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Abstract

This paper will review some fundamental results in the understanding of sever-

al basic problems concerning feedback and uncertainty. First, we will consider

adaptive control of linear stochastic systems, in particular, the global stability

and optimality of the well-known self-tuning regulators, designed by combining

the least-squares estimator with the minimum variance controller. This natural

and seemingly simple case had actually been a longstanding central problem in

the area of adaptive control, and its solution offers valuable insights necessary

for understanding more complex problems. Next, we will discuss the theoretical

foundation of the classical proportional-integral-derivative (PID) control, to un-

derstand the rationale behind its widespread successful applications in control

practice where almost all of the systems to be controlled are nonlinear with

uncertainties, by presenting some theorems on the global stability and asymp-

totic optimality of the closed-loop systems, and by providing a concrete design

method for the PID parameters. Finally, we will consider more fundamental

problems on the maximum capability and limitations of the feedback mechanis-

m in dealing with uncertain nonlinear systems, where the feedback mechanism

is defined as the class of all possible feedback laws. Some extensions and per-

spectives will also be discussed in the paper.

Keywords: Feedback, uncertainty, nonlinear systems, adaptive control,

least-squares, PID control, stability.

IThis paper was supported by the National Natural Science Foundation of China under
grant No.11688101, and is based on the plenary (Bode) lecture delivered by the author at
58th IEEE Conference on Decision and Control held at Nice, France, December 11-13,2019.

1Key Laboratory of Systems and Control, ISS, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing, 100190, China. Lguo@amss.ac.cn

Preprint submitted to Journal of LATEX Templates April 5, 2020



1. Introduction

As is well-known, feedback is ubiquitous and is the most basic concept of

automatic control. It is the systematic and quantitative investigation of the

feedback mechanism that distinguishes the area of automatic control from all

other branches of science and technology. In fact, feedback control has been5

a central theme in control systems, and tremendous progress has been made

in both theory and applications(see,e.g.,[1],[2]). One celebrated example is the

Bode integral formula[3] on sensitivity functions, which reveals a fundamental

limitation of feedback, and has had a lasting impact on the field[4]. Uncertainty

is ubiquitous too, either internal or external. It is the existence of uncertain-10

ty that necessitates the use of feedback in control systems. Mathematically,

uncertainty is usually described by a set, either parametric or functional.

The feedback control of uncertain dynamical systems is by definition the

control of all possible systems relating to the uncertainty set, by using avail-

able system information. It is worth to mention that modeling, identification15

and feed-forward are also instrumental for controller design, but we will focus

on feedback and uncertainty in this paper to understanding their quantitative

relationship, by presenting a series of basic theorems.

To be specific, we will in this paper provide a review of some fundamental

results on the following three classes of control problems: 1) The self-tuning20

regulator(STR), which is a nonlinear feedback law for adaptive control of linear

uncertain stochastic systems; 2) The classical PID control, which is a linear

feedback law consisting of three terms (proportional-integral-derivative, PID)

about the control error, but applied to nonlinear uncertain dynamical systems;

3) The maximum capability of feedback, which concerns with nonlinear feed-25

backs for nonlinear uncertain systems. The main reasons for a review of the

above three classes of control problems will be delineated one by one below.

The reasons for a review of STR thoery. Firstly, the STR is a most basic and

natural adaptive controller, see Figure 1 for the block diagram of such adaptive

systems. It is basic since it deals with the control of linear plants with unknown30

parameters and with random noises, and it is natural because it is constructed

by combining the online least-squares(LS) estimation with the minimum vari-



Figure 1: LS-based STR

ance(tracking) control. Thus, one may naturally wonder whether or not such a

combination of “optimal estimator” with “optimal controller” will give rise to

an asymptotically optimal adaptive controller. It is worth noting that if one35

ignores the existence of noises, then the control problem may become trivial in

theory, because in that case the unknown parameters could be solved exactly

within finite steps under suitably designed input signals.

Secondly, the increasing influences and prevalent applications of machine

learning algorithms are usually performed not in closed-loops, and it would be40

natural to further consider the combination of machine learning algorithms with

online decision making, and for that the understanding and investigation of the

basic STR appear to be helpful.

Thirdly, the STR has played an important historical role in adaptive con-

trol. As pointed out by Lennart Ljung in his preamble[5] to the reprint of the45

seminal paper[6] published by Åström and Wittenmark in 1973, “The paper

by Åström and Wittenmark had an immediate impact. Literally thousands

of papers on self-tuning regulation, both theoretical and applied, appeared in

the next decade. On the theoretical front, the paper left open the question of

convergence and stability and this inspired much subsequent research. ......The50

lasting influence of the paper is perhaps best judged by the fact that today there

are many thousands of control loops in practical use that have been designed

using the self-tuning concept......The self-tuning regulator revitalized the field

of adaptive control that had lost, in the early 1970s, some of its earlier lustre”.

Lastly, the research process leading to the final resolution of the longstanding55

problem on global stability and asymptotic optimally of the STR is of rich en-

lightenment. Besides the landmark contribution of Aström and Wittenmark[6]



as just mentioned, we remark that Kalman [7] used the self-tuning idea by

combining the least-squares parameter estimation with the deadbeat control for

linear systems without noises. Due to the impetus for the need to analyse the60

STR, extensive research effort bas been devoted to the convergence analysis of L-

S for linear regression models with stochastic regressors, under certain excitation

conditions imposed on the system signals(see, e.g.,[8, 9, 10, 11, 12, 13, 14, 15]).

