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Abstract

As is well-known, the classical PID control plays a dominating role in various control loops of industrial processes. However,
a theory that can explain the rationale why the linear PID can successfully deal with the ubiquitous uncertain nonlinear
dynamical systems and a method that can provide explicit design formulae for the PID parameters are still lacking. This paper
is a continuation of the authors recent endeavor towards establishing a theoretical foundation of PID for nonlinear uncertain
systems. In contrary to most of the existing literature on linear or affine nonlinear systems, we will consider a class of non-affine
nonlinear uncertain systems, and will show that a three dimensional parameter set can be constructed explicitly, such that
whenever the PID parameters are chosen from this set, the closed-loop systems will be globally stable and the regulation error
will converge to zero exponentially fast, under some suitable conditions on the system uncertainties. Moreover, we will also
consider the simpler PI and PD control, and provide a necessary and sufficient condition for the choice of the PI parameters
for a class of one dimensional non-affine uncertain systems, by applying the Markus-Yamabe theorem in differential equations.
These theoretical results show explicitly that the ubiquitous PID control does indeed have strong robustness with respect to
both the system nonlinear uncertainties and the selection of the controller parameters.
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1 Introduction

Feedback has had a revolutionary influence in practi-
cally all areas it is used, and the classical proportional-
integral-derivative (PID) control is perhaps the most ba-
sic form of feedback (Åström & Hägglund (2000)). In
fact, the PID controller is by far the most basic and
widely used control algorithm in engineering systems.
For example, more than 95% of the control loops in pro-
cess control are of PID type, where most loops are actu-
ally PI control (Åström & Hägglund (1995)). It is also
reported that the PID control has a much higher influ-
ence than the advanced control technologies, and that
we still have nothing that compares with PID by far
(Samad (2017)).

Therefore, a natural question is: why the linear PID
performs so successfully in controlling the ubiquitous
nonlinear systems with various uncertainties. There are
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some partially known reasons: It has a simple struc-
ture whose design is model-free; it has the ability to re-
duce the influence of uncertainties through proportional
action, to eliminate steady state offsets through inte-
gral action and to anticipate the tendency of the output
through the derivative action; the Newton’s second law
is fundamental in modeling mechanical systems, which
is just suitable for the PID control. However, these rea-
sons appear to be superficial, and a fundamental theory
that can guarantee the global stability and strong ro-
bustness of the classical PID when applied to uncertain
nonlinear dynamical systems together with an explicit
design method for the PID parameters are still lacking.

Traditionally, the PID parameters are chosen based
on experiments or experiences or by both in practice,
including the well-known Ziegler-Nichols rules (Ziegler
& Nichols (1993)). However, it has been reported that
most of the practical PID loops are poorly tuned, and
there is strong evidence that PID controllers remain
poorly understood (Odwyer (2006)). This may partly
due to the fact that the PID controller has not at-
tracted enough attention from the research community
(Åström & Hägglund (1995)). In fact, most related
theoretical studies of PID are conducted for systems
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with special structures, e.g., for linear systems(e.g.,
Åström & Hägglund (2000, 1995); Ho & Lin (2003);
Keel & Bhattacharyya (2008); Silva et al. (2005)), for
affine nonlinear systems Killingsworth & Krstic (2006);
Khalil (2000). There are also abundant works focused
on nonlinear robot systems, see e.g., Takegaki & Ari-
moto (1981); Alvarez-Ramirez et al. (2002); Besancon
(2000); Su et al. (2010); Borja et al. (2021); Romero
et al. (2018), etc. A notable work Takegaki & Arimoto
(1981) in robotics proved that a simple PD law pro-
vides a global solution to the point-to-point positioning
task for fully actuated robot manipulators. The global
asymptotic regulation of uncertain robotic systems via
the PD control plus a class of nonlinear integral action
has been established by Kelly (1998). It is worth not-
ing that for robot systems, the total energy stored in
the systems decreases with time and the dissipativity
properties can be used to design stable and robust feed-
back controllers. Moreover, the stability of a dissipative
system with a PID controller can be established us-
ing dissipative arguments which hinges on the specific
structure of the robot systems (Brogliato et al. (2007)).

However, for more general nonlinear uncertain systems
without dissipative properties, it is more challenging to
analyze the asymptotic behavior of the control system
since there is no concept like the total energy which
can be used as a natural Lyapunov function candidate.
The longstanding gap between the PID theory and its
widespread practice calls for a theory for general non-
linear uncertain control systems (Guo (2020)). These
motivate our recent studies on the theory and design
of the PID control for nonlinear uncertain systems(see
e.g., Zhao & Guo (2017); Zhang & Guo (2019); Zhao &
Guo (2021)). For example, we have provided some global
convergence results for a class of second order uncertain
nonlinear systems in our previous works Zhao & Guo
(2017); Zhang & Guo (2019) with no uncertainty in the
control channel. For affine-nonlinear uncertain systems
with a general relative degree, we have investigated the
capability of the extended PID control in Zhao & Guo
(2021), where both the input and output are assumed to
be one dimensional. Undoubtedly, most mechanical sys-
tems such as aircrafts, manipulators or walking robotics
have more than one degree of freedom in the control in-
puts. Moreover, there are many practical systems are
in the non-affine from, such as flight control systems
Boskovic et al. (2004) , and chemical reactions, etc, or
systems with nonsymmetric control gain matrix, see e.g.,
Huang et al. (2001). These facts inspired us to consider
general MIMO non-affine uncertain systems based on
our previous works (Zhao & Guo (2017); Zhang & Guo
(2019)). It is worth mentioning that both the controller
design and analysis of MIMO uncertain systems consid-
ered in this paper are more challenging than those stud-
ied previously, because of the uncertainties caused by
the strong coupling of the MIMO non-affine nonlinear
control systems.

The main contributions are as follows. First, we will
show that for a basic class of multi-input multi-
output(MIMO) second order non-affine uncertain sys-
tems, a 3-dimensional set can be constructed from which
the three PID parameters can be chosen arbitrarily to
globally stabilize the closed-loop control system and to
make the regulation error converge to zero exponen-
tially fast, as long as some certain bounds of the partial
derivatives of the uncertain function are known a prior.
Next, for the case where the setpoint is an equilibrium
of the uncontrolled system or the case where the con-
trol system is of first order, we will show that the PD
(or PI) controller can globally regulate the considered
systems. Finally, we will use the Markus-Yamabe the-
orem to establish a necessary and sufficient condition
for the choices of PI parameters for a class of one di-
mensional nonlinear uncertain systems. These results
will demonstrate explicitly that the PID control does
indeed have large scale robustness with respect to both
the uncertain system structure and the selection of the
controller parameters, where the controller gains are
not necessarily to be high.

The rest of the paper is organized as follows. The prob-
lem formulation will be described in Section 2. Section 3
will present our main results, with proofs put in Section
4. Section 5 will conclude the paper with some remarks.

2 Problem Formulation

2.1 Notations

Denote Rn as the n-dimensional Euclidean space, Rm×n
as the space of m × n real matrices, ‖x‖ as the Eu-
clidean norm of a vector x, and xT as the transpose of
a vector or matrix x. The norm of a matrix P ∈ Rm×n
is defined by ‖P‖ = supx∈Rn,‖x‖=1 ‖Px‖. For a square

matrix P ∈ Rn×n, denote Sym[P ]
4
= (P + PT)/2 as

the symmetrization matrix of P . For a symmetric ma-
trix S ∈ Rn×n, we denote λmin(S) and λmax(S) as the
smallest and the largest eigenvalues of S, respectively.
For two symmetric matrices S1 and S2 in Rn×n, the no-
tation S1 > S2 or S2 < S1 implies that S1−S2 is a pos-
itive definite matrix; S1 ≥ S2 or S2 ≤ S1 implies that
S1 − S2 is a positive semi-definite matrix.

Let R2
+ denote the product (0,∞)×(0,∞), and similarly

R3
+ = (0,∞)× (0,∞)× (0,∞). Let C1(Rn,Rm) be the

space of continuously differentiable functions from Rn
to Rm, denoted as C1(Rn) for simplicity when m = 1.
For a function Φ = (φ1, · · · , φm)T ∈ C1(Rn,Rm), let

∂Φ

∂x
(x) =


∂φ1

∂x1
(x) ∂φ1

∂x2
(x) · · · ∂φ1

∂xn
(x)

...
...

. . .
...

