly
consistent estimate and obtained the convergence rate
for ARMA systems with binary sensors and unknown
threshold under i.i.d Gaussian inputs. Zhang et al.
(2021) considered a Quasi-Newton type algorithm un-
der the following persistent excitation (PE) condition:
lim infk→∞ λmin

{
1
k

∑k
i=1 ϕiϕ

T
i

}
> 0, where λmin {·}

represents the minimal eigenvalue of the matrix in
question. Numerical simulations in Zhang et al. (2021)
demonstrated that their Quasi-Newton type algorithm
has equivalent convergence properties for first-order
FIR systems and high-order systems, where strong
consistency and asymptotic efficiency for first-order
FIR systems are also established. For other methods,
We refer the readers to Bottegal et al. (2017), Wang
and Zhang (2014) about kernel-based methods and
quadratic programming-based methods, among others.

However, almost all of the existing investigations on
identification suffer from some fundamental limitations.

Firstly, for the system with regular output sensors, i.e.,
sk+1 = yk+1 in (2), substantial progresses had been
made in the area of adaptive estimation and control (e.g.,
Chen and Guo (1991)), and the excitation condition for
consistency of parameter estimates need not to be per-
sistent. For example, it is widely known that the weakest
possible excitation condition for strong consistency of
the least-squares estimate for stochastic regression mod-
els is the following (Lai and Wei (1982)):{
log λmax

(
n∑

i=1

ϕiϕ
T
i

)}
/λmin

(
n∑
1

ϕiϕ
T
i

)
→ 0. a.s.,

(3)
which is actually a decaying excitation condition, is
much weaker than the classical PE condition, and can
be applied in adaptive feedback control (see e.g., Chen
and Guo (1991)). However, as mentioned above, for
identification of systems with binary-valued sensors,
almost all of the existing literature need the PE con-
ditions on signals for strong consistency, and actually,
most need i.i.d or periodic signal assumptions. Though
these conditions may be satisfied for some open-loop or
off-line identification, they are much more difficult to be
satisfied or verified for closed-loop system identification,
since the input and output data of such systems are
generally determined by nonlinear stochastic dynamic
equations (Chen and Guo (1991)). Consequently, the
problem whether or not the PE condition can be essen-
tially weakened to e.g. (3) for identification of stochastic
systems with binary-valued sensors still remains open.

Secondly, to the best of the authors’ knowledge, almost
all of the existing estimation algorithms for stochas-
tic systems with binary-valued observations and given
thresholds, are designed with first-order gradient. This
kind of algorithms is designed by taking the same step-
size for each coordinates, which may alleviate the com-
plexity in the convergence analysis, but will sacrifice the
convergence rate of the algorithms (Ljung and Söder-
ström (1983)). To improve the convergence properties,
it is necessary to consider estimation algorithms with
adaptation gain being a matrix (e.g., Hessian matrix or
its modifications), rather than a scalar.

Thirdly, there are only a few results on adaptive con-
trol with binary-valued observations in the existing lit-
erature (c.f.,e.g., Guo et al. (2011), Zhao et al. (2013)),
where some kinds of FIR control systems are considered
and consistency of parameter estimates is needed for the
optimality of adaptive control systems.

The goal of this paper is to show that the above men-
tioned limitations can be considerably relaxed or re-
moved.
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1.3 Contributions

Inspired by the method in Guo (1995), this paper pro-
poses a new recursive projected Quasi-Newton type al-
gorithm which can be viewed as a natural extension of
classical linear least-square algorithm with a projection
operator. The main contributions of this paper can be
summarized as follows:

• We propose a projected recursive Quasi-Newton
type algorithm for stochastic regression systems with
binary-valued observations. In the area of identifica-
tion with binary-valued observations and given fixed
thresholds, this paper appears to be the first to estab-
lish almost sure convergence for Quasi-Newton type
estimation algorithms where the adaptation gains are
matrices.

• The weakest possible excitation condition (3) known
for strong consistency of the classical least-squares
algorithm, is proven to be sufficient for strong con-
sistency of the proposed new estimation algorithm
in the current binary-valued observation case. This
appears to be the first time to achieve such a strong
result in the literature of system identification with
binary-valued observations.