A widely influential work was made by Goodwin, Ramadge and Caines[16, 17]

who had established the global stability and optimality of the closed-loop sys-65

tems, under an adaptive controller designed by replacing the LS estimation with

a stochastic approximation(SA)algorithm in the STR. The convergence of the

SA algorithm in adaptive control systems was later investigated in [18] and [19].

However, because the SA-based adaptive controller has a much slower conver-

gence rate than the LS-based STR, the theoretical investigation of STR had70

continued to attract research attentions(see, e.g.,[14, 20]). It was not until the

publication of the paper by Guo and Chen [21] that a fairly complete solution

to the global stability and optimality of the STR was found, and it was later

shown that the STR does indeed has the best possible rate of convergence [22].

The reasons for a review of PID theory. It is well-known that the classical75

PID(proportional-integral-derivative) control is a linear combination of three

terms consisting of the “present-past-future” output errors, see Figure 2. This

Figure 2: PID control

simple controller is model-free, data-driven and easy-to-use, but the three PID

parameters are case dependent, which are usually tuned by experiences or ex-

periments or by both. As is well-known, the PID controller can eliminate steady80

state offsets via the integral action, and can anticipate the tendency through



the derivative action. Also, the Newton’s second law corresponds to a second

order differential equation, which is just suitable for the PID control.

Despite the remarkable progresses in modern control theory, the classical

PID control is still the most widely used one in engineering systems, and as85

pointed out in [23], “we still have nothing that compares with PID”. For exam-

ple, more than 95% control loops are of PID type in process control, and the

PID controller can be said as the “bread and butter” of control engineering[24].

There are also various PID software packages, commercial PID hardware mod-

ules, and patented PID tuning rules [25]. Thus, it is not exaggerating to say90

that there would be no modern civilization if there were no PID control.

The PID actually has a long history, see, e.g.[24, 26] and the references

therein. The proportional(P) feedback was used in a centrifugal governor for

regulating the speed of windmills in the mid of eighteenth century, and was later

used in a similar way for steam engines by James Watt in 1788. The complete95

form of PID consisting of the three terms was emerged at least one hundred years

ago(see,e.g.,[26],[27]), and a well-known tuning rule for the three parameters of

PID was proposed by Ziegler and Nichols[28] based on experiments conducted in

either time domain or frequency domain. Due to the various advantages of PID

as mentioned above, the PID has received continued research attention until100

recently, but most are on linear systems (see, e.g., [24, 29, 30, 31, 32, 33, 34]),

except a few related papers on nonlinear systems(see,e.g., [35, 36, 37, 38, 39]).

The main reasons that we are interested in the theoretical foundation of

PID control are as follows: Firstly, almost all practical systems are nonlinear

with uncertainties, but almost all theoretical studies focus on linear systems105

and the tuning of the PID parameters is case dependent. Clearly, there is

lack of a satisfactory theory for the PID control and the gap between theory

and practice of PID needs to be filled up by control theorists. Secondly, to

justify the remarkable practical effectiveness of the PID controllers, we need to

face nonlinear uncertain dynamical systems, and to understand the rationale110

and capability of the PID controller. Thirdly, a large number of practical PID

loops are believed to be poorly tuned[25], and better understanding of the PID

control may improve its widespread practice and so contribute to better product

quality[24].



In 2017, Zhao and Guo[40] made a notable step in the theoretical investiga-115

tion of PID control for second order nonlinear uncertain systems. They proved

that the closed-loop systems controlled by the PID will be globally stable and

asymptotically optimal, as long as the three PID parameters are chosen arbi-

trarily from a three dimensional (open and unbounded) parameter set, which

can be constructed explicitly by using the upper bounds of the partial deriva-120

tives of the nonlinear functions involved. They also discussed some cases where

the choice of the PID parameters are necessary for global stabilization. The

results in [40] were later extended to high-dimensional uncertain nonlinear state

space models in [41], and the design of the three PID parameters were further

refined by providing a concrete formula with guaranteed nice transient control125

performances[42]. Details will be discussed in Section 3.

The reasons for a review of the capability of feedback. Both the STR and the

PID mentioned above are special forms of feedback laws. By feedback capability

we mean the maximum capability and fundamental limitations of the feedback

mechanism in dealing with uncertainties, which is defined as the class of al-130

l possible feedback laws (not restricted to a special class of feedbacks). Our

emphasis will be placed on the quantitative relationship between feedback and

uncertainty, to understand how much uncertainty in the class of unknown func-

tions (denoted by F) can be dealt with by the feedback mechanism(denoted

by U). Such control problems may be roughly depicted by the block diagram135

below(Figure 3) and will be discussed rigorously in Section 4.

Figure 3: Feedback and uncertainty

We remark that we are interested to know not only what the feedback mech-

anism can do, but also what the feedback mechanism cannot do, in the presence



of large structural uncertainties. We would like to mention that this study is

not merely of intellectual curiosity. In fact, the understanding of the maximum140

capability of feedback can encourage us in improving the controller design to

reach or approach the maximum capability, and may help us in alleviating the

workload of modeling and identification. Moreover, the investigation of the fun-

damental limitations of feedback may prevent us from wasting time and energy

on searching for a feedback controller that does not exist, and may also alert us145

of the danger of being unable to control uncertain systems when the size of the

uncertainty reaches the limit established.