∂φm
∂x1

(x) ∂φm
∂x2

(x) . . . ∂φm
∂xn

(x)
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denote the Jacobian of Φ at the point x.

A function Φ ∈ C1(Rn,Rn) is called a global diffeomor-
phism on Rn if it is both injective and surjective, and its
inverse satisfies Φ−1 ∈ C1(Rn,Rn).

2.2 The control system

Consider the following class of MIMO non-affine uncer-
tain nonlinear systems:{

ẋ1 = x2

ẋ2 = f(x1, x2, u), x1 ∈ Rn, u ∈ Rn,
(1)

where (x1, x2) is the system state that can be measured,
u is the control input and f ∈ C1(R3n,Rn) is an uncer-
tain nonlinear function.

We remark that many practical dynamical systems can
be described by the basic model (1) via the Newton’s
second law. For example, it can be used to describe the
motion of a controlled moving body in Rn, where x1

and x2 represent the position and velocity of the mov-
ing body respectively and where the nonlinear function
f(x1, x2, u) represents the total external forces acting on
the moving body. It can also be used to model a general
mechanical system with n degrees of freedom, where x1

and x2 represents the generalized coordinates and the
generalized velocity of the system respectively.

Our control objective is to globally stabilize the system
(1) and to make the controlled variable x1(t) converge
to a desired reference value y∗ ∈ Rn exponentially for all
initial states (x1(0), x2(0)) ∈ R2n, under the condition
that the nonlinear function f(·) contains uncertainty.

3 The Main Results

3.1 PID control

In this section, we will investigate the capability of the
classical PID controller:

u(t) =kpe(t) + ki

∫ t

0

e(s)ds+ kdė(t), (2)

e(t) =y∗ − x1(t),

and provide a concrete design method for the three PID
parameters (kp, ki, kd) to achieve the desired objectives.

Note that f is uncertain, to establish a rigorous mathe-
matical theory, we need to introduce a measure on the
size of the class of uncertain functions. It is conceivable
that the sensitivities of the uncertain function with re-
spect to their variables, reflected by the upper bounds of

the partial derivatives ∂f
∂xi

(i = 1, 2), will play an essen-

tial role in the control of uncertain systems, see (Xie &
Guo (2000); Zhao & Guo (2017)). In general, such upper
bounds may be unbounded functions of the state vari-
ables, in which cases one can only get semi-global control
results(cf. e.g., Khalil (2000); Zhao & Guo (2021)) if the
open-loop system is unstable and no additional struc-
tural properties such as dissipativity are available, be-
cause of the linear structure of the classical PID. More-
over, in order for the input signal to have the ability to
influence the systems to be controlled, the control gain
matrix ∂f

∂u should not vanish. These natural intuitions
and facts inspired us to introduce the following function
space.

Definition 1 (Function space) For given positive
constants L1, L2 and b, define F(= FL1,L2,b) as follows:

F 4=
{
f ∈C1(R3n,Rn)

∣∣∣∣ ∥∥∥ ∂f∂x1

∥∥∥ ≤ L1,
∥∥∥ ∂f
∂x2

∥∥∥ ≤ L2,

Sym
[ ∂f
∂u

]
≥ bIn, ∀x1, x2, u ∈ Rn

}
,

where ∂f
∂x1

, ∂f
∂x2

and ∂f
∂u are the n× n Jacobian matrices

of f with respect to x1, x2 and u, respectively, In is the

n× n identity matrix and Sym
[
∂f
∂u

] 4
=
[
∂f
∂u +

(
∂f
∂u

)T ]/
2.

We now give some explanations for the uncertain func-
tion space F . First, it is worth mentioning that for non-
linear functions f ∈ F , the uncontrolled system (1) may
be unstable. Moreover, no specific structural informa-
tion is assumed in this paper except for some prior in-
formation on the bounds of the partial derivatives. Since
the classical PID is a linear feedback, for systems (1)
without dissipative properties, the boundedness of the
partial derivatives ∂f

∂xi
(i = 1, 2)(or the linear growth

condition) appears to be necessary in general for global
results (Zhao & Guo (2017b)). Of course, the linear
growth condition can be considerably relaxed if we are
only interested in obtaining semi-global results (Zhao
& Guo (2021)), and one may even get global results
if specific structural information such as that in robot
manipulators is available (Kelly (1998)). Furthermore,
we remark that the constants L1 and L2 correspond to
the upper bounds of the “anti-stiffness” and the “anti-
damping” coefficients of the nonlinear systems (1) re-
spectively (Krstic (2017)), and that the three positive
constants L1, L2 and b can be used to describe the sys-
tem uncertainty quantitatively, since the “size” of the
uncertain function space FL1,L2,b will increase when ei-
ther L1 and L2 increases or b decreases. Finally, we men-
tion that the meanings of the symbols ∂f

∂xi
and ∂f

∂u remain
the same as in Definition 1 throughout the paper.

Based on the triple (L1, L2, b), we next introduce a three
dimensional unbounded parameter set.
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Definition 2 (Parameter set) Define Ωpid as follows:

Ωpid =

{
(kp, ki, kd) ∈ R3

+

∣∣∣∣∣ k2
p > 2kikd + k̄

k2
d > kp/b + k̄

}
, (3)

where k̄
4
= (L1 + L2)(kp + kd)/b.

Remark 3.1 We remark that for any given positive
constants L1, L2 and b, the parameter set Ωpid defined
by (3) is an open and unbounded subset in R3. In fact,
for any given ki > 0, it can be verified that (kp, ki, kd) ∈
Ωpid, provided that

kp = kd ≥ 2ki + [2(L1 + L2) + 1]/b.

Hence, the integral parameter ki can be chosen arbitrar-
ily small, and the PD gains (kp, kd) need not to be suffi-
ciently large. Moreover, the parameter set Ωpid is actu-
ally a semi-cone in the sense that:

(kp, ki, kd) ∈ Ωpid ⇒ α(kp, ki, kd) ∈ Ωpid, ∀α ≥ 1.

The proof of Remark 3.1 is given in §6.2.

Now, we are in position to present the main results.

Theorem 3.1 Consider the PID controlled system (1)-
(2). Then for any (kp, ki, kd) ∈ Ωpid, there exist two con-
stants M > 0 and λ > 0(depend on (kp, ki, kd, L1, L2, b)
only), such that for any f ∈ FL1,L2,b, any setpoint y∗ ∈
Rn and any initial states (x1(0), x2(0)) ∈ R2n, the solu-
tion of the closed-loop system will satisfy

‖e(t)‖+ ‖ė(t)‖ ≤Me−λt (‖e(0)‖+ ‖ė(0)‖+ ‖u∗‖)

for all t ≥ 0, where e(t) = y∗ − x1(t) and u∗ ∈ Rn is the
unique solution of the algebraic equation f(y∗, 0, u) = 0.

The proof of Theorem 3.1 is given in §4.

Remark 3.2 From Theorem 3.1, we know that the
classical PID (2) can globally stabilize and regulate the
uncertain system (1), provided that the upper bounds

of ∂f
∂xi

(i = 1, 2) together with a lower bound to ∂f
∂u are

known a prior. It is worth mentioning that both the up-
per bound and the symmetry of the control gain ma-
trix ∂f

∂u are not required, and x1 is allowed to be high-
dimensional. Thus, Theorem 3.1 has weakened the as-
sumptions on the system nonlinear functions considered
in Zhang & Guo (2019) and Zhao & Guo (2018) sig-
nificantly, where Zhang & Guo (2019) only considers
affine-nonlinear systems with no uncertainty in the con-
trol channel, and Zhao & Guo (2018) only considers the
one-dimensional case. In addition, notice that the un-
bounded set Ωpid only depends on L1, L2 and b, we can

see that the selection of the PID parameters relies nei-
ther on the precise structure of the function f(·), nor on
the initial states and the setpoint y∗. Hence, the PID
controller has strong robustness with respect to both the
system uncertainties and to the selection of the three
controller parameters. This partially explains the ratio-
nale behind the widespread successful applications of the
PID control.

Remark 3.3 Theorem 3.1 is also true for bounded
time-varying reference signals y∗(t), save that the out-
put tracking error may not converge to zero in general,
which can be made arbitrarily small by either assuming
slowly varying reference signals, or choosing large PID
controller gains, see e.g., Jiang et al. (2015) for related re-
sults with extended state observer-based controller. For
the case where only the state variable x1 is measured, a
high-gain differential observer may be used to estimate
the derivative signal to get the similar results, see Guo
& Zhao (2021) in the affine case.