• We also obtain a celebrated result on the asymptotic
order of the accumulated regret of adaptive prediction,
that is

∑n
k=0 [E (yk+1 | Fk)− ŷk+1]

2
= O(log n), a.s,

which does not need any excitation condition and can
be conveniently used in adaptive control to give better
results than the existing ones in the literature.

The remainder of this paper is organized as follows. In
Section 2, we give the main results of this paper, includ-
ing the assumptions, proposed algorithms and main the-
orems; Section 3 presents the proofs of the main results
together with some key lemmas. Some numerical exam-
ples are provided in Section 4. Finally, we conclude the
paper with some remarks.

2 The main results

Consider the stochastic regression model (1)-(2) with
binary-valued observations. The objectives of this paper
are, to propose a strongly consistent estimator {θ̂k} for
the unknown parameter vector θ under a non-PE con-
dition, and to give an asymptotically optimal adaptive
predictor {ŷk+1} for the regular output {yk+1} together
with its applications in adaptive tracking.

2.1 Notations and assumptions

For our purpose, we introduce some notations and as-
sumptions first.

Notations. By ∥ · ∥, we denote the Euclidean-norm of
vectors or matrices. The spectrum of a symmetric ma-
trix M is denoted by {λi {M}}, where the maximum
and minimum eigenvalues are denoted by λmax {M} and
λmin {M} respectively. Moreover, by detM or |M | we
mean the determinant of the matrix M .

Assumption 1 Let {Fk, k ≥ 0} be a non-decreasing se-
quence of σ−algebras such that ϕk isFk−measurable with
a known upper bound:

sup
k≥1

∥ϕk∥ =M <∞, a.s. (4)

where M may be a random variable.

Assumption 2 The true parameter θ belongs to a
bounded convex set D ⊆ Rn, and we denote

sup
x∈D

∥x∥ = L <∞, a.s. (5)

Assumption 3 The given threshold {ck,Fk} is an
adapted sequence, with a known upper bound:

sup
k≥0

|ck| = C <∞, a.s. (6)

where C may be a random variable.

Assumption 4 The noise vk is Fk−measurable and in-
tegrable. For any k ≥ 1, the conditional probability den-
sity function of vk given Fk−1, denoted by fk(·), is known
and satisfies

inf
|x|≤LM+C

{fk(x)} > 0, k = 0, 1, · · · , a.s. (7)

where L, M and C are defined by (4), (5) and (6).

Remark 1 It can be easily seen that if the threshold ck
is fixed, then Assumption 3 will be satisfied automati-
cally. Moreover, if the noise vk is independent with the
σ−algebraFk−1, and with identically normal distribution
as assumed previously (see,e.g., Guo and Zhao (2013),
Zhang et al. (2021)), then the condition (7) in Assump-
tion 4 will be satisfied.

2.2 Recursive algorithm and adaptive predictor

To estimate the unknown parameter θ in the binary-
valued observation model (1)-(2), it is natural to con-
struct a Quasi-Newton type estimation algorithm. To en-
sure the boundedness of the estimates {θ̂k}while keeping
some celebrated convergence properties, we need to in-
troduce a suitable projection operator in the algorithm.
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Definition 1 For the linear space Rp (p ≥ 1), the
weighted norm ∥ · ∥Q associated with a positive definite
matrix Q is defined as

∥x∥2Q = xTQx, ∀x ∈ Rp. (8)

Definition 2 For a given convex compact set D ⊆ Rp

and a positive definite matrix Q, the projection operator
ΠQ(·) is defined as

ΠQ(x) = argmin
ω∈D

∥x− ω∥Q, ∀x ∈ Rp (9)

Remark 2 The well-posedness of ΠQ(x) is ensured by
the positive definite property of the matrix Q and the
convexity of D (Cheney (2001)).