Given the remarkable progresses in modern control theory made over the past

60 years, it can be said that the most relevant research areas on feedback and

uncertainty are adaptive control and robust control, among others. However,150

due to the fundamental differences with our problem formulations, only a few

existing results address the maximum capability and fundamental limitations of

the feedback mechanism, see, e.g.,[43] for a class of linear stochastic systems with

a white noise control channel, and [44] for a class of uncertain linear systems.

In Section 4, we will present a series of fundamental theorems concerning the155

maximum capability and fundamental limitations of the feedback mechanism

for several basic classes of uncertain nonlinear dynamic systems. This line of

work was initiated in [45] and has been partly summarized in the plenary lecture

[46].

In the next three sections, we will briefly present some concrete and basic160

results on STR, PID and feedback capability respectively, mainly for minimum-

phase uncertain dynamical control systems.

2. Theory of Self-Tuning Regulators

Consider the following discrete-time uncertain linear control systems with

additive noises,

yk+1 + a1yk + · · ·+ apyk−p+1 = b1uk + · · ·+ bquk−q+1 + wk+1, k ≥ 0,

where uk, yk and wk are the scalar system input, output and random noises,

respectively. The coefficients ai and bj are assumed to be unknown, and p and165

q are assumed to be known upper bounds for the true orders of the systems.



The above systems can be rewritten into the following standard linear re-

gression form:

yk+1 = θτϕk + wk+1, k ≥ 0,

where the regression vector and parameter vector are defined respectively by

ϕk = [yk, . . . , yk−p+1, uk, . . . , uk−q+1]τ ,

θ = [−a1, . . . ,−ap, b1, . . . , bq]τ .

To established a theory for the control of this class of uncertain systems, we

need to introduce the following standard assumptions:

A1. The noise {wk,Fk} is a martingale difference sequence, and there exists

a constant β > 2 such that the β-th order conditional moments satisfy

sup
k≥0

E[|wk+1|β |Fk] <∞, a.s.

where {Fk} is a family of non-decreasing σ-algebras.

A2. The system is of minimum phase.170

A3. The reference signal {y∗k} is a bounded deterministic sequence.

Note that if {uk} is an output feedback sequence, then {yi, 0 ≤ i ≤ k} will

be measurable to Fk.

Let us consider the tracking control problem where the purpose is to mini-

mize the following one-step ahead tracking performance:175

Jk = min
uk∈Fk

E(yk+1 − y∗k+1)2, k ≥ 1.

By Assumption A1, it is easy to see that at any time k, the best prediction

to yk+1 is the conditional mathematical expectation, i.e., E[yk+1|Fk] = ϕTk θ.

Therefore, if the parameter vector θ were knew, then the optimal control could

be solved by setting

E[yk+1|Fk] = y∗k+1

to get an explicit expression

uk =
1

b1
(a1yk + · · ·+ apyk−p+1 − b2uk−1 − · · · − bqun−q+1 + y∗k+1)



with the following optimal cost:

Jk = E[w2
k+1|Fk], ∀k ≥ 1.

In the current case where the parameter vector θ is unknown, we use the

following well-known least-squares(LS) method to estimate it:

θk = arg min
θ∈Rp+q

k∑
j=1

(yj −ϕτj−1θ)2, ∀k ≥ 1,

which can be solved explicitly as

θk =

(
k∑
j=1

ϕj−1ϕ
τ
j−1

)−1( k∑
j=1

ϕj−1yj

)
,

and calculated recursively by

θk+1 = θk + akPkϕk(yk+1 −ϕτkθk),

Pk+1 = Pk − akPkϕkϕτkPk, ak = (1 +ϕτkPkϕk)−1,

where the initial estimate θ0 ∈ Rp+q, and the initial positive definite matrix

P0 ∈ R(p+q)×(p+q) can be chosen arbitrarily.

By using the above online LS estimate, one can construct an adaptive pre-

dictor ŷk+1 based on the “certainty equivalence principle”, i.e.,

ŷk+1 = ϕτkθk.

Now, let ŷk+1 = y∗k+1, the STR can be expressed as follows:

uk =
1

b1k
(a1kyk + · · ·+ apkyk−p+1 − b2kuk−1 − · · · − bqkun−q+1 + y∗k+1),

where aik, bik are the corresponding components of the LS estimate θk.

To avoid possible zero divisor problems in the controller expression above,

b1k can be modified slightly and replaced by, e.g.,

b̂1k =


b1k, if |b1k| ≥ 1√

log rk−1

b1k + sign(b1k)√
log rk−1

, otherwise



where sign(·) is the sign function, and rk is defined by

rk = e+

k∑
i=0

‖ϕi‖2, k ≥ 1.