Remark 3.4 It is possible to further specify the choice
of the three PID parameters (kp, ki, kd) from the set Ωpid.
One way is to rewrite the PID control as an adaptive
pole-placement control where the uncertain nonlinear
function is adaptively “cancelled” by an online estima-
tor formed by a suitable linear combination of the three
terms in PID, see Zhong et al. (2021) for a related dis-
cussion based on an earlier version of the current paper.

Remark 3.5 In Theorem 3.1, the partial derivatives
∂f
∂xi

, i = 1, 2 of the nonlinear function f(x1, x2, u) have
been assumed to be bounded for establishing global
results. Although it seems to be somewhat restric-
tive mathematically and may not be satisfied for some
specific cases including robot manipulators(see e.g.,
Besancon (2000); Kelly (1998)), it is a quite natural
assumption in general. Firstly, the boundedness of the
partial derivatives is equivalent to the standard Lips-
chitz condition used in ordinary differential equation to
ensure the global existence and uniqueness of solutions.
Secondly, for sampled-data control of nonparametric
nonlinear uncertain systems, the boundedness of the
derivatives of the uncertain functions appears to be
necessary for global stabilization(see Guo (2020); Xie &
Guo (2000); Xue & Guo (2002)). Thirdly, this condition
can be verified for many practical systems since the
state variables are usually kept in a bounded set due
to physical constraints, and even when there were no
physical constrains on the state variables, it may also
be verified for many practical systems, e.g., damped
vibration, simple pendulum with damping, etc.

3.2 PD control

It is known that when the setpoint is an equilibrium of
the uncontrolled system, then the integral term is not
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necessary for regulation for a class of affine nonlinear
system with n = 1, see Theorem 2 in Zhao & Guo (2017).

For non-affine uncertain system (1), let us consider the
case where the setpoint y∗ ∈ Rn is an equilibrium of the
uncontrolled system, i.e., f(y∗, 0, 0) = 0, and introduce
the following function space:

FL1,L2,b,y∗
4
=
{
f ∈ FL1,L2,b

∣∣ f(y∗, 0, 0) = 0
}
.

Define the following two dimensional PD parameter set:

Ωpd =
{

(kp, kd) ∈ R2
+

∣∣∣ k2
p > k̄, k2

d > kp/b+ k̄
}
, (4)

where k̄
4
= (L1 + L2)(kp + kd)/b.

Theorem 3.2 Consider the non-affine uncertain sys-
tem (1), where u(t) is the following PD control:

u(t) = kpe(t) + kdė(t), e(t) = y∗ − x1(t). (5)

Then for any (kp, kd) ∈ Ωpd, there exist constantsM > 0
and λ > 0(depend on (kp, kd, L1, L2, b) only), such that
the closed-loop system will satisfy

‖e(t)‖+ ‖ė(t)‖ ≤Me−λt
(
‖e(0)‖+ ‖ė(0)‖

)
,

for all t ≥ 0, for all f ∈ FL1,L2,b,y∗ and for all initial

states (x1(0), x2(0)) ∈ R2n.

Remark 3.5 It can be verified that (kp, kd) ∈ Ωpd
provided that kp = kd = k > [2(L1 + L2) + 1]/b, since

k2
p − k̄ =k2

d − k̄ > k2
d − kp/b− k̄

=k2 − k/b− 2k(L1 + L2)/b

=k(k − [2(L1 + L2) + 1]/b) > 0.

Thus, Ωpd is an open and unbounded subset in R2 and
the PD gains (kp, kd) need not to be sufficiently large
to satisfy (kp, kd) ∈ Ωpd. Moreover, we remark that in
Theorem 3.2, if the dimension of x1 is one, i.e., n = 1,
then a necessary and sufficient condition for the choice
of PD parameters can be found, see Zhao & Guo (2018).

3.3 PI control

In this subsection, we consider the following class of first
order non-affine nonlinear uncertain systems:

ẋ = f(x, u), x ∈ Rn, u ∈ Rn, (6)

where u is the control input and f(x, u) : R2n → Rn
is an uncertain nonlinear function. It is worth noting
that (6) can be used to model many industrial processes,

for examples, the level controls in single tanks, stirred
tank reactors with perfect mixing, etc, see Åström &
Hägglund (1995).

Next, we will show that the following PI controller:

u(t) = kpe(t) + ki

∫ t

0

e(s)ds, e(t) = y∗ − x(t) (7)

can globally stabilize and regulate the system (6).

Consider the following class of uncertain functions:

FL,b
4
=

{
f ∈ C1

∣∣∣∣ ∥∥∂f∂x∥∥ ≤ L, Sym
[∂f
∂u

]
≥ bIn,∀x, u

}
,

where L > 0 and b > 0 are two constants. Define the
following two dimensional PI parameter set:

Ωpi =
{

(kp, ki) ∈ R2
+

∣∣∣ k2
pb > kpL+ ki + L2/(4b)

}
.

Remark 3.6 It can be verified that (kp, ki) ∈ Ωpi pro-
vided that ki > 0 and kp ≥ 2L/b+ ki/L, since

k2
pb− kpL− ki =kp(bkp − L)− ki ≥ kpL− ki

≥2L2/b+ ki − ki > L2/(4b).

Thus, Ωpi is an open and unbounded subset in R2.

Theorem 3.3 Consider the uncertain nonlinear system
(6), where u(t) is the PI controller defined by (7). Then
whenever (kp, ki) ∈ Ωpi, the closed-loop system will sat-
isfy limt→∞ x(t) = y∗, for any f ∈ FL,b, any setpoint
y∗ ∈ Rn and any initial state x(0) ∈ Rn. In addition, if
dimx = dimu = 1, then the PI parameters can be chosen
from the following larger and necessary parameter set:

Ω′pi =
{

(kp, ki) ∈ R2
∣∣ kpb > L, ki > 0

}
.

4 Proof of the Main Results

We first list some auxiliary results that will be used in
the proofs of the main results.

The following result is known as Hadamard’s Theorem,
which asserts that smooth(C1) and proper maps with
non-singular Jacobian are global diffeomorphisms. To be
specific,

Theorem A1 (Gordon (1972); Ruzhansky & Sugimoto
(2015)) Let Φ ∈ C1(Rn,Rn), then Φ is a global diffeo-
morphism on Rn if and only if the Jacobian matrix ∂Φ

∂x is
nonsingular for all x ∈ Rn and lim‖x‖→∞ ‖Φ(x)‖ =∞.
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Theorem A2 (Feßler (1995)) Consider the ordinary dif-
ferential equation ẋ = f(x), where f ∈ C1(R2,R2) and
f(0) = 0. If for any x ∈ R2, the eigenvalues of the Jaco-
bian Df(x) have negative real parts, then the zero so-
lution of the differential equation is globally asymptoti-
cally stable.

Proposition 4.1 Let Φ ∈ C1(Rn,Rn). Suppose that

Sym
[∂Φ

∂x

]
≥ R, ∀x ∈ Rn,

where R ∈ Rn×n is a constant positive definite matrix,
then Φ is a global diffeomorphism on Rn. As a conse-
quence, Φ is surjective.

Proof. We first proceed to show that there exists some
matrix valued function A(y) : Rn → Rn×n, such that
Φ(y) − Φ(0) = A(y)y, for all y ∈ Rn. To this end, for
any given y, we define a function h : [0, 1]→ Rn of t by

h(t)
4
= Φ(x), x = ty,

then by the chain rule, it follows that the derivative of
h with respect to t is

dh

dt
=
∂Φ

∂x

∂x

∂t
=

[
∂Φ

∂x
(x)

]
y, x = ty.

It follows that

Φ(y)− Φ(0) = h(1)− h(0) =

∫ 1

0

dh

dt
dt

=

∫ 1

0

[∂Φ

∂x
(ty)

]
ydt = A(y)y,

where A(y) =
∫ 1

0

[
∂Φ
∂x (ty)

]
dt.