Our recursive identification algorithm is a kind of Quasi-
Newton algorithm, defined as follows:

Algorithm 1

θ̂k+1 = ΠP−1
k+1

{
θ̂k + akβkPkϕkek+1

}
, (10)

Pk+1 = Pk − β2
kakPkϕkϕ

T
k Pk, (11)

ek+1 = sk+1 − 1 + Fk+1(ck − ϕTk θ̂k), (12)

ak =
1

1 + β2
kϕ

T
k Pkϕk

, (13)

βk = min

{
βk−1, inf

|x|≤LM+C
fk+1(x)

}
, (14)

where θ̂k is the estimate of θ at time k; ΠP−1
k+1

is a pro-
jection operator defined as in Definition 2, in order to
keep the boundedness of the estimates {θ̂k}, where D
is given in Assumption 2; Fk is the conditional prob-
ability distribution function of vk given the σ−algbra
Fk−1; the initial value θ̂0 can be chosen arbitrarily in D;
β0 = min

{
1, inf |x|≤LM+C f1(x)

}
; P0 > 0 can also be

chosen arbitrarily.

Note that by (11) and the well-known matrix inversion
formula (see, e.g., Guo (2020), Theorem 1.1.17), the in-
verse of Pk can be recursively rewritten as

P−1
k+1 = P−1

k + β2
kϕkϕ

T
k , k = 0, 1, · · · . (15)

Thus, P−1
k is positive-definite since the initial condition

P0 > 0, which ensures the well-posedness of the projec-
tion operator ΠP−1

k
in Algorithm 1.

Moreover, since both ck and ϕk are Fk−measurable, we
have

E(yk+1 | Fk) = θTϕk + E (vk+1 | Fk) (16)

which is the best prediction for yk+1 given Fk in the
mean square sense. Note that E (vk+1 | Fk) can be ob-
tained by the known conditional probability density
function fk+1 (·) in Assumption 4. Replacing the un-
known parameter θ in (16) by its estimate θ̂k, we can
obtain a natural adaptive predictor of yk+1 as follows:

ŷk+1 = θ̂Tk ϕk + E (vk+1 | Fk) . (17)

The difference between the best prediction and adaptive
prediction can be regarded as regret, denoted as Rk, i.e.,

Rk = [E(yk+1 | Fk)− ŷk+1]
2
=
(
θ̃Tk ϕk

)2
, (18)

where θ̃k = θ − θ̂k. One may naturally expect that the
regret Rk be small in some sense, which will be useful in
adaptive control. Details will be discussed in the subse-
quent section.

Throughout the sequel, for convenience , let us introduce
the following notations:

γk = 1/βk, (19)

ωk+1 = sk+1 − 1 + Fk+1(ck − θTϕk), (20)

ψk = Fk+1(ck − θ̂Tk ϕk)− Fk+1(ck − θTϕk)). (21)

2.3 Global convergence results

The following three theorems are the main results of this
paper. Under no excitation conditions, we will establish
some nice asymptotic upper bounds for the parameter
estimation error, the accumulated regrets of adaptive
prediction, and the tracking error of adaptive control.

Theorem 1 Under Assumptions 1-4, the estimation er-
ror produced by the estimation Algorithm 1 has the fol-
lowing upper bound:

∥∥∥θ̃n+1

∥∥∥2 =O

(
log
(
λmax

{
P−1
n+1

})
λmin

{
P−1
n+1

} )
, a.s. (22)

where θ̃k = θ − θ̂k.

The detailed proof of Theorem 1 is supplied in the next
section.

Corollary 1 Let the conditions of Theorem 1 hold, and
let the conditional probability density function {fk(x)} of
the noise sequence have a uniformly positive lower bound:

inf
|x|≤LM+C,k≥0

{fk(x)} > 0, a.s. (23)
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Then

∥∥∥θ̃n+1

∥∥∥2 = O

(
log n

λmin

{
P−1
0 +

∑n
i=1 ϕiϕ

T
i

}) , a.s.

(24)

Remark 3 Let the noise vk be independent with
σ−algebra Fk−1, and normally distributed with zero
mean and variance σ2

k, k ≥ 1. Then the condition (23)
will be satisfied if

{
σ2
k

}
has an upper and positive lower

bound.

Remark 4 From (24) we know that if we have

log n = o

(
λmin

{
n∑

i=1

ϕiϕ
T
i

})
, a.s. (25)

as n → ∞, then the estimates given by Algorithm 1
will be strongly consistent, i.e., limn→∞ ∥θ̃n∥ = 0, a.s.
The condition (25) is much weaker than the traditional
persistent excitation condition, which requires that n =

O

(
λmin

{
n∑

i=1

ϕiϕ
T
i

})
. Also, the condition (25) is equal

to the Lai-Wei excitation condition (3) for classical least-
squares algorithm with regular output sensors.