For the above defined STR that combines the least-squares estimator with

the minimum variance (tracking) controller, we are interested to know whether180

or not the closed-loop control system performs well. To be specific, we are in-

terested in answering the following three basic questions: 1) Is the closed-loop

adaptive system globally stable? 2) Is the system tracking error asymptotically

optimal? 3) Does the STR enjoy the best possible rate of convergence? As

mentioned in the introduction, these basic theoretical issues have been long-185

standing open problems in adaptive control theory. One may curiously to ask

why the analysis of such a naturally defined STR is so complicated? The basic

reason is that the closed-loop systems are characterized by a set of complicated

nonlinear stochastic dynamical equations, where the closed-loop system signal-

s are nonstationary and strongly correlated, and there is no useful statistical190

properties available a priori. Since the LS is a key ingredient of STR, one may

wonder whether or not the extensively studied convergence theory on LS will

be helpful. Unfortunately, the verification of even the weakest possible conver-

gence condition for LS [12] is still quite hard, since it requires that the stability

of the closed-loop systems be established by other methods. In fact, how to195

get out of possible “circular arguments” between system stability and estimate

convergence is a central issue in adaptive theory.

To sidestep such “circular arguments” in the analysis, we consider the notion

of regret of tracking. Note that the performance of adaptive tracking depends

essentially on the quality of the adaptive predictor. The difference between the

best prediction and the adaptive prediction (or tracking signal) may be referred

to as the “regret” denoted by

Rk = (E[yk+1|Fk]− ŷk+1)2,

which is usually not zero due to the existence of the unpredictable noises.

However, one may evaluate the “averaged regret” defined by

1

n

n∑
k=1

Rk.



By using Assumption A1, it is not difficult to show that the global stability

and optimality will follow once the above averaged regret tends to zero as n in-200

creases to infinity[47]. By introducing a new method for analysing the nonlinear

closed-loop dynamics, Guo and Chen in[21] was able to establish the global sta-

bility and asymptotic optimality of the STR, which is presented in the following

theorem:

Theorem 2.1. Under Assumptions A1-A3, the averaged regret tends to zero. In

other words, the closed-loop control system of STR is globally stable, i.e., for

any initial condition y0,

lim sup
n→∞

1

n

n∑
k=1

(y2k + u2k) <∞, a.s.,

and asymptotically optimal, i.e.,

lim sup
n→∞

1

n

n∑
k=1

(yk − y∗k)2 = min, a.s..

where “min” denotes the minimum tracking error which equals to the upper205

limit of the averaged conditional variances of the noises.

To demonstrate that the STR does indeed enjoy the best possible rate of

convergence, we present the following logarithm law for the accumulated regret

of tracking[22]:

Theorem 2.2. Under some additional assumptions, the closed-loop control sys-

tem will have the following logarithm law for the accumulated regret of tracking:

lim
n→∞

1

log n

n∑
k=1

(E[yk+1|Fk]− y∗k+1)2 = dim(θ)σ2
w, a.s.,

where dim(θ) is the dimension of the unknown parameter vector, σ2
w is the210

conditional variance of the noises(assumed to be constant for simplicity).

Remark 2.1. (i) The details of Theorem 2.2 is given in [22] where the additional

assumptions can be made either on the high-frequency gain b1 or on the reference

signal y∗k. Also, a discussion why O(log n) is the minimal order of magnitude

that one may at most expect to achieve for the accumulated regret is found215



in [48]. (ii) In the analysis of STR, the convergence of the averaged regret of

adaptive prediction is more relevant than the convergence of the LS itself. A

detailed analysis of LS can provide a sharp bound for a certain accumulated

weighted regret regardless of the input signal, which turns out to be critical

for further analysis of the nonlinear closed-loop stochastic systems under STR.220

(iii) The martingale theory has played a fundamental role in dealing with non-

stationary and correlated signals or data. This may continue to be so when we

deal with more complicated data or signals that are generated from complex

stochastic feedback systems, where independency and stationarity properties

are not available.225

Remark 2.2. Concerning about other related problems and results in stochas-

tic adaptive control, we briefly mention the following facts: (i) Theorem 2.1

can be extended to multi-input and multi-output(MIMO) minimum phase lin-

ear stochastic systems with colored noises[21], to linear stochastic systems with

multiple delay and model reference[49], and to a class of linearly parameter-230

ized nonlinear stochastic systems[50]. (ii) For adaptive control of non-minimum

phase linear stochastic systems, a bottleneck problem is how to guarantee the

controllability of the estimated model without resorting to projection to a known

convex controllability domain, which can be resolved (see [51]) by a random reg-

ularization approach combined with the self-convergence property established235

in [51]for the weighted LS proposed in [52]. Based on this, an asymptotically

optimal adaptive LQG control is given in[53]. (iii) For adaptive control of lin-

ear time-varying stochastic systems in discrete-time with unknown Markovian

jump parameters, a necessary and sufficient condition is given in[54] for glob-

al adaptive stabilization. This condition is different from that known for the240

non-adaptive case[55], and reveals an attenuation of feedback capability in the

presence of jump parameter uncertainty. There are also many investigations in

the continuous-time(see, e.g.,[56] and the references therein), and a complete

characterization is yet to be found.



3. Theory and Design of PID Control245

Let x(t), v(t) and a(t) be the position, velocity and acceleration of a moving

body in R with mass m at time instant t. Assume that the external forces

acting on the body consist of f and u, where f = f(x,v) is a nonlinear function

of both the position x and velocity v, where u is the control force. Then by the

Newton’s second law we know that

ma(t) = f(x(t),v(t)) + u(t).