Next, we proceed to show that Sym[A(y)] ≥ R, ∀y ∈ Rn.
Let y ∈ Rn be any given vector, then for any ξ ∈ Rn, it
is easy to see that

ξTSym[A(y)]ξ =ξTSym

[∫ 1

0

∂Φ

∂x
(ty)dt

]
ξ

=ξT
{∫ 1

0

Sym

[
∂Φ

∂x
(ty)

]
dt

}
ξ

=

∫ 1

0

ξTSym

[
∂Φ

∂x
(ty)

]
ξdt

≥
∫ 1

0

ξTRξdt = ξTRξ,

where the last but one relationship holds because by our
assumption we have

Sym

[
∂Φ

∂x
(ty)

]
≥ R, for all t ∈ [0, 1].

Finally, since ξ ∈ Rn is arbitrary, we conclude that
Sym[A(y)] ≥ R. From this, we can obtain∣∣yT(Φ(y)− Φ(0))

∣∣ =
∣∣yTA(y)y

∣∣
=
∣∣yTSym[A(y)]y

∣∣ ≥ λmin(R)‖y‖2, ∀y ∈ Rn, (8)

where λmin(R) > 0 is the smallest eigenvalue ofR. Then,
it follows from (8) that ‖Φ(y) − Φ(0)‖ ≥ λmin(R)‖y‖,
which in turn implies lim‖y‖→∞ ‖Φ(y)‖ = ∞. Combin-

ing this with the fact that Sym
[
∂Φ
∂x ] is positive defi-

nite(and thus ∂Φ
∂x is nonsingular), we conclude that Φ is

a global diffeomorphism on Rn by Theorem A1. �

Proposition 4.2 Assume that (ki, kp, kd) ∈ Ωpid, then
the following 3n× 3n matrix is positive definite, i.e.,

P
4
=


2kikpbIn 2kikdbIn kiIn

2kikdbIn (2kpkdb− ki)In kpIn

kiIn kpIn kdIn

 > 0. (9)

Moreover, if we denote

A
4
=


0n In 0n

0n 0n In

−kiθ a− kpθ b− kdθ

 ,
where 0n is the n×n zero matrix and a, b and θ are n×n
constant matrices satisfying

‖a‖ ≤ L1, ‖b‖ ≤ L2, Sym[θ] ≥ bIn > 0. (10)

Then there exists α > 0(depends on (kp, ki, kd, L1, L2, b)
only), such that PA+ATP ≤ −αI3n holds, where I3n is
the 3n× 3n identity matrix.

Proposition 4.2 implies that the function V (z) =
zTPz, z ∈ R3n with P defined by (9) is actually a com-
mon Lyapunov function of ż = Az for all a, b and θ
satisfying (10) in the matrix A. This fact will be used in
the proof of Theorem 3.1 to be given shortly.

Proposition 4.3 Assume that (kp, kd) ∈ Ωpd, then the
following 2n× 2n matrix is positive definite, i.e.,

P
4
=

[
2kpkdbIn kpIn

kpIn kdIn

]
> 0. (11)

Moreover, if we denote

A
4
=

[
0n In

a− kpθ b− kdθ

]
,
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where a, b and θ are n× n constant matrices satisfying

‖a‖ ≤ L1, ‖b‖ ≤ L2, Sym[θ] ≥ bIn > 0.

Then there exists β > 0(depends on (kp, kd, L1, L2, b)
only), such that PA+ATP ≤ −βI2n holds, where I2n is
the 2n× 2n identity matrix.

Proposition 4.4 Assume that (kp, ki) ∈ Ωpi, then the
following 2n× 2n matrix is positive definite, i.e.,

P
4
=

[
2kpkibIn kiIn

kiIn kpIn

]
> 0. (12)

Moreover, if we denote

A
4
=

[
0n In

−kiθ a− kpθ

]
,

where a and θ are n × n matrices satisfying ‖a‖ ≤ L
and Sym[θ] ≥ bIn > 0. Then there exists a constant γ >
0(depends on (ki, kp, L, b) only), such that PA+ATP ≤
−γI2n holds.

The proofs of Propositions 4.2−4.4 are given in Section
6.1.

Proof of Theorem 3.1

Let y∗ ∈ Rn be given, and suppose that the nonlinear
function f(x1, x2, u) ∈ FL1,L2,b. We first define a vector-
valued function Φ : Rn → Rn as follows:

Φ(u)
4
= f(y∗, 0, u), u ∈ Rn.

Note that

Sym
[∂f
∂u

]
≥ bIn > 0, ∀x1, x2, u ∈ Rn,

therefore Sym[∂Φ
∂u ] ≥ bIn > 0, ∀u ∈ Rn. By Proposition

4.1, we know that Φ is a global diffeomorphism on Rn.
Hence, there exists a unique u∗ ∈ Rn, such that Φ(u∗) =
f(y∗, 0, u∗) = 0.

Now, suppose that (kp, ki, kd) ∈ Ωpid. We first introduce
the following notations:

z0(t) =
∫ t

0
e(s)ds− u∗/ki, z1(t) = e(t), z2(t) = ė(t),

then the PID controller (2) can be rewritten as

u(t) = kiz0(t) + kpz1(t) + kdz2(t) + u∗.

Define a function g : R3n → Rn as follows:

g(x1, x2, u) =− f(y∗ − x1,−x2, u+ u∗). (13)

Notice that f ∈ FL1,L2,b, it is easy to see that

∥∥ ∂g
∂xi

∥∥ ≤ Li; Sym
[∂g
∂u

]
≤ −bIn, ∀x1, x2, u ∈ Rn. (14)

Note that ẋ2 = f(x1, x2, u), it follows that(we omit the
variable t for simplicity)

ż2 =− ẋ2 = −f(x1, x2, u)

=− f(y∗ − z1,−z2, kiz0 + kpz1 + kdz2 + u∗)

=g(z1, z2, kiz0 + kpz1 + kdz2).

Hence, we obtain
ż0 = z1,

ż1 = z2,

ż2 = g(z1, z2, kiz0 + kpz1 + kdz2).

(15)

Recall that f(y∗, 0, u∗) = 0, we have

g(0, 0, 0) = −f(y∗, 0, u∗) = 0.

Next, we proceed to show that there exists a continuous
function θ(z0, z1, z2) : R3n → Rn×n such that

g(z1, z2, kiz0 + kpz1 + kdz2)

=g(z1, z2, 0)− θ(z0, z1, z2)(kiz0 + kpz1 + kdz2), (16)

with Sym[θ(z0, z1, z2)] ≥ bIn > 0, ∀(z0, z1, z2) ∈ R3n.

To this end, for fixed z0, z1 and z2, we define a function
h(τ) of τ ∈ [0, 1] as follows:

h(τ)
4
= g(z1, z2, u), u = τ(kiz0 + kpz1 + kdz2).

By the chain rule, we have

dh

dτ
=
∂g

∂u

∂u

∂τ
=

[
∂g

∂u

(
z1,z2,u

)]
(kiz0 + kpz1 + kdz2).

Then it follows that

g(z1, z2, kiz0 + kpz1 + kdz2)− g(z1, z2, 0)

=h(1)− h(0) =

∫ 1

0

dh

dτ
dτ

=

[∫ 1

0

∂g

∂u

(
z1, z2, u

)
dτ

]
(kiz0 + kpz1 + kdz2).

Therefore, if we denote θ as follows:

θ =

∫ 1

0

−∂g
∂u

(z1, z2, u)dτ, u = τ(kiz0 + kpz1 + kdz2),
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then it is easy to see that θ = θ(z0, z1, z2) is a continu-
ous function of z0, z1 and z2. Moreover, (16) is satisfied

obviously. Note that Sym[− ∂g
∂u ] ≥ bIn and the integral

expression of θ, similar to the proof of Proposition 4.1,
we conclude that

Sym[θ(z0, z1, z2)] ≥ bIn > 0, ∀(z0, z1, z2) ∈ R3n.

Similarly, recall that g(0, 0, 0) = 0, we can express
g(z1, z2, 0) as follows:

g(z1, z2, 0) = [g(z1, 0, 0)− g(0, 0, 0)]

+ [g(z1, z2, 0)− g(z1, 0, 0)]

= a(z1)z1 + b(z1, z2)z2, (17)

where a(z1) and b(z1, z2) are n× n matrices defined by

a(z1) =

∫ 1

0

∂g

∂x1
(τz1, 0, 0)dτ,

and

b(z1, z2) =

∫ 1

0

∂g

∂x2
(z1, τz2, 0)dτ.