Theorem 2 Consider the estimation Algorithm 1 under
Assumptions 1-4. The sample paths of the accumulated
regrets will have the following upper bound:

n∑
k=0

Rk = O
(
γ2n log |P−1

n+1|
)
, a.s. (26)

where Rk, γk are defined by (18) and (19), respectively.

The proof of Theorem 2 is given in Section 3.

According to Theorem 2, one can directly deduce the
following corollary.

Corollary 2 Let the conditions of Theorem 2 hold, and
let {fk(x)} be the conditional probability density function
of the noise sequence as defined in Assumption 4. Then we
have the following two basic results for the accumulated
regret of adaptive prediction:

• If {fk(x)} has a uniformly positive lower bound, i.e.

inf
|x|≤LM+C,k≥0

{fk(x)} > 0, a.s. (27)

then
n∑

k=0

Rk = O(log n), a.s. (28)

• If {fk(x)} does not have a uniformly positive lower
bound but satisfies√

log k

k
= o

(
inf

|x|≤LM+C
{fk(x)}

)
, a.s. (29)

then
n∑

k=0

Rk = o(n), a.s. (30)

Remark 5 Let the noise sequence {vk} be independent
and normally distributed with zero mean and variance{
σ2
k

}
. Then the condition (27) will be satisfied if

{
σ2
k

}
has both upper and lower positive bounds; the conditions
(29) will be satisfied if σ2

k → 0 and σ2
k log k → ∞.

Remark 6 The result (28) in Corollary 2 is similar to
the result for the classical LS algorithm for linear stochas-
tic regression models with regular sensors, where the or-
der O(log n) for the accumulated regrets is the best pos-
sible among all adaptive predictors (see Lai (1986)).

As in the regular observation case (see Guo (1995)), an
important application of Theorem 2 is in adaptive con-
trol of stochastic systems with binary-valued observa-
tions, as stated in the following theorem:

Theorem 3 Let the conditions of Theorem 2 hold. And
let the conditional probability density function {fk(x)}
satisfy (27) and

sup
k

E [|vk|α | Fk−1] <∞, a.s., (31)

for some α > 4. If the regression vectors ϕk can be influ-
enced by an input signal uk, such that for a given bounded
sequence of reference signals {y∗k+1}, the following equa-
tion can be satisfied by choosing uk:

θ̂Tk ϕk + E(vk+1 | Fk) = y∗k+1. (32)

Then the averaged tracking error Jn, defined by

Jn =
1

n

n−1∑
k=0

(
yk+1 − y∗k+1

)2
, (33)

will approach to its minimum value 1
n

n∑
k=1

σ2
k with the fol-

lowing best possible almost sure convergence rate:∣∣∣∣∣Jn − 1

n

n∑
k=1

σ2
k

∣∣∣∣∣ = O

(√
log log n

n

)
, a.s. (34)

where σ2
k = E

{
[vk − E(vk | Fk−1)]

2 | Fk−1

}
.
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The detailed proof of Theorem 3 is given in the next
section.

Remark 7 Under Assumption 4, E[vk|Fk−1] can be cal-
culated by the known conditional probablity density func-
tion fk(·) as follows:

E[vk|Fk−1] =

∫ ∞

−∞
xfk(x)dx.

Thus, the adaptive control can be designed from (32).

3 Proofs of the main results

To prove the main results, we first introduce several lem-
mas.

Lemma 1 (Cheney (2001)). The projection operator
given by Definition 2 satisfies

∥ΠQ(x)−ΠQ(y)∥Q ≤ ∥x− y∥Q ∀x, y ∈ Rp (35)

Lemma 2 (Chen and Guo (1991)). Let {ωn,Fn} be a
martingale difference sequence and {fn,Fn} an adapted
sequence. If

sup
n

E[|ωn+1|α | Fn] <∞ a.s. (36)

for some α ∈ (0, 2], then as n→ ∞:

n∑
i=0

fiωi+1 = O(sn(α) log
1
α+η(sαn(α) + e)) a.s.,∀η > 0,

(37)
where

sn(α) =

(
n∑

i=0

|fi|α
) 1

α

(38)