Let us denote x1(t) = x(t) and x2(t) = dx(t)
dt =

.
x(t), and without loss

of generality, we assume that the body has unit mass. Then the state space

equation of the above basic mechanic system under PID control is
.
x1 = x2,

.
x2 = f(x1, x2) + u(t),

u(t) = kpe(t) + ki
∫ t
0
e(s)ds+ kd

de(t)
dt ,

(1)

where x1(0), x2(0) ∈ R and e(t) = y∗ − x1(t), and f(x1,x2) is an uncertain

nonlinear function.

Next, let us introduce the class of uncertain functions defined by

FL1,L2
=

{
f ∈ C1(R2)

∣∣∣∣ ∂f∂x1 ≤ L1, | ∂f
∂x2
| ≤ L2, ∀x1, x2 ∈ R

}

where L1 and L2 are positive constants, and C1(R2) denotes the space of all

functions from R2 to R which are locally Lipschitz in (x1,x2) with continuous

partial derivatives.250

It is quite obvious that the “size” of the uncertainty class FL1,L2
will increase

whenever L1 or L2 increases. We remark that L1 and L2 correspond to the

upper bounds of the “anti-stiffness” and the “anti-damping” coefficients of the

nonlinear systems, respectively.

Given the upper bounds L1 or L2, we can construct the following 3-dimensional255

parameter set from which the three PID parameters can be chosen arbitrarily:



Ωpid =

{
kp

ki

kd

 ∣∣∣∣kp > L1, ki > 0, (kp − L1)(kd − L2) > ki + L2

√
ki(kd + L2)

}
.

It is easy to see that this set is open and unbounded.

We are now in a position to present the first main result concerning PID

control.

Theorem 3.1. Consider the above PID controlled nonlinear uncertain system(1).

Then, whenever (kp,ki,kd) ∈ Ωpid, the closed-loop control system will satisfy

lim
t→∞

x1(t) = y∗, lim
t→∞

x2(t) = 0,

exponentially fast, for any f ∈ FL1,L2 , any initial state (x1(0), x2(0)) ∈ R2, and260

any setpoint y∗ ∈ R.

We remark that the above theorem was first proven in[40], which can be

extended to high-dimensional systems [41], where time-varying uncertain non-

linear functions have also been considered.

Remark 3.1. Firstly, Theorem 3.1 is a global result since it depends on neither265

the initial state nor the setpoint. Secondly, whatever methods one may use

in choosing the PID parameters, the closed-loop systems will have the desired

properties as established in Theorem 3.1 as long as the three parameters belong

to Ωpid. Thirdly, Theorem 3.1 demonstrates that the PID control has large-scale

and two-sided robustness in the following sense: On the system structure side,270

for any given PID controller with (kp,ki,kd) ∈ Ωpid, it can deal with the whole

class of nonlinear uncertain systems described by f ∈ FL1,L2
; while on the con-

troller parameter side, any parameter triple (kp,ki,kd) in the unbounded open

set Ωpid can give rise to a globally stabilizing PID controller with exponentially

vanishing output errors. This remarkable property partly explains the wide ap-275

plicability of the PID control. Finally, we mention that, since the selection of the

PID parameters has much flexibility, more performance requirements including

the transient may be further studied by optimizing the PID parameters from

the set Ωpid. Since Theorem 3.1 only gives a sufficient condition for the choice



of the PID parameters, a natural question is: is Ωpid a necessary parameter set?280

To answer this basic question, we need some additional constrains on the class

of uncertain functions.

We first consider an affine situation and introduce the following function

class:

GL1,L2
=

{
f ∈ C2(R2)

∣∣∣∣ ∂f∂x1 ≤ L1,
∂f

∂x2
≤ L2,

∂2f

∂x22
= 0, ∀x1, x2 ∈ R

}
,

where L1 > 0, L2 > 0 are constants and C2(R2) is the space of twice continuous-

ly differentiable functions from R2 to R. The following theorem was established

in [40]:285

Theorem 3.2. For any f ∈ GL1,L2
, any initial conditions, and any setpoint

y∗ ∈ R, the control system satisfies

lim
t→∞

x1(t) = y∗, lim
t→∞

x2(t) = 0,

if and only if the PID parameters (kp,ki,kd) belong to the following 3-dimensional

set:

Ω
′

pid =

{
kp

ki

kd

 ∣∣∣∣kp > L1, ki > 0, (kp − L1)(kd − L2) > ki

}

Remark 3.2. By using Theorem 3.2, we may investigation the capability of PID

in the following sense: Given a PID controller with parameter (kp,ki,kd)(ki > 0),

what is the largest possible class of nonlinear uncertain functions it can deal

with? Note that the “size” of GL1,L2
can be “measured” by (L1, L2). Hence by

Theorem 3.2, the boundary of the following set{
(L1,L2) ∈ R2| L1 < kp, L2 < kd − ki(kp − L1)−1

}
may reflect the maximum capability of this PID controller in dealing with un-

certain systems described by GL1,L2 .

Next, we consider the case where (y∗, 0) is an equilibrium point of the open-

loop systems, i.e. f(y∗, 0) = 0. In this case, the I-term is not necessary for



regulation. Define the following function class:

FL1,L2,y∗ =

{
f ∈ C1(R2)

∣∣∣∣ ∂f∂x1 ≤ L1,
∂f

∂x2
≤ L2, ∀x1, x2, f(y∗, 0) = 0.

}
We have the following result which again gives a necessary and sufficient

condition for the design of the controller parameters.