Hence, by (14), it is easy to obtain

‖a(z1)‖ ≤
∫ 1

0

‖ ∂g
∂x1

(τz1, 0, 0)‖dτ ≤ L1, ∀z1 ∈ Rn,

and

‖b(z1, z2)‖ ≤
∫ 1

0

‖ ∂g
∂x2

(z1, τz2, 0)‖dτ ≤ L2, ∀z1, z2 ∈ Rn.

By (16)-(17), equation (15) turns into
ż0 = z1

ż1 = z2

ż2 = a(z1)z1 + b(z1, z2)z2

−θ(z0, z1, z2)(kiz0 + kpz1 + kdz2).

(18)

For simplicity, let us denote a = a(z1), b = b(z1, z2),
θ = θ(z0, z1, z2) and z = (zT0 , z

T
1 , z

T
2 )T and define

A(z)
4
=


0n In 0n

0n 0n In

−kiθ a− kpθ b− kdθ

 .
Then (18) can be rewritten as ż = A(z)z, z ∈ R3n.

Now, we construct the following Lyapunov function:

V (z) = zTPz, z = (zT0 , z
T
1 , z

T
2 )T,

where P is a 3n × 3n constant matrix defined by (9).
Then, the time derivative of V (·) along the trajectories
of (18) is given by

V̇ (z(t)) = zT(t)
(
PA(z(t)) +AT(z(t))P

)
z(t).

By Proposition 4.2, we know that P > 0. Moreover,
recall that the n × n matrices a(z1), b(z1, z2) and
θ(z0, z1, z2) satisfies

‖a(z1)‖ ≤ L1, ‖b(z1, z2)‖ ≤ L2, Sym[θ(z0, z1, z2)] ≥ bIn,

for all z0, z1 and z2. Thus, by Proposition 4.2 again, we
know that there exists a time-invariant constant α > 0
which depends on (kp, ki, kd, L1, L2, b) only, such that

PA(z) +AT(z)P ≤ −αI3n, for all z ∈ R3n.

As a consequence, we have V̇ (z(t)) ≤ −α‖z(t)‖2, which
implies the origin 0 ∈ R3n is globally exponentially sta-
ble of (18). In fact, it is easy to obtain

V̇ (z(t)) ≤ −α‖z(t)‖2 ≤ −αV (z(t))/λmax(P ),

which in turn gives

λmin(P )‖z(t)‖2 ≤V (z(t)) ≤ e−
αt

λmax(P )V (z(0))

≤λmax(P )e−
αt

λmax(P ) ‖z(0)‖2.

As a consequence, we have

‖z(t)‖ ≤
√
λmax(P )/λmin(P )e−

αt
2λmax(P ) ‖z(0)‖.

Notice that z(t) = (zT0 (t), zT1 (t), zT2 (t))T, and that
z1(t) = e(t), z2(t) = ė(t) and z0(0) = −u∗/ki, it is easy
to obtain

‖e(t)‖+ ‖ė(t)‖ ≤
√

2‖z(t)‖
≤M1e

−λt(‖e(0)‖+ ‖ė(0)‖+ ‖u∗‖/ki
)
, (19)

whereM1 =
√

2λmax(P )/λmin(P ) and λ = α/(2λmax(P )).
Denote

M = max{M1,M1/ki},
from (19), we obtain

‖e(t)‖+ ‖ė(t)‖
≤Me−λt

(
‖e(0)‖+ ‖ė(0)‖+ ‖u∗‖

)
, for all t ≥ 0,

whereM is a constant depends on (kp, ki, kd, b) only and
λ is a constant depends on kp, ki, kd, L1, L2 and b only.
Hence, the proof of Theorem 3.1 is completed. �

Proof of Theorem 3.2
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Suppose that f ∈ FL1,L2,b,y∗ and (kp, kd) ∈ Ωpd. De-
note z1(t) = e(t) = y∗ − x1(t), z2(t) = ė(t) = −x2(t)
and g(x1, x2, u) = −f(y∗ − x1,−x2, u), then the PD
controlled system (1) and (5) turns into{

ż1 = z2

ż2 = g(z1, z2, kpz1 + kdz2).
(20)

From f(y∗, 0, 0) = 0, we have g(0, 0, 0) = −f(y∗, 0, 0) =
0, which implies 0 ∈ R2n is an equilibrium of (20).

Next, similar to the proof of Theorem 3.1, we know that
g(z1, z2, kpz1 + kdz2) can be expressed by

g(z1, z2, kpz1 + kdz2)

=a(z1)z1 + b(z1, z2)z2 − θ(z1, z2)(kpz1 + kdz2),

where a(z1), b(z1, z2) and θ(z1, z2) are n × n matrices
satisfying

‖a(z1)‖ ≤ L1, ‖b(z1, z2)‖ ≤ L2, Sym[θ(z1, z2)] ≥ bIn,
(21)

for all z1, z2 ∈ Rn. Therefore, (20) turns into{
ż1 = z2

ż2 = a(z1)z1 + b(z1, z2)z2 − θ(z1, z2)(kpz1 + kdz2)
(22)

Denote z = (zT1 , z
T
2 )T and

A(z)
4
=

[
0n In

a(z1)−kpθ(z1, z2) b(z1, z2)−kdθ(z1, z2)

]
,

then (22) can be rewritten as ż = A(z)z.

Now, we construct the following Lyapunov function:

V (z) = zTPz,

where P is a 2n × 2n constant matrix defined by (11).
Therefore, the time derivative of V along the trajectories
of (22), is given by V̇ (z) = zT(PA(z) + A(z)TP )z. By
Proposition 4.3, we know that P > 0 and there exists
β > 0 such that PA(z) + AT(z)P ≤ −βI2n, for all z ∈
R2n. Similarly, we have

‖z(t)‖ ≤
√
λmax(P )/λmin(P )e−

βt
2λmax(P ) ‖z(0)‖.

Notice that z(t) = (zT1 (t), zT2 (t))T and that z1(t) = e(t),
and z2(t) = ė(t), it is easy to obtain

‖e(t)‖+ ‖ė(t)‖ ≤
√

2‖z(t)‖ ≤Me−λt
(
‖e(0)‖+ ‖ė(0)‖

)
,

where

M =

√
2λmax(P )

λmin(P )
, λ =

β

2λmax(P )
.

Hence, the proof of Theorem 3.2 is completed. �

Proof of Theorem 3.3

Let y∗ ∈ Rn be given and suppose that f(x, u) ∈ FL,b
and (kp, ki) ∈ Ωpi. Define a map Φ : Rn → Rn as follows:

Φ(u)
4
= f(y∗, u), u ∈ Rn. Note that

Sym
[∂Φ

∂u

]
= Sym

[∂f
∂u

(y∗, u)
]
≥ bIn, ∀u ∈ Rn,

it follows from Proposition 4.1 that there exists a unique
u∗ ∈ Rn, such that f(y∗, u∗) = 0. Denote

z0(t) =

∫ t

0

e(s)ds− u∗

ki
, z1(t) = e(t) = y∗ − x(t),

g(x, u) = −f(y∗ − x, u+ u∗), (23)

then g(0, 0) = −f(y∗, u∗) = 0 and it is not difficult to
obtain {

ż0 = z1

ż1 = g(z1, kiz0 + kpz1).
(24)

Notice that f ∈ FL,b and g(x, u) = −f(y∗ − x, u+ u∗),
then it is easy to see that

∥∥∂g
∂x

∥∥ ≤ L, Sym
[∂g
∂u

]
≤ −bIn < 0, ∀x, u ∈ Rn. (25)

Next, similar to the proof of Theorem 3.1, there exist
continuous functions a(z1) : Rn → Rn×n and θ(z0, z1) :
R2n → Rn×n such that

g(z1, kiz0 + kpz1) = a(z1)z1 − θ(z0, z1)(kiz0 + kpz1),
(26)

with

‖a(z1)‖ ≤ L, Sym[θ(z0, z1)] ≥ bIn > 0, ∀z0, z1 ∈ Rn.

Thus, if we denote a = a(z1), θ = θ(z0, z1) and z =
(zT0 , z

T
1 )T and

A(z)
4
=

[
0n In

−kiθ(z0, z1) a(z1)− kpθ(z0, z1)

]
.

Then (24) can be rewritten as ż = A(z)z, z ∈ R2n.

Now, we construct the following Lyapunov function:

V (z) = zTPz,

where P is a 2n × 2n constant matrix defined by (12).
Then, the time derivative of V along the trajectories of
(24) is given by

V̇ (z(t)) = zT(t)
(
PA(z(t)) +AT(z(t))P

)
z(t).