Lemma 3 (Lai and Wei (1982)). Let X1, X2, · · · be a
sequence of vectors in Rp(p ≥ 1) and let An = A0 +∑n

i=1XiX
T
i . Let |An| denote the determinant of An. As-

sume that A0 is nonsingular, then as n→ ∞

n∑
k=0

XT
k A

−1
k Xk

1 +XT
k A

−1
k Xk

= O(log(|An|)). (39)

Lemma 4 (Guo (1995)). Let X1, X2, · · · be any
bounded sequence of vectors in Rp (p ≥ 1). Denote
An = A0 +

∑n
i=1XiX

T
i with A0 > 0, then we have

∞∑
k=0

(
XT

k A
−1
k Xk

)2
<∞. (40)

Finally, the proofs of Theorems 1-3 will immediately fol-
low from the following Lemma 5, which can be proven
by using Lemmas 1-4.

Lemma 5 Let Assumptions 1-4 be satisfied. Then the
parameter estimate given by Algorithm 1 has the follow-
ing property as n → ∞:

θ̃Tn+1P
−1
n+1θ̃n+1 + β2

n

n∑
k=0

(
θ̃Tk ϕk

)2
= O

(
log |P−1

n+1|
)
.

(41)

Proof. By Assumptions 1-4 and (10)-(14), ψk is
Fk−measurable, and satisfies

|ψk| ≤ 1, k = 0, 1, · · · (42)

Moreover, by (16) and (20)

E(ωk+1 | Fk) = 0, (43)

which means {ωk,Fk} is a martingale difference se-
quence.

Following the analysis ideas of the classical least-squares
for linear stochastic regression models (see e.g., Moore
(1978), Lai and Wei (1982), Guo (1995)), we consider
the following stochastic Lyapunov function:

Vk = θ̃Tk P
−1
k θ̃k.

By Lemma 1 and Algorithm 1 , we know that

Vk+1 = θ̃Tk+1P
−1
k+1θ̃k+1

≤(θ̃k − akPkβkϕkek+1)
TP−1

k+1·
(θ̃k − akPkβkϕkek+1)

=[θ̃k − akPkβkϕk(ψk + ωk+1)]
TP−1

k+1·
[θ̃k − akPkβkϕk(ψk + ωk+1)]

=θ̃Tk P
−1
k+1θ̃k − 2akβkθ̃

T
k P

−1
k+1Pkϕkψk

+ a2kβ
2
kψ

2
kϕ

T
k PkP

−1
k+1Pkϕk

+ 2a2kβ
2
kψkϕ

T
k PkP

−1
k+1Pkϕkωk+1

− 2akβkϕ
T
k PkP

−1
k+1θ̃kωk+1

+ a2kβ
2
kϕ

T
k PkP

−1
k+1Pkϕkω

2
k+1.

(44)

Let us now analyze the right-hand-side (RHS) of (44)
term by term. From (15), we know that

θ̃Tk P
−1
k+1θ̃k = θ̃Tk P

−1
k θ̃k + β2

k(θ̃
T
k ϕk)

2. (45)
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Moreover, by (15) again, we know that

akP
−1
k+1Pkϕk

=ak
(
I + β2

kϕkϕ
T
k Pk

)
ϕk

=akϕk
(
1 + β2

kϕ
T
k Pkϕk

)
= ϕk.

(46)

Hence, we have

2akβkθ̃
T
k P

−1
k+1Pkϕkψk

=2βkθ̃
T
k ϕkψk = 2βk|θ̃Tk ϕk| · |ψk|

≥2β2
k(θ̃

T
k ϕk)

2,

(47)

where the second equality is sinceFk+1(·) is an increasing
function, and the last inequality holds by (14) and

|ψk| =

∣∣∣∣∣
∫ ck−θ̂T

k ϕk

ck−θTϕk

fk+1(x)dx

∣∣∣∣∣ ≥ βk|θ̃Tk ϕk|. (48)

Similarly, by (46),

a2kβ
2
kψ

2
kϕ

T
k PkP

−1
k+1Pkϕk

=akβ
2
kψ

2
kϕ

T
k Pkϕk ≤ akβ

2
kϕ

T
k Pkϕk

(49)

where we have used the fact that |ψk| ≤ 1.