Theorem 3.3. Consider the following nonlinear uncertain systems under PD

control: 
.
x1 = x2,

.
x2 = f(x1, x2) + u(t),

u(t) = kpe(t) + kd
de(t)
dt .

(2)

Then for any f ∈ FL1,L2,y∗ , we have

lim
t→∞

x1(t) = y∗, lim
t→∞

x2(t) = 0,

if and only if the PD parameters (kp,kd) lie in the following two dimensional

set:

Ωpd =

{
(kp, kd)

∣∣∣∣kp > L1, kd > L2

}
.

The proof is provided in [40] which follows from the Markus-Yamabe theo-290

rem. This theorem was originally a conjecture(also called Jacobian conjecture)

on global asymptotic stability of ordinary differential equations proposed by

Markus and Yamabe in 1960 [57], and after several decades this conjecture had

been proven to be true for nonlinear systems in the plane[58, 59].

Remark 3.3. (A further formula for PID parameters). To take the transient

performances of PID control into account, one may further specify the PID

parameters from the parameter set Ωpid given in Theorems 3.1. One way to do

this is recently provided by the following formula[42]:
kp = kap + ω0kad,

ki = ω0kap,

kd = kad + ω0.



where ω0 can be taken as any positive constant above a lower bound that can

be derived from the structure of Ωpid [42], and where (kap, kad) is a given pair

of real numbers such that the following second order polynomial has zeros in

the left-half plane:

s2 + kads+ kap = 0.

Thus, the closed-loop error equation is expected to have “poles” determined by

(kap,kad), since the PID controller can be reparameterized as :

u(t) = kape(t) + kadė(t)− f̂t + r̈(t),

where e(t) = r(t) − x1(t), r(t) is a designed process with prescribed transient

behaviours and with steady state value y∗ (see [42]), and where f̂t is defined by

f̂t = −ω0

{
kade(t) + kap

∫ t

0

e(s)ds+ ė(t)

}
,

which can serve as a nice online estimator for the uncertain dynamics f . More-295

over, the larger the constant ω0, the better the performances of estimation and

control(see [42] for details).

We would like to mention that the above formula stems from the inherent

connection between the PID and the ADRC (Active disturbance rejection con-

trol). The ADRC was proposed by J.Q. Han in [60](see also[61]) and has been300

successfully applied to various industrial processes. A key ingredient of ADRC

is an extended state observer (ESO) used for estimating the uncertain nonlin-

ear dynamics. The ESO may be designed as a linear one[62], and the reduced

order linear ESO[63] will give the above estimator f̂t for the unknown nonlinear

dynamics f , see[42] for details.305

Remark 3.4. Related problems on MIMO, stochastic, and multi-agent nonlinear

uncertain systems may also be investigated. Extensions to nonlinear systems

with relative degree greater than two can be carried out by using the extended

PID controller[64]. Semi-global results may be obtained if the partial derivatives

of the uncertain functions are not bounded but some upper bound functions are310

known[64]. It would be interesting to further consider situations such as (i)

saturation, dead-zone, time-delay, sampled data, and observation noises; (ii)

extensions of the classical PID to, e.g., adaptive and nonlinear PID, for more



general uncertain nonlinear systems; and (iii) making more efforts in combing

classical control ideas with modern mathematical methods.315

4. Maximum Capability of Feedback Mechanism

To investigate the maximum capability and fundamental limitations of the

feedback mechanism, we need to give a precise definition of feedback first.

Feedback needs information, and information can be classified as prior infor-

mation and posterior information. The prior information refers to the knowledge320

about the plant before exerting the control force, and the posterior information

means the knowledge about the plant obtained via the running of the control

systems. The posterior information is usually contained in the measured input-

output data of the systems, denoted by {y0, u0; y1, u1; · · · , yt} at any time in-

stant t, where ut and yt are the system input and output signals belonging to Rp325

and Rm, respectively . If the input is a feedback signal, then the posterior infor-

mation can simply be denoted as {y0, y1, · · · , yt}. It is the posterior information

that makes it possible for feedback to reduce the influence of uncertainties on

the control systems.

By a feedback signal ut we mean that there is a measurable mapping

ht : Rm(t+1) → Rp

such that

ut = ht(y0, y1, · · · , yt)

A feedback law u is defined as

u = {ut, t ≥ 0},

and the feedback mechanism is defined as U :

U = {u |u is any feedback law}.

We are interested in how much uncertainty can the feedback mechanism U

deal with in control systems. Since stabilization is a primary objective for any

control systems, we can then define the capability of the feedback mechanism as

the capability in globally stabilizing uncertain dynamical systems, measured by



the largest possible class F of uncertainties that can be dealt with by the whole

feedback mechanism U , see also Figure 3 for a block diagram of the problem

formulation. Note that the observed output yt of a control system depends on

both the uncertain function f ∈ F and the control law u ∈ U , we may write out

this dependence explicitly as yt(f, u). Mathematically, the maximum capability

of the feedback mechanism can be defined as

sup
F

{
sizeF : inf

u∈U
sup
f∈F

sup
t≥0
|yt(f, u)| <∞, ∀ y0 ∈ Rm

}
.

Of course, one may immediately realize that it is not easy to get a complete330

solution in general. Before pursuing further, we state a simple fact as follows.