9



By Proposition 4.4, we know that P is positive definite
and there exists γ > 0 such that PA(z) + AT(z)P ≤
−γI2n, for all z ∈ R2n. By the comparison lemma, it is
easy to obtain

‖z(t)‖ ≤
√
λmax(P )/λmin(P )e−

γt
2λmax(P ) ‖z(0)‖.

Notice that z(t) = (z0(t), z1(t)) and that z1(t) = y∗ −
x(t), and z0(0) = u∗, we have

‖x(t)− y∗‖ ≤ ‖z(t)‖ ≤Me−λt (‖x(0)− y∗‖+ ‖u∗‖) ,

whereM =
√
λmax(P )/λmin(P ) and λ = γ/(2λmax(P )).

Next, we proceed to show that if the dimension of x and
u are both one, then the PI parameters (kp, ki) can be
chosen from the larger and necessary set

Ω′pi =
{

(kp, ki) ∈ R2
∣∣kpb > L, ki > 0

}
.

Sufficiency: Let y∗ ∈ R, f ∈ FL,b and (kp, ki) ∈ Ω′pi.

Since ∂f
∂u (x, u) ≥ b > 0, ∀x, u ∈ R, it follows that

lim
u→∞

f(y∗, u) =∞, lim
u→−∞

f(y∗, u) = −∞.

By the intermediate value theorem, there exists a unique
u∗ ∈ R, such that f(y∗, u∗) = 0.

Denote z0(t) =
∫ t

0
e(s)ds−u∗/ki, z1(t) = e(t) = y∗−x(t)

and g(x, u) = −f(y∗ − x, u + u∗), then (24) is satisfied
with

|∂g
∂x
| ≤ L, ∂g

∂u
≤ −b < 0, ∀x, u ∈ R.

Since g(0, 0) = −f(y∗, u∗) = 0, we know that (0, 0) is an
equilibrium of (24).

We proceed to apply the Markus-Yamabe’s theo-
rem(Theorem A2) to show (0, 0) is a globally asymptot-
ically stable equilibrium of (24). Denote the vector field
of (24) by G(z0, z1), i.e.,

G(z0, z1) =

[
z1

g(z1, kiz0 + kpz1)

]
, (z0, z1) ∈ R2.

Then the Jacobian matrix of G is

DG(z0, z1) =

 0 1

ki
∂g

∂u

∂g

∂x
+ kp

∂g

∂u

 .

Since (kp, ki) ∈ Ω′pi, and by | ∂g∂x | ≤ L, ∂g∂u ≤ −b < 0, we
can easily see that the trace of DG(z0, z1) satisfies

∂g

∂x
+ kp

∂g

∂u
≤ L− kpb < 0, (z0, z1) ∈ R2,

and the determinant of DG(z0, z1) satisfies

−ki
∂g

∂u
> 0, (z0, z1) ∈ R2,

which implies that the two eigenvalues of DG(z0, z1)
have negative real parts for any (z0, z1). By Theorem A2,
we conclude that (0, 0) is a globally asymptotically sta-
ble equilibrium of (24), thus limt→∞ x(t) = y∗ for any
initial value x(0) ∈ R.

Necessity: We use contradiction argument and assume
that e(t)→ 0 for all f ∈ FL,b and for all setpoint y∗ ∈ R
but (kp, ki) /∈ Ω′pi. We consider two cases separately.

(i) If ki = 0, let f(x, u) = Lx+ bu ∈ FL,b, then

ė(t) = −ẋ(t) = (L− bkp)e(t)− Ly∗.

Obviously, e(t) does not converge to 0 as long as y∗ 6= 0
for any initial value e(0) ∈ R.

(ii) If ki 6= 0, we take f(x) = Lx+ bu and y∗ = 0. If we

denote e0(t) =
∫ t

0
e(s)ds, then we have

{
ė0 = e

ė = −kibe0 + (L− kpb)e.
(27)

Since (kp, ki) /∈ Ω′pi, then there exists at least one eigen-

value λ of A =

[
0 1

−kib L− kpb

]
, whose real part satisfies

<(λ) ≥ 0, which contradicts with our assumption that
e(t)→ 0 for all initial states x(0) ∈ R. �

Remark 4.1. From the proof of Theorems 3.1-3.3, one
can see that some seemly linearity-like methods are used
in this paper, which is not surprising since the classical
PID control is a linear feedback. What somewhat sur-
prising to us are the following two facts: a) the linear
PID has proven to have the ability to globally stabilize
and regulate a wide class of nonlinear systems; b) some
seemly linearity-like methods can still be used to analyze
the PID controlled strongly coupled non-affine nonlinear
uncertain systems. Moreover, the linearity-like methods
used in Section 4 cannot be directly borrowed from the
conventional linear system theory for at least the fol-
lowing two reasons: 1) the construction of the Lyapunov
functions in Theorems 3.1−3.3 is far from obvious be-
cause the sophisticated structure of the positive definite
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matrices P in (9), (11)-(12), which are not the conven-
tionally assumed solutions of certain matrix equations
or inequalities; 2) The proofs of Theorems 3.1 and 3.3
need a basic topological result known as the Hadamard
global inverse function theorem, and the proof of Theo-
rem 3.3 also needs the Markus-Yamabe theorem which
had been a longstanding problem in differential equa-
tions and has been rarely used in control theory before.

5 Conclusion

In this paper, we have presented a mathematical inves-
tigation on the foundation of the classical linear PID
(PD or PI) controller for several classes of MIMO non-
affine uncertain nonlinear dynamical systems, found a
three (two) dimensional set within which the PID (PD
or PI) parameters can be chosen arbitrarily to stabi-
lize and regulate the system globally. Moreover, a sim-
ple necessary and sufficient condition for the choice of
the PI controller parameters is given for a class of one
dimensional non-affine uncertain systems. The PID de-
sign rules given in this paper are quite simple, which
shows that the PID parameters are not necessarily to
be of high gain. Our results have improved significantly
the existing design methods and theoretical results in
the related literature. Of course, many interesting prob-
lems still remain open. For example, it would be natural
to ask whether the extended PID controller discussed in
Zhao & Guo (2021) can globally stabilize more general
non-affine uncertain systems under the similar assump-
tions on the system unknown functions, and how to fur-
ther “optimize” the PID parameters from Ωpid to get
better transient performance. It would also be interest-
ing to consider more complicated situations such as sat-
uration, dead-zone, time-delayed inputs, sampled-data
PID controllers under a prescribed sampling rate, etc.

6 Appendix

6.1 Proof of Propositions

To prove Proposition 4.2, we need the following three
lemmas.

Lemma 6.1 Suppose D = DT ∈ Rm×m and E = ET ∈
Rn×n are two invertible matrices and B ∈ Rm×n, then[
D B

BT E

]
> 0 if and only ifD > 0 and E−BTD−1B > 0.

Lemma 6.1 can be found in Horn & Johnson (1985)( see
Theorem 7.7.6). By Lemma 6.1, we can easily obtain the
following results:

Lemma 6.2 Suppose D ∈ Rm×m and E ∈ Rn×n
are two positive definite matrices and B ∈ Rm×n. If

λmin(D)λmin(E) > ‖B‖2, where λmin(D) denotes the

smallest eigenvalue of D, then

[
D B

BT E

]
> 0.

Proof. From Lemma 6.1, it suffices to show that E −
BTD−1B > 0. First, it is easy to see that λmin(D)D−1 ≤
Im. Let x ∈ Rn, then we can obtain

λmin(E)‖x‖2 ≤xTEx,

xTBTD−1Bx ≤ ‖Bx‖
2

λmin(D)
≤ ‖B‖2

λmin(D)
‖x‖2. (28)

From (28), we have

xT(E −BTD−1B)x ≥
(
λmin(E)− ‖B‖2

λmin(D)

)
‖x‖2.

Thus, E −BTD−1B > 0. �

Lemma 6.3 Let F : K → Rn×n be a continuous (ma-
trix valued) function, where K ⊂ Rm is a compact set.
Assume that for any z ∈ K, F (z) is positive definite.
Then

inf
z∈K

λmin

(
F (z)

)
> 0,

where λmin(F ) denotes the smallest eigenvalue of F .