Now, substituting (45), (47) and (49) into (44) we get

Vk+1 ≤θ̃Tk P−1
k θ̃k − β2

k(θ̃
T
k ϕk)

2 + akβ
2
kϕ

T
k Pkϕk

+ 2a2kβ
2
kψkϕ

T
k PkP

−1
k+1Pkϕkωk+1

− 2akβkϕ
T
k PkP

−1
k+1θ̃kωk+1

+ a2kβ
2
kϕ

T
k PkP

−1
k+1Pkϕkω

2
k+1.

(50)

Summing up both sides of (50) from 0 to n, we have

Vn+1 ≤θ̃T0 P−1
0 θ̃0 +

n∑
k=0

akβ
2
kϕ

T
k Pkϕk

−
n∑

k=0

β2
k(θ̃

T
k ϕk)

2

+ 2

n∑
k=0

a2kβ
2
kψkϕ

T
k PkP

−1
k+1Pkϕkωk+1

− 2

n∑
k=0

akβkϕ
T
k PkP

−1
k+1θ̃kωk+1

+

n∑
k=0

a2kβ
2
kϕ

T
k PkP

−1
k+1Pkϕkω

2
k+1.

(51)

We now analyze the last three terms in (51) which are
related to the martingale difference sequence {ωk,Fk}.

Let Xk = βkϕk in Lemma 3 and Lemma 4, we get

n∑
k=0

akβ
2
kϕ

T
k Pkϕk = O(log

∣∣P−1
n+1

∣∣), (52)

n∑
k=0

(β2
kϕ

T
k Pkϕk)

2 = O(1), (53)

respectively. Moreover, since |ωk| ≤ 1, we have

sup
k
E[|ωk+1|2 | Fk] <∞, a.s. (54)

Denote

S̃n =

√√√√ n∑
k=0

(
akβ2

kψkϕTk Pkϕk
)2
. (55)

By (53) and the boundedness of ak and ψk, we know
that S̃n = O(1). Consequently, by (46) and Lemma 2,
we have

n∑
k=0

a2kβ
2
kψkϕ

T
k PkP

−1
k+1Pkϕkωk+1

=

n∑
k=0

akβ
2
kψkϕ

T
k Pkϕkωk+1

=O
(
S̃n log

1
2+η

(
S̃2
n + e

))
= O(1), a.s. ∀η > 0.

(56)
Also, by Lemma 2 and (46) again, we know that

n∑
k=0

akβkϕ
T
k PkP

−1
k+1θ̃kωk+1

=

n∑
k=0

βkϕ
T
k θ̃kωk+1

=O

(
n∑

k=0

(βkθ̃
T
k ϕk)

2

) 1
2+η

=o

(
n∑

k=0

(βkθ̃
T
k ϕk)

2

)
+O(1) a.s. ∀η > 0

(57)

As for the last term of right side of (51), since |ωk| ≤ 1,
we have

sup
k

E
[∣∣ω2

k+1 − E[ω2
k+1 | Fk]

∣∣2 | Fk

]
≤ 1, a.s . (58)

Denote Λn =

√∑n
k=0

(
akβ2

kϕ
T
k Pkϕk

)2, by Lemma 2 and
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letting α = 2, we get
n∑

k=0

a2kβ
2
kϕ

T
k PkP

−1
k+1Pkϕk

{
ω2
k+1 − E[ω2

k+1 | Fk]
}

=

n∑
k=0

akβ
2
kϕ

T
k Pkϕk

{
ω2
k+1 − E[ω2

k+1 | Fk]
}

=O
(
Λn log

1
2+η(Λ2

n + e)
)
= O(1), a.s. ∀η > 0

(59)
where the last equality is from (53) and |ak| ≤ 1. Hence,
from (52) and (54)

n∑
k=0

akβ
2
kϕ

T
k Pkϕkω

2
k+1

≤
n∑

k=0

akβ
2
kϕ

T
k Pkϕk

(
ω2
k+1 − E[ω2

k+1 | Fk]
)

+ sup
k

E[ω2
k+1 | Fk]

(
n∑

k=0

akβ
2
kϕ

T
k Pkϕk

)
=O

(
log |P−1

n+1|)
)

a.s.

(60)

Combine (51), (56), (57), (60), we thus have

θ̃Tn+1P
−1
n+1θ̃n+1+

n∑
k=0

(
βkθ̃

T
k ϕk

)2
= O(log |P−1

n+1|), a.s. .