A Basic Fact. Let F0 and F be two classes of functions satisfying

F0 ⊂ F .

If the uncertain system corresponding to the function class F0 cannot be stabi-

lized by the feedback mechanism, then neither for systems corresponding to the

larger function class F .

This fact implies that once we have established an impossibility theorem on335

feedback capability for a class of uncertain systems, this theorem will continue

to be true for any larger class of uncertain systems. Throughout this section,

we will consider single-input and single-output(SISO) uncertain systems, and

will keep the system models as basic as possible.

In the following, we will consider parametric and nonparametric uncertain340

systems separately. In both cases, we will first present a theorem for a simple

but basic uncertain model class, then present an extended theorem for more

general uncertain model classes.

4.1. Parametric Uncertain Systems

Consider the following parametric control systems:

yt+1 = f(θ, yt) + ut + wt+1.

where the unknown parameter θ ∈ R1 lies in a compact set and {wt} is any

bounded disturbance sequence. Assume that the sensitivity function satisfies

∂f(θ, x)

∂θ
= Θ(|x|b), x→∞,



where b ≥ 0 is a constant. The notation Θ(|x|b) means that there exist two345

positive constants c1 and c2 such that c1|x|b ≤ Θ(|x|b) ≤ c2|x|b for all sufficiently

large x. The following theorem shows that b = 4 is a critical value:

Theorem 4.1. The above class of uncertain systems is globally stabilizable by

the feedback mechanism if and only if b < 4.

Remark 4.1. We remark that Theorem 4.1 was first discovered and proven by350

Guo[45] for the linearly parameterized stochastic case where f(θ, yt) = θf(yt),

and the present result is given in [65]. We also remark that the noise effect

is essential in this theorem, because if there were no noise, one would be able

to determine the unknown parameter θ within one step, and consequently, the

systems could be stabilized trivially, regardless of the value of b > 0. One may355

naturally ask: why b = 4 is a critical value in Theorem 4.1? Roughly speaking, it

is determined by the mixed effects of the decreasing rate of the “best” estimation

error and the possible growing rate of the sensitivity function. The detailed

analysis is quite complicated, but it is closely connected to the following simple

fact: The second order polynomial z2 − b1z + b1 > 0, for all z ∈ (1, b1), if and360

only if b1 < 4, see [45].

Next, we consider the following parametric case with multiple unknown pa-

rameters:

yt+1 = θτf(yt) + ut + wt+1 (3)

where θ ∈ Θ , {θ ∈ Rp : ‖θ‖ ≤ R} is a p-dimensional unknown parameter

vector, and {wt} is either any bounded disturbance sequence or a Gaussian

white noise sequence. Let us denote f(yt) , [f1(yt), · · · , fp(yt)]τ and assume

that the function f(·) belongs to:

F(b) =
{
f(·) : fi(x) = Θ(|x|bi), as x→∞

}
,

where b = (b1 · · · bp). Without loss of generality, we assume that b1 > b2 >

· · · > bp > 0 and b1 > 1. We remark that the case where b1 ≤ 1 means that the365

nonlinear function is bounded by a linear growth rate which can be stabilized

globally by an adaptive controller(see, e.g., [50]).



With the exponents bi defined as above, we introduce a characteristic poly-

nomial as follows:

P (z) = zp+1 − b1zp + (b1 − b2)zp−1 + · · ·+ (bp−1 − bp)z + bp.

The following result shows that this polynomial can serve as a criterion for

stabilizability.

Theorem 4.2. Let f ∈ F(b) be a nonlinear function. Then the above uncertain

nonlinear dynamical system with θ ∈ Θ is globally stabilizable by the feedback

mechanism if and only if

P (z) > 0, ∀ z ∈ (1, b1).

Remark 4.2. When p = 1, the above polynomial criterion is equivalent to b1 < 4,370

the same result as established in Theorem 4.1. The polynomial P (z) was first

introduced in [66] with a necessity proof in the stochastic case, the complete

proof was given in [67] and [68] for bounded disturbances and white Gaussian

noises, respectively. Now, we briefly explain the rationale behind the impossi-

bility or limitations of the feedback mechanism (see, [69] for details). In the case375

where both the unknown parameter θ and the disturbances {wt} are bounded,

one may use a stochastic embedding approach to find the cases where the uncer-

tain systems are not globally stabilizable by the feedback mechanism. One may

first express the conditional variance of the output process in terms of the con-

ditional variance of the best prediction error for the uncertain dynamics, then380

by using the conditional Cramér-Rao-like inequality for dynamical systems to

derive a lower bound to the best prediction error for any feedback control, which

can be expressed by the Fisher information matrix and the sensitivity function,

from which a meticulous analysis of the nonlinear dynamics will finally lead to

a connection to the polynomial criterion.385

4.2. Nonparametric Uncertain Systems

Let us first consider the following basic nonparametric control system:

yt+1 = f(yt) + ut + wt+1, y0 ∈ R1 ,



where {wt} is any bounded sequence of disturbances, and where the unknown

function f(·) ∈ F = {all R1 → R1 mappings}. We introduce the following

Lipschitz norm for a function f in F :

‖f‖ = sup
x 6=y

|f(x)− f(y)|
|x− y|

,

which may also be regarded as a kind of sensitivity measure of uncertain func-

tions. Note that a generalized definition for the norm that avoids possible zero

divisor problem may also introduced without changing the results to be pre-

sented in the following[70]. Now, let us define the following class of functions:

F(L) = {f ∈ F : ‖f‖ ≤ L}.