Proof. For a positive definite matrix F , it is well-known
that λmax(F−1) = 1/λmin(F ) and ‖F−1‖ = λmax(F−1),
where λmax(F−1) denotes the largest eigenvalue of F−1.
Therefore

λmin(F ) = 1/‖F−1‖, F > 0. (29)

From (29), we can see that to prove infz∈K λminF (z) >
0, it suffices to show supz∈K ‖F−1(z)‖ <∞. This comes
immediately since the function z 7→ ‖F−1(z)‖ is contin-
uous for z ∈ K and K is a compact set in Rm. �

Proof of Proposition 4.2

Step 1. We first show that the matrix P defined by (9)
is positive definite. For this, it suffices to show that the
following 3× 3 matrix P0 defined by

P0
4
=


2kikpb 2kikdb ki

2kikdb 2kpkdb− ki kp

ki kp kd


is positive definite, since the matrix P is also symmetric
and shares the same spectrum with P0. Moreover, to
prove the positiveness of P0, we need only to verify the
following three inequalities:

2kikpb > 0, det

[
2kikpb 2kikdb

2kikdb 2kpkdb−ki

]
> 0, det(P0) > 0.
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Firstly, recall ki > 0, kp > 0 and b > 0, thus 2kikpb > 0.
Secondly, note that k2

p > 2kikd and k2
d > kp/b, we know

that

det

[
2kikpb 2kikdb

2kikdb 2kpkdb−ki

]
=2kikpb(2kpkdb−ki)− (2kikdb)

2

=4kikd(k
2
p − kikd)b

2 − 2k2
i kpb

>4k2
i k

2
db

2 − 2k2
i kpb

=2k2
i

(
2k2
db− kp

)
b > 0.

Thirdly, by some simple calculations, we have

det(P0) = ki
(
4k2
pk

2
db

2 + k2
i − 2k3

pb− 4kik
3
db

2
)
. (30)

Note that √
kp/b < kd <

k2
p

2ki
,

we define a function ρ(x) as follows:

ρ(x) = 4k2
pb

2x2+k2
i−2k3

pb−4kib
2x3,

√
kp/b < x <

k2
p

2ki
.

Then, the derivative of ρ(·) satisfies

dρ(x)

dx
=4x

(
2k2
p − 3kix

)
b2

>4xb2
(

2k2
p − 3ki

k2
p

2ki

)
>2xb2k2

p > 0,
√
kp/b < x <

k2
p

2ki
.

Hence, ρ(x) is strictly increasing on the interval

(
√
kp/b,

k2p
2ki

). Consequently, by the monotonicity of

ρ(x), it can be deduced that

det(P0)

ki
=ρ(kd) > ρ

(√
kp/b

)
=2kp

(
k2
p − 2ki

√
kp/b

)
b+ k2

i

>2kp

(
2kikd − 2ki

√
kp/b

)
b+ k2

i

>4kikp

(
kd −

√
kp/b

)
b+ k2

i > 0.

Thus, P is a positive definite matrix.

Step 2. Next, we calculate PA+ATP .

For simplicity, we denote

θ̂ = Sym[θ] =
θ + θT

2
, (31)

then by some elementary calculations, it can be obtained
that

Q
4
= −(PA+ATP )

=


2k2
i θ̂ 2kikpθ̂ −m2 2kikdθ̂ −m3

2kikpθ̂ −mT
2 2k2

pθ̂ −m4 2kpkdθ̂ −m5

2kikdθ̂ −mT
3 2kpkdθ̂ −mT

5 2k2
dθ̂ −m6

 , (32)

where mi, i = 2, · · · , 6 are n× n matrices defined by

m2 =2kikpbIn + kia,

m3 =2kikdbIn + kib,

m4 =4kikdbIn + kp
(
a+ aT

)
,

m5 =2kpkdbIn + kpb+ kda
T,

m6 =2kpIn + kd
(
b+ bT

)
. (33)

Step 3. Denote θ0 = bIn, we proceed to show that the
matrixQ defined by (32) satisfies the inequalityQ ≥ Q0,
where

Q0
4
=


2k2
i θ0 2kikpθ0 −m2 2kikdθ0 −m3

2kikpθ0 −mT
2 2k2

pθ0 −m4 2kpkdθ0 −m5

2kikdθ0 −mT
3 2kpkdθ0 −mT

5 2k2
dθ0 −m6

 .
(34)

Notice that

Q−Q0 =


2k2
i 2kikp 2kikd

2kikp 2k2
p 2kpkd

2kikd 2kpkd 2k2
d

⊗ (θ̂ − θ0),

where ⊗ denotes the Kronecker product. It can be veri-
fied that


2k2
i 2kikp 2kikd

2kikp 2k2
p 2kpkd

2kikd 2kpkd 2k2
d

 ≥ 0.

On the other hand, recall that θ̂ − θ0 ≥ 0. Since the
Kronecker product of two positive semi-definite matrices
is also positive semi-definite, thus Q−Q0 ≥ 0.

Step 4. We proceed to show thatQ0 > 0 for all ‖a‖ ≤ L1

and ‖b‖ ≤ L2.
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First, by the definition of Q0 in (34), we know that

Q0 =


2k2
i bIn −kia −kib
−kiaT 2k1In − 2kpâ − (kpb+ kda

T)

−kibT −(kpb
T + kda) 2k2In − 2kdb̂

 ,
(35)

where

k1
4
=(k2

p − 2kikd)b, k2
4
= k2

db− kp,

â
4
=
(
a+ aT

)
/2, b̂

4
=
(
b+ bT

)
/2.

Denote

D
4
=2k2

i bIn, B
4
= [−kia, − kib],

E
4
=

[
2k1In − 2kpâ − (kpb+ kda

T)

−(kpb
T + kda) 2k2In − 2kdb̂

]
,

then it follows from (35) that Q0 =

[
D B

BT E

]
.

Note that D > 0, by Lemma 6.1, to prove Q0 > 0, it
suffices to show that

E −BTD−1B > 0. (36)

By some calculations, it is not difficult to obtain

E −BTD−1B
4
=

[
D1 B1

BT
1 E1

]
,

where D1, B1 and E1 have the following forms:

D1 = 2k1In − 2kpâ−
aTa

2b
,

B1 = −
(
kpb+ kda

T +
aTb

2b

)
,

E1 = 2k2In − 2kdb̂−
bTb

2b
.

We next proceed to show that D1 > 0, E1 > 0 and

λmin(D1)λmin(E1) > ‖B1‖2.

First, from ‖a‖ ≤ L1 and ‖b‖ ≤ L2, we know

‖â‖ =
∥∥(a+ aT

)
/2
∥∥ ≤ L1, ‖b̂‖ =

∥∥(b+ bT
)
/2
∥∥ ≤ L2.

Besides, recall k1 = (k2
p − 2kikd)b, k2 = k2

db− kp, it can
be obtained that

λmin(D1) ≥ 2(k2
p − 2kikd)b− 2kpL1 −

L2
1

2b
, (37)

λmin(E1) ≥ 2(k2
db− kp)− 2kdL2 −

L2
2

2b
, (38)

‖B1‖ ≤ kpL2 + kdL1 +
L1L2

2b
. (39)

Since (kp, ki, kd) ∈ Ωpid, it can be deduced that

k2
p >k

2
p − 2kikd > k̄ = (L1 + L2)(kp + kd)/b

>(L1 + L2)kp/b,

which implies kp > (L1 + L2)/b. Similarly, from k2
d >

k̄ + kp/b > k̄, it can be verified that kd > (L1 + L2)/b.
Hence, the following inequalities hold:

λmin(D1) ≥2(k2
p − 2kikd)b− 2kpL1 − L2

1/(2b)

≥2(kp + kd)(L1 + L2)− 2kpL1 − L2
1/(2b)

=2kpL2 + 2kd(L1 + L2)− L2
1/(2b)

≥kpL2 + kdL1 + kd(L1 + L2)− L2
1/(2b)

≥kpL2 + kdL1 + (L1 + L2)2/b− L2
1/(2b)

>kpL2 + kdL1 + L1L2/(2b) ≥ ‖B1‖. (40)

Similarly, it can be deduced that

λmin(E1) ≥2(k2
db− kp)− 2kdL2 − L2

2/(2b)

≥2(kp + kd)(L1 + L2)− 2kdL2 − L2
2/(2b)

>kpL2 + kdL1 + kp(L1 + L2)− L2
2/(2b)

≥kpL2 + kdL1 + (L1 + L2)2/b− L2
2/(2b)

≥kpL2 + kdL1 + L1L2/(2b) ≥ ‖B1‖. (41)

Combine (40) with (41), we know that

λmin(D1)λmin(E1) > ‖B1‖2.

By Lemma 6.2, we conclude that

[
D1 B1

BT
1 E1

]
> 0, i.e.

E −BTD−1B > 0, which implies Q0 > 0.

Step 5. From Step 4, we know that Q0 > 0 for all
‖a‖ ≤ L1 and ‖b‖ ≤ L2. From the expression of Q0

in (35), it is easy to see Q0 is a continuous function of
the variables a and b. Notice that, the matrices a and b
vary on a compact set, namely ‖a‖ ≤ L1 and ‖b‖ ≤ L2.
From Lemma 6.3, there exists α > 0(which depends
on (kp, ki, kd, L1, L2, b) only), such that Q0 ≥ αI3n for
all ‖a‖ ≤ L1 and ‖b‖ ≤ L2. By Step 3, we know that
Q ≥ Q0 ≥ αI3n, this implies that ATP + PA ≤ −αI3n
for all a, b and θ with Sym[θ] ≥ bIn, ‖a‖ ≤ L1 and
‖b‖ ≤ L2. �
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Proof of Proposition 4.3 Since (kp, kd) ∈ Ωpd, then
we know that kp > 0, kd > 0 and k2

db − kp > k̄ >
0. Therefore, we have 2kpkdb > 0, and 2kpk

2
db − k2

p =

kp(2k
2
db− kp) > kp(k

2
db− kp) > 0. Hence, the matrix P

defined by (11) is positive definite. Next, we show that
PA+ATP is negative definite. Denote

Q
4
= −(PA+ATP ) =

[
Q1 Q12

QT
12 Q2

]
,

then by some calculations, we have

Q1 = 2k2
pSym[θ]− kp(a+ aT),

Q12 = 2kpkd(Sym[θ]− bIn)− kpb− kdaT

and
Q2 = 2k2

dSym[θ]− kd(b+ bT)− 2kpIn.

Notice that Sym[θ] ≥ bIn, similar to Step 3 in the proof
of Proposition 4.2, it is not difficult to obtain

Q ≥

[
2k2
pbIn − kp(a+ aT) −kpb− kdaT

−kpbT − kda 2(k2
db− kp)In − kd(b+ bT)

]
.

(42)

For z1, z2 ∈ Rn, it follows from (42) that

[
zT1 , z

T
2

]
Q

[
z1

z2

]
≥2k2

pbz
T
1 z1 − kpzT1 (a+ aT)z1 − 2kpz

T
1 bz2

− 2kdz
T
1 a

Tz2 + 2(k2
db− kp)zT2 z2 − kdzT2 (b+ bT)z2

≥2(k2
pb− kpL1)zT1 z1 − 2(kpL2 + kdL1)‖z1‖‖z2‖

+ 2(k2
db− kp − kdL2)zT2 z2

≥
(
2k2
pb− 2kpL1 − (kpL2 + kdL1)

)
zT1 z1

+
(
2k2
db− 2kp − 2kdL2 − (kpL2 + kdL1)

)
zT2 z2

≥
(
2k2
p − 2k̄

)
bzT1 z1 +

(
2k2
db− 2kp − 2k̄b

)
zT2 z2, (43)

where k̄ = (kp + kd)(L1 + L2)/b.

Since (kp, kd) ∈ Ωpd, we know that k2
p > k̄, k2

d−kp/b > k̄,
and therefore Q > 0. Notice that the RHS of (43) does
not depend on the matrices a, b and θ. Hence, if we
denote

β = 2 min
{(
k2
p − k̄

)
b, k2

db− kp − k̄b
}
,

then Q ≥ βI2n(and thus PA + ATP ≤ −βI2n), for all
n× n matrices a, b and θ with ‖a‖ ≤ L1, ‖b‖ ≤ L2 and
Sym[θ] ≥ bIn > 0. �

Proof of Proposition 4.4 Since (kp, ki) ∈ Ωpi, then
it is easy to obtain kp > 0, ki > 0 and k2

pb − ki > 0.
Therefore, we have 2kpkib > 0 and

2kik
2
pb− k2

i = ki(2k
2
pb− ki) > ki(k

2
pb− ki) > 0.

Hence, the matrix P defined by (12) is positive definite.

Next, we need to show that PA+ ATP is negative def-
inite, i.e. −(PA + ATP ) > 0. By some simple calcula-
tions, we have

Q
4
= −(PA+ATP ) =

[
Q1 Q12

QT
12 Q2

]
,

where

Q1 = 2k2
i Sym[θ],

Q12 = 2kikp(Sym[θ]− bIn)− kia,
Q2 = 2k2

pSym[θ]− kp
(
a+ aT

)
− 2kiIn.

First, notice that Sym[θ] ≥ bIn, similar to Step 3 in the
proof of Proposition 4.2, it is not difficult to obtain

Q ≥

[
2k2
i bIn −kia
−kiaT 2k2

pbIn − kp(a+ aT)− 2kiIn

]
4
= Q0.

Next, we prove that Q0 > 0, for all n× n matrix a with
‖a‖ ≤ L.

For z1, z2 ∈ Rn, it is easy to get

[zT1 , z
T
2 ]Q0

[
z1

z2

]
= 2k2

i bz
T
1 z1 + 2k2

pbz
T
2 z2

− kpzT2 (a+ aT)z2 − 2kiz
T
2 z2 − 2kiz

T
1 az2

≥2k2
i bz

T
1 z1 + (2k2

pb− 2kpL− 2ki)z
T
2 z2 − 2kiLz

T
1 z2.

(44)

From (44), it follows that

Q0 ≥ Q1
4
=

[
2k2
i b −kiL

−kiL 2(k2
pb− kpL− ki)

]
⊗ In. (45)

Recall that (kp, ki) ∈ Ωpi, i.e., 4(k2
pb− kpL− ki)b > L2,

it is easy to see that Q1 is positive definite. Moreover,
notice that Q1 defined in (45) does not depend on the
matrices a and θ. Hence, there exists γ > 0(γ can be
chosen as the smallest eigenvalue of Q1), such that Q0 ≥
γI2n(and thus PA+ATP ≤ −Q0 ≤ −γI2n), for all n×n
matrices a and θ with ‖a‖ ≤ L and Sym[θ] ≥ bIn > 0. �
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6.2 Proof of Remark 3.1

We first show that Ωpid defined by (3) is an open and
unbounded subset in R3. The open property follows im-
mediately from the definition (3). Let ki > 0, kp = kd =
k ≥ 2ki + [2(L1 + L2) + 1]/b. Then, it can be obtained
that

k2
p − 2kikd − k̄ =k2 − 2kik − 2(L1 + L2)k/b

=k (k − 2ki − 2(L1 + L2)/b)

≥k/b > 0,

and

k2
d − kp/b− k̄ =k2 − k/b− 2(L1 + L2)k/b

=k (k − 1/b− 2(L1 + L2)/b)

≥2kik > 0,

which implies that the following set is a subset of Ωpid:{
(kp, ki, kd)

∣∣∣ki > 0, kp = kd ≥ 2ki+[2(L1+L2)+1]/b
}
.

Thus, Ωpid is unbounded and not empty.

Next, we show that Ωpid is a semi-cone in the following
sense: (kp, ki, kd) ∈ Ωpid ⇒ α(kp, ki, kd) ∈ Ωpid, ∀α ≥
1. Suppose that (kp, ki, kd) ∈ Ωpid and α ≥ 1, we need
to show (k′p, k

′
i, k
′
d) = α(kp, ki, kd) ∈ Ωpid. Let us define

k̄′ = (L1 + L2)(k′p + k′d)/b. Then it is easy to obtain

k′2p − 2k′ik
′
d − k̄′ =α2(k2

p − 2kikd)− αk̄
≥α2

(
k2
p − 2kikd − k̄

)
> 0. (46)

Therefore, the first inequality in the definition of Ωpid is
satisfied. Next, it is easy to obtain the following inequal-
ities:

k′2d − k′p/b− k̄′ =α2k2
d − αkp/b− αk̄

≥α2
(
k2
d − kp/b− k̄

)
> 0. (47)

Thus, the second inequality is also verified. Therefore,
α(kp, ki, kd) ∈ Ωpid for all α ≥ 1. �
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