(61)
Note that {βk} is a non-increasing sequence, we finally
obtain (41). 2

Proofs of Theorems 1 and 2. We note that

λmin

{
P−1
n+1

}
∥θ̃n+1∥2 ≤ θ̃Tn+1P

−1
n+1θ̃n+1. (62)

Then Theorem 1 follows from Lemma 5 immediately.
Moreover, note that γn = 1/βn, Theorem 2 also follows
from Lemma 5. 2

Proof of Theorem 3. By the definitions of Jn, Rn and
the equation (32), we know that

Jn =
1

n

n−1∑
k=0

[
yk+1 − y∗k+1

]2
=
1

n

n−1∑
k=0

[
yk+1 − ϕTk θ̂k − E (vk+1 | Fk)

]2
=
1

n

n−1∑
k=0

Rk +
1

n

n−1∑
k=0

[vk+1 − E (vk+1 | Fk)]
2

+
1

n

n−1∑
k=0

2
(
ϕTk θ̃k

)
[vk+1 − E (vk+1 | Fk)] ,

(63)

We now estimate the RHS of the above equation term by
term. First, by Corollary 2 we know that the first term

is bounded by O
(

logn
n

)
. For the last two terms of (63),

by Lemma 2, we have

n−1∑
k=0

(
ϕTk θ̃k

)
[vk+1 − E (vk+1 | Fk)]

=O

{n−1∑
k=0

Rk

} 1
2+η


=o

(
n−1∑
k=0

Rk

)
+O(1) a.s., ∀η > 0

(64)

Let ξk+1 = vk+1 − E (vk+1 | Fk). From (31), one can
easily have E [|ξk+1|α | Fk] < ∞. Thus, by Lyapunov
inequality, we can get

sup
k

E
[
|ξ2k+1 − E(ξ2k+1 | Fk)|

α
2 | Fk

]
≤2

α
2 sup

k
E [|ξk+1|α | Fk] <∞ a.s.

(65)

Therefore, by a refined martingale estimation theorem
(see Wei (1985), Guo (2020)), we have

1

n

n−1∑
k=0

[
ξ2k+1 − E

(
ξ2k+1 | Fk

)]
= O

(√
log log n

n

)
, a.s.

(66)
Note that σ2

k+1 = E
(
ξ2k+1 | Fk

)
, hence

1

n

n−1∑
k=0

[vk+1 − E (vk+1 | Fk)]
2

=
1

n

n−1∑
k=0

σ2
k+1 +

1

n

n−1∑
k=0

[
ξ2k+1 − E

(
ξ2k+1 | Fk

)]
=
1

n

n−1∑
k=0

σ2
k+1 +O

(√
log log n

n

)
, a.s.

(67)

Combining all the results above, we can obtain (34).
The convergence rate is claimed to be the best possible
because it is the same as that given by the well known
iterated logarithm laws in probability theory. 2

4 Numerical simulation

Example 1. Consider the stochastic regression system

yk+1 = a+ buk + vk+1, k = 0, 1, 2, · · · (68)

with binary-valued observations

sk+1 = I[yk+1≥0] =

{
1, yk+1 ≥ 0;

0, otherwise,
(69)
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Fig. 1. A trajectory of ∥θ̃n∥2
√
n

logn

where {uk} and {vk} are the input and the noise, respec-
tively. θ = [a, b]T = [0.5,−0.5]T ∈ R2 is the true param-
eter, ϕk = [1, uk]

T ∈ R2 is the corresponding regressor.
The noise sequence {vk, k ≥ 1} is i.i.d. with standard
normal distribution N (0, 1). To estimate θ by Algorithm
1, take a convex bounded set

D =
{
[x, y]T : |x| ≤ 8, |y| ≤ 8

}
,

and the initial value θ̂0 = [−4, 4]T , P0 = I. Moreover,
the input {uk, k ≥ 1} is an independent sequence with
Gaussian distribution uk ∼ 4

√
1
k · N (0, 1), and indepen-

dent of {vk}.