Note that L can serve as a measure of uncertainty: the larger its value, the

larger the function class F(L). The following result is established by Xie and

Guo[70].

Theorem 4.3. The above class of uncertain dynamical systems described by

F(L) is globally stabilizable by the feedback mechanism if and only if

L <
3

2
+
√

2.

In other words, if L < 3
2 +
√

2, then there is a feedback law {ut} such that390

the system is globally stable for any f ∈ F(L); and if L ≥ 3
2 +
√

2, then for

any feedback law {ut}, there is at least one system f ∈ F(L), such that the

corresponding closed-loop system is not globally stable.

Remark 4.3. One may naturally wonder why 3
2 +
√

2 is a critical value, since

from our problem formulation there is no clue for this. It is not easy to give395

an intuitive explanation, but instead, we list the following two facts which are

closely related to our analysis, where 3
2 +
√

2 is also critical:

Fact 1: Let {yt} be any sequence satisfying

|yt+1 − (center)t| ≤ L|yt − (neighbor)t|, ∀t ≥ 1,

where

(center)t =
1

2
( min
0≤i≤t

yi + max
0≤i≤t

yi), (neighbor)t = yit



with it = argmin
0≤i≤t−1

|yt− yi|. Then, any such sequence {yt} is bounded if and only

if L < 3
2 +
√

2.

Fact 2: All solutions of the difference equation an+1 = L(an − an−1) + 1
2an400

either converge to zero or oscillate about zero (as illustrated in Figure 4) if and

only if L < 3
2 +
√

2.

Figure 4: Illustration of the solutions for L = 0.7 and 1.1

Next, we consider a generalized uncertainty class consisting of semi-parametric

models, where both parametric and nonparametric parts are included. Let

{g(θ, ·), θ ∈ Θ} be a model class with modeling error f(·) ∈ F(L) plus a

bounded disturbance:

yt+1 = g(θ, φt) + f(yt) + wt+1, t ≥ 0,

where φt = [yt, yt−1, · · · , yt−p+1, ut, ut−1, · · · , ut−q+1]τ .

Assume that θ ∈ Θ where Θ ⊂ Rm is a compact set, that the system is

of “minimum phase” in a certain sense, and that the sensitivity function of405

g(·, ·) with respect to the unknown parameter vector θ is bounded by a linear

growth rate, etc., see[71] for a complete description of the assumptions. Under

these assumptions, the following theorem shows that the additive parametric

uncertainties do not change the capability of the feedback mechanism[71].

Theorem 4.4. The above semi-parametric uncertain dynamical systems with

{(θ, f) ∈ (Θ,F(L)} are globally stabilizable by the feedback mechanism if and

only if

L <
3

2
+
√

2.



Remark 4.4. As is well-known, modeling and feedback are two main techniques410

in dealing with uncertainties. Theorem 4.4 quantitatively shows how modeling

and feedback could be complementary in control systems design. In particular,

the limitations of feedback may be compensated by improving the quality of

modeling, and conversely, the accuracy or demand of modelling may be relaxed

by taking the maximum capability of feedback into account.415

Before concluding this section, we present the following final remark:

Remark 4.5. In this section, we have presented parts of the basic results on feed-

back capability obtained over the past 20 years. Further results may be found for

both parametric case (e.g.,[72, 65, 73]) and nonparametric case (e.g.,[74, 75, 76]).

Fundamental limitations on the sampled-data feedback mechanism with pre-420

scribed sampling rate are investigated in [77] followed by a refinement in [78].

We would like to point out that all the impossibility theorems presented in this

part enjoy universality in the sense that they are actually valid for any larger

class of uncertain systems and for any feedback laws. Also, the main results

indicate that the feedback capability depends on both information uncertainty425

and structural complexity, and that adaptive prediction(estimation) and “sen-

sitivity” functions play a crucial role. Finally, we mention that there appears

to be fundamental differences between continuous-time and sampled-data (or

discrete-time) feedbacks for uncertain nonlinear systems, when the sampling

rate is prescribed.430

5. Concluding Remarks

This paper has reviewed some basic problems and results on feedback and

uncertainty, focuses on three class of problems, i.e., STR, PID, and feedback ca-

pability, which are mainly conducted by the author’s research group. Of course,

there are many other related problems and results need to be reviewed or men-435

tioned, and there are many more problems remain to be solved or investigated

in the future. We would like to make the following perspectives:

(i)The rapid development of information technology makes it possible to

investigate more and more complex control systems, and at the same time brings



a series of interesting new problems, whose investigation may still depend on440

our understanding of the basic concepts and problems in the field.

(ii)Mathematical models paly a basic role in control theory even if they may

have large uncertainties. However, if the models are not regarded as approxima-

tions of the real-world systems and, instead, just taken as an intermediate step

for controller design, then great efforts are still needed towards a comprehensive445

understanding of the boundaries of practical applicability of the controller.

(iii)Furthermore, besides uncertainties, many systems to be controlled or

regulated in social, economic, biological, and the future “intelligent” engineering

systems, may have their own objectives to pursue. Such complex uncertain

systems, may not belong to the traditional framework of control or game theory,450

and call for more research attention[79].

References
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