In this case, we can easily verify that

λmin

{
n∑

k=1

ϕkϕ
T
k

}
∼

√
n,

λmax

{
n∑

k=1

ϕkϕ
T
k

}
∼ n,

(70)

as n → ∞, which indicates that {ϕk} does not satisfy
the PE condition. By (70) and (24) in Corollary 1, the
estimate error ∥θ̃n∥2 will convergent to 0 with the con-
vergence rate O

(
logn√

n

)
,which is verified by a trajectory

of Gn = ∥θ̃n∥2√n
logn in Fig. 1. he curve in Fig. 1 is bounded

and implies that the convergence rate of ∥θ̃n∥2 has the or-
der O

(
logn√

n

)
. For the accumulated regrets, Fig. 2 shows

the trajectory of 1
logn ·

n∑
k=0

Rk, which is bounded by (28)

in Corollary 2.

Example 2. Let the conditional probability density
function {fk(x), k ≥ 1} be defined as in Assumption 4.
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n
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k=0

Rk

Fig. 2. A trajectory of 1
logn

n∑
k=0

Rk

Then Corollary 2 indicates that if inf |x|≤LM+C {fk(x)}
converges to 0 with proper rate, the averaged regrets
of adaptive prediction will converge to 0. Let us ver-
ify this result by the model (68)-(69) again. Suppose
θ = [a, b]T = [1, 1]T ∈ R2, ϕk = [1, uk]

T ∈ R2. The
input sequence {uk, k ≥ 1} is an independent sequence
with Gaussian distribution uk ∼ 4

√
1
k · N (0, 1). The

noise sequence {vk, k ≥ 1} is independent with Gaus-
sian distribution vk ∼ 4

√
1

log k · N (0, 1) and independent
of {uk}.

In this case, the variance σ2
k of vk is

√
1

log k , thus (29)

is satisfied according to Remark 5. To construct the
estimation algorithm, let the bounded parameter set
D be

{
[x, y]T : |x| ≤ 5, |y| ≤ 5

}
, the initial value θ̂0 =

[−5, 5]T , P0 = I. Fig. 3 shows the convergence result
(30) in Corollary 2 for the averaged regrets of adaptive
prediction under Algorithm 1.

Example 3. In this example, we will give a concrete ex-
ample with adaptive control to verify Theorem 3. Con-
sider the model (68)-(69). Let θ = [a, b]T = [8, 8]T ∈ R2

be the true parameter, ϕk = [1, uk]
T ∈ R2 be the cor-

responding regressor. The noise sequence {vk, k ≥ 1}
is independent and standard normally distributed
with σ = 1. To give the estimate θ̂k = [âk, b̂k]

T un-
der Algorithm 1, let the bounded parameter set D
be

{
[x, y]T : |x| ≤ 20, 1 ≤ y ≤ 20

}
, the initial value

θ̂0 = [1, 1]T , P0 = I.

Let the reference signals {y∗k} be given by y∗k ≡ 1. The
input uk is designed to ensure the output yk+1 to track
the given bounded reference signal y∗k+1. By (32) in The-
orem 3, we can design the input by solving the following
equation:

ŷk+1 = y∗k+1, (71)
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Fig. 4. A trajectory of |Jn − σ2|
√
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log logn

which implies uk = (1− âk)/ b̂k. From the result of the
Theorem 3, the averaged tracking error Jn will approach
to σ2 with the convergence rate O

(√
log logn

n

)
, which

is verified by a trajectory of Ln = |Jn − σ2|
√

n
log logn

as shown in Fig. 4. The curve in Fig. 4 approaches to
a positive constant, which implies that the convergence
rate of Jn to σ2 has the order O

(√
log logn

n

)
precisely.

5 Concluding remarks

This paper investigated the identification and adap-
tation problems of stochastic regression models with
binary-valued observations, and proposed a recursive
Quasi-Newton type algorithm to estimate the unknown
parameters. It is shown that the estimation algorithm
will converge to the true parameter almost surely under
a non-persistent excitation condition. It is also shown

that the averaged regrets of adaptive prediction con-
verges to 0 under no excitation condition, which can be
conveniently used in adaptive control to achieve asymp-
totic optimality of adaptive tracking without resorting
to any excitation conditions. We remark that the re-
sults of this paper can be extended to various situations
including any finite-valued observations with generally
defined indicator functions, and that this paper may
offer a necessary step for future investigations on more
general adaptive control and estimation problems of
stochastic systems with binary-valued observations.